diff mupdf-source/thirdparty/tesseract/src/dict/stopper.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/dict/stopper.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,519 @@
+/******************************************************************************
+ ** Filename:    stopper.c
+ ** Purpose:     Stopping criteria for word classifier.
+ ** Author:      Dan Johnson
+ **
+ ** (c) Copyright Hewlett-Packard Company, 1988.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ ******************************************************************************/
+
+#include <cctype>
+#include <cmath>
+#include <cstdio>
+#include <cstring>
+
+#include "stopper.h"
+#ifndef DISABLED_LEGACY_ENGINE
+#  include "ambigs.h"
+#endif
+#include <tesseract/unichar.h>
+#include "ccutil.h"
+#include "dict.h"
+#include "helpers.h"
+#include "matchdefs.h"
+#include "pageres.h"
+#include "params.h"
+#include "ratngs.h"
+
+/*----------------------------------------------------------------------------
+              Private Code
+----------------------------------------------------------------------------*/
+
+namespace tesseract {
+
+bool Dict::AcceptableChoice(const WERD_CHOICE &best_choice,
+                            XHeightConsistencyEnum xheight_consistency) {
+  float CertaintyThreshold = stopper_nondict_certainty_base;
+  int WordSize;
+
+  if (stopper_no_acceptable_choices) {
+    return false;
+  }
+
+  if (best_choice.empty()) {
+    return false;
+  }
+
+  bool no_dang_ambigs = !best_choice.dangerous_ambig_found();
+  bool is_valid_word = valid_word_permuter(best_choice.permuter(), false);
+  bool is_case_ok = case_ok(best_choice);
+
+  if (stopper_debug_level >= 1) {
+    const char *xht = "UNKNOWN";
+    switch (xheight_consistency) {
+      case XH_GOOD:
+        xht = "NORMAL";
+        break;
+      case XH_SUBNORMAL:
+        xht = "SUBNORMAL";
+        break;
+      case XH_INCONSISTENT:
+        xht = "INCONSISTENT";
+        break;
+      default:
+        xht = "UNKNOWN";
+    }
+    tprintf("\nStopper:  %s (word=%c, case=%c, xht_ok=%s=[%g,%g])\n",
+            best_choice.unichar_string().c_str(), (is_valid_word ? 'y' : 'n'),
+            (is_case_ok ? 'y' : 'n'), xht, best_choice.min_x_height(), best_choice.max_x_height());
+  }
+  // Do not accept invalid words in PASS1.
+  if (reject_offset_ <= 0.0f && !is_valid_word) {
+    return false;
+  }
+  if (is_valid_word && is_case_ok) {
+    WordSize = LengthOfShortestAlphaRun(best_choice);
+    WordSize -= stopper_smallword_size;
+    if (WordSize < 0) {
+      WordSize = 0;
+    }
+    CertaintyThreshold += WordSize * stopper_certainty_per_char;
+  }
+
+  if (stopper_debug_level >= 1) {
+    tprintf("Stopper:  Rating = %4.1f, Certainty = %4.1f, Threshold = %4.1f\n",
+            best_choice.rating(), best_choice.certainty(), CertaintyThreshold);
+  }
+
+  if (no_dang_ambigs && best_choice.certainty() > CertaintyThreshold &&
+      xheight_consistency < XH_INCONSISTENT && UniformCertainties(best_choice)) {
+    return true;
+  } else {
+    if (stopper_debug_level >= 1) {
+      tprintf(
+          "AcceptableChoice() returned false"
+          " (no_dang_ambig:%d cert:%.4g thresh:%g uniform:%d)\n",
+          no_dang_ambigs, best_choice.certainty(), CertaintyThreshold,
+          UniformCertainties(best_choice));
+    }
+    return false;
+  }
+}
+
+bool Dict::AcceptableResult(WERD_RES *word) const {
+  if (word->best_choice == nullptr) {
+    return false;
