Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/lstm/convolve.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/lstm/convolve.cpp Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,121 @@ +/////////////////////////////////////////////////////////////////////// +// File: convolve.cpp +// Description: Convolutional layer that stacks the inputs over its rectangle +// and pulls in random data to fill out-of-input inputs. +// Output is therefore same size as its input, but deeper. +// Author: Ray Smith +// +// (C) Copyright 2014, Google Inc. +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// http://www.apache.org/licenses/LICENSE-2.0 +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. +/////////////////////////////////////////////////////////////////////// + +#ifdef HAVE_CONFIG_H +# include "config_auto.h" +#endif + +#include "convolve.h" + +#include "networkscratch.h" +#include "serialis.h" + +namespace tesseract { + +Convolve::Convolve(const std::string &name, int ni, int half_x, int half_y) + : Network(NT_CONVOLVE, name, ni, ni * (2 * half_x + 1) * (2 * half_y + 1)) + , half_x_(half_x) + , half_y_(half_y) {} + +// Writes to the given file. Returns false in case of error. +bool Convolve::Serialize(TFile *fp) const { + return Network::Serialize(fp) && fp->Serialize(&half_x_) && fp->Serialize(&half_y_); +} + +// Reads from the given file. Returns false in case of error. +bool Convolve::DeSerialize(TFile *fp) { + if (!fp->DeSerialize(&half_x_)) { + return false; + } + if (!fp->DeSerialize(&half_y_)) { + return false; + } + no_ = ni_ * (2 * half_x_ + 1) * (2 * half_y_ + 1); + return true; +} + +// Runs forward propagation of activations on the input line. +// See NetworkCpp for a detailed discussion of the arguments. +void Convolve::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, + NetworkScratch *scratch, NetworkIO *output) { + output->Resize(input, no_); + int y_scale = 2 * half_y_ + 1; + StrideMap::Index dest_index(output->stride_map()); + do { + // Stack x_scale groups of y_scale * ni_ inputs together. + int t = dest_index.t(); + int out_ix = 0; + for (int x = -half_x_; x <= half_x_; ++x, out_ix += y_scale * ni_) { + StrideMap::Index x_index(dest_index); + if (!x_index.AddOffset(x, FD_WIDTH)) { + // This x is outside the image. + output->Randomize(t, out_ix, y_scale * ni_, randomizer_); + } else { + int out_iy = out_ix; + for (int y = -half_y_; y <= half_y_; ++y, out_iy += ni_) { + StrideMap::Index y_index(x_index); + if (!y_index.AddOffset(y, FD_HEIGHT)) { + // This y is outside the image. + output->Randomize(t, out_iy, ni_, randomizer_); + } else { + output->CopyTimeStepGeneral(t, out_iy, ni_, input, y_index.t(), 0); + } + } + } + } + } while (dest_index.Increment()); +#ifndef GRAPHICS_DISABLED + if (debug) { + DisplayForward(*output); + } +#endif +} + +// Runs backward propagation of errors on the deltas line. +// See NetworkCpp for a detailed discussion of the arguments. +bool Convolve::Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, + NetworkIO *back_deltas) { + back_deltas->Resize(fwd_deltas, ni_); + NetworkScratch::IO delta_sum; + delta_sum.ResizeFloat(fwd_deltas, ni_, scratch); + delta_sum->Zero(); + int y_scale = 2 * half_y_ + 1; + StrideMap::Index src_index(fwd_deltas.stride_map()); + do { + // Stack x_scale groups of y_scale * ni_ inputs together. + int t = src_index.t(); + int out_ix = 0; + for (int x = -half_x_; x <= half_x_; ++x, out_ix += y_scale * ni_) { + StrideMap::Index x_index(src_index); + if (x_index.AddOffset(x, FD_WIDTH)) { + int out_iy = out_ix; + for (int y = -half_y_; y <= half_y_; ++y, out_iy += ni_) { + StrideMap::Index y_index(x_index); + if (y_index.AddOffset(y, FD_HEIGHT)) { + fwd_deltas.AddTimeStepPart(t, out_iy, ni_, delta_sum->f(y_index.t())); + } + } + } + } + } while (src_index.Increment()); + back_deltas->CopyAll(*delta_sum); + return true; +} + +} // namespace tesseract.