+  }
+  float CertaintyThreshold = stopper_nondict_certainty_base - reject_offset_;
+  int WordSize;
+
+  if (stopper_debug_level >= 1) {
+    tprintf("\nRejecter: %s (word=%c, case=%c, unambig=%c, multiple=%c)\n",
+            word->best_choice->debug_string().c_str(), (valid_word(*word->best_choice) ? 'y' : 'n'),
+            (case_ok(*word->best_choice) ? 'y' : 'n'),
+            word->best_choice->dangerous_ambig_found() ? 'n' : 'y',
+            word->best_choices.singleton() ? 'n' : 'y');
+  }
+
+  if (word->best_choice->empty() || !word->best_choices.singleton()) {
+    return false;
+  }
+  if (valid_word(*word->best_choice) && case_ok(*word->best_choice)) {
+    WordSize = LengthOfShortestAlphaRun(*word->best_choice);
+    WordSize -= stopper_smallword_size;
+    if (WordSize < 0) {
+      WordSize = 0;
+    }
+    CertaintyThreshold += WordSize * stopper_certainty_per_char;
+  }
+
+  if (stopper_debug_level >= 1) {
+    tprintf("Rejecter: Certainty = %4.1f, Threshold = %4.1f   ", word->best_choice->certainty(),
+            CertaintyThreshold);
+  }
+
+  if (word->best_choice->certainty() > CertaintyThreshold && !stopper_no_acceptable_choices) {
+    if (stopper_debug_level >= 1) {
+      tprintf("ACCEPTED\n");
+    }
+    return true;
+  } else {
+    if (stopper_debug_level >= 1) {
+      tprintf("REJECTED\n");
+    }
+    return false;
+  }
+}
+
+#if !defined(DISABLED_LEGACY_ENGINE)
+
+bool Dict::NoDangerousAmbig(WERD_CHOICE *best_choice, DANGERR *fixpt, bool fix_replaceable,
+                            MATRIX *ratings) {
+  if (stopper_debug_level > 2) {
+    tprintf("\nRunning NoDangerousAmbig() for %s\n", best_choice->debug_string().c_str());
+  }
+
+  // Construct BLOB_CHOICE_LIST_VECTOR with ambiguities
+  // for each unichar id in BestChoice.
+  BLOB_CHOICE_LIST_VECTOR ambig_blob_choices;
+  bool ambigs_found = false;
+  // For each position in best_choice:
+  // -- choose AMBIG_SPEC_LIST that corresponds to unichar_id at best_choice[i]
+  // -- initialize wrong_ngram with a single unichar_id at best_choice[i]
+  // -- look for ambiguities corresponding to wrong_ngram in the list while
+  //    adding the following unichar_ids from best_choice to wrong_ngram
+  //
+  // Repeat the above procedure twice: first time look through
+  // ambigs to be replaced and replace all the ambiguities found;
+  // second time look through dangerous ambiguities and construct
+  // ambig_blob_choices with fake a blob choice for each ambiguity
+  // and pass them to dawg_permute_and_select() to search for
+  // ambiguous words in the dictionaries.
+  //
+  // Note that during the execution of the for loop (on the first pass)
+  // if replacements are made the length of best_choice might change.
+  for (int pass = 0; pass < (fix_replaceable ? 2 : 1); ++pass) {
+    bool replace = (fix_replaceable && pass == 0);
+    const UnicharAmbigsVector &table =
+        replace ? getUnicharAmbigs().replace_ambigs() : getUnicharAmbigs().dang_ambigs();
+    if (!replace) {
+      // Initialize ambig_blob_choices with lists containing a single
+      // unichar id for the corresponding position in best_choice.
+      // best_choice consisting from only the original letters will
+      // have a rating of 0.0.
+      for (unsigned i = 0; i < best_choice->length(); ++i) {
+        auto *lst = new BLOB_CHOICE_LIST();
+        BLOB_CHOICE_IT lst_it(lst);
+        // TODO(rays/antonova) Put real xheights and y shifts here.
+        lst_it.add_to_end(
+            new BLOB_CHOICE(best_choice->unichar_id(i), 0.0, 0.0, -1, 0, 1, 0, BCC_AMBIG));
+        ambig_blob_choices.push_back(lst);
+      }
+    }
+    UNICHAR_ID wrong_ngram[MAX_AMBIG_SIZE + 1];
+    int wrong_ngram_index;
+    int blob_index = 0;
+    for (unsigned i = 0; i < best_choice->length(); blob_index += best_choice->state(i), ++i) {
+      auto curr_unichar_id = best_choice->unichar_id(i);
+      if (stopper_debug_level > 2) {
+        tprintf("Looking for %s ngrams starting with %s:\n", replace ? "replaceable" : "ambiguous",
+                getUnicharset().debug_str(curr_unichar_id).c_str());
+      }
+      int num_wrong_blobs = best_choice->state(i);
+      wrong_ngram_index = 0;
+      wrong_ngram[wrong_ngram_index] = curr_unichar_id;
+      if (curr_unichar_id == INVALID_UNICHAR_ID || static_cast<size_t>(curr_unichar_id) >= table.size() ||
+          table[curr_unichar_id] == nullptr) {
+        continue; // there is no ambig spec for this unichar id
+      }
+      AmbigSpec_IT spec_it(table[curr_unichar_id]);
+      for (spec_it.mark_cycle_pt(); !spec_it.cycled_list();) {
+        const AmbigSpec *ambig_spec = spec_it.data();
+        wrong_ngram[wrong_ngram_index + 1] = INVALID_UNICHAR_ID;
+        int compare = UnicharIdArrayUtils::compare(wrong_ngram, ambig_spec->wrong_ngram);
+        if (stopper_debug_level > 2) {
+          tprintf("candidate ngram: ");
+          UnicharIdArrayUtils::print(wrong_ngram, getUnicharset());
+          tprintf("current ngram from spec: ");
+          UnicharIdArrayUtils::print(ambig_spec->wrong_ngram, getUnicharset());
+          tprintf("comparison result: %d\n", compare);
+        }
+        if (compare == 0) {
+          // Record the place where we found an ambiguity.
+          if (fixpt != nullptr) {
+            UNICHAR_ID leftmost_id = ambig_spec->correct_fragments[0];
+            fixpt->push_back(DANGERR_INFO(blob_index, blob_index + num_wrong_blobs, replace,
+                                          getUnicharset().get_isngram(ambig_spec->correct_ngram_id),
+                                          leftmost_id));
+            if (stopper_debug_level > 1) {
+              tprintf("fixpt+=(%d %d %d %d %s)\n", blob_index, blob_index + num_wrong_blobs, false,
+                      getUnicharset().get_isngram(ambig_spec->correct_ngram_id),
+                      getUnicharset().id_to_unichar(leftmost_id));
+            }
+          }
+
+          if (replace) {
+            if (stopper_debug_level > 2) {
+              tprintf("replace ambiguity with %s : ",
+                      getUnicharset().id_to_unichar(ambig_spec->correct_ngram_id));
+              UnicharIdArrayUtils::print(ambig_spec->correct_fragments, getUnicharset());
+            }
+            ReplaceAmbig(i, ambig_spec->wrong_ngram_size, ambig_spec->correct_ngram_id, best_choice,
+                         ratings);
+          } else if (i > 0 || ambig_spec->type != CASE_AMBIG) {
+            // We found dang ambig - update ambig_blob_choices.
+            if (stopper_debug_level > 2) {
+              tprintf("found ambiguity: ");
+              UnicharIdArrayUtils::print(ambig_spec->correct_fragments, getUnicharset());
+            }
+            ambigs_found = true;
+            for (int tmp_index = 0; tmp_index <= wrong_ngram_index; ++tmp_index) {
+              // Add a blob choice for the corresponding fragment of the
+              // ambiguity. These fake blob choices are initialized with
+              // negative ratings (which are not possible for real blob
+              // choices), so that dawg_permute_and_select() considers any
+              // word not consisting of only the original letters a better
+              // choice and stops searching for alternatives once such a
+              // choice is found.
+              BLOB_CHOICE_IT bc_it(ambig_blob_choices[i + tmp_index]);
+              bc_it.add_to_end(new BLOB_CHOICE(ambig_spec->correct_fragments[tmp_index], -1.0, 0.0,
+                                               -1, 0, 1, 0, BCC_AMBIG));
+            }
+          }
+          spec_it.forward();
+        } else if (compare == -1) {
+          unsigned next_index;
+          if (wrong_ngram_index + 1 < ambig_spec->wrong_ngram_size &&
+              ((next_index = wrong_ngram_index + 1 + i) < best_choice->length())) {
+            // Add the next unichar id to wrong_ngram and keep looking for
+            // more ambigs starting with curr_unichar_id in AMBIG_SPEC_LIST.
+            wrong_ngram[++wrong_ngram_index] = best_choice->unichar_id(next_index);
+            num_wrong_blobs += best_choice->state(next_index);
+          } else {
+            break; // no more matching ambigs in this AMBIG_SPEC_LIST
+          }
+        } else {
+          spec_it.forward();
+        }
+      } // end searching AmbigSpec_LIST
+    }   // end searching best_choice
+  }     // end searching replace and dangerous ambigs
+
+  // If any ambiguities were found permute the constructed ambig_blob_choices
+  // to see if an alternative dictionary word can be found.
+  if (ambigs_found) {
+    if (stopper_debug_level > 2) {
+      tprintf("\nResulting ambig_blob_choices:\n");
+      for (unsigned i = 0; i < ambig_blob_choices.size(); ++i) {
+        print_ratings_list("", ambig_blob_choices.at(i), getUnicharset());
+        tprintf("\n");
+      }
+    }
+    WERD_CHOICE *alt_word = dawg_permute_and_select(ambig_blob_choices, 0.0);
+    ambigs_found = (alt_word->rating() < 0.0);
+    if (ambigs_found) {
+      if (stopper_debug_level >= 1) {
+        tprintf("Stopper: Possible ambiguous word = %s\n", alt_word->debug_string().c_str());
+      }
+      if (fixpt != nullptr) {
+        // Note: Currently character choices combined from fragments can only
+        // be generated by NoDangrousAmbigs(). This code should be updated if
+        // the capability to produce classifications combined from character
+        // fragments is added to other functions.
+        int orig_i = 0;
+        for (unsigned i = 0; i < alt_word->length(); ++i) {
+          const UNICHARSET &uchset = getUnicharset();
+          bool replacement_is_ngram = uchset.get_isngram(alt_word->unichar_id(i));
+          UNICHAR_ID leftmost_id = alt_word->unichar_id(i);
+          if (replacement_is_ngram) {
+            // we have to extract the leftmost unichar from the ngram.
+            const char *str = uchset.id_to_unichar(leftmost_id);
+            int step = uchset.step(str);
+            if (step) {
+              leftmost_id = uchset.unichar_to_id(str, step);
+            }
+          }
+          int end_i = orig_i + alt_word->state(i);
+          if (alt_word->state(i) > 1 || (orig_i + 1 == end_i && replacement_is_ngram)) {
+            // Compute proper blob indices.
+            int blob_start = 0;
+            for (int j = 0; j < orig_i; ++j) {
+              blob_start += best_choice->state(j);
+            }
+            int blob_end = blob_start;
+            for (int j = orig_i; j < end_i; ++j) {
+              blob_end += best_choice->state(j);
+            }
+            fixpt->push_back(
+                DANGERR_INFO(blob_start, blob_end, true, replacement_is_ngram, leftmost_id));
+            if (stopper_debug_level > 1) {
+              tprintf("fixpt->dangerous+=(%d %d %d %d %s)\n", orig_i, end_i, true,
+                      replacement_is_ngram, uchset.id_to_unichar(leftmost_id));
+            }
+          }
+          orig_i += alt_word->state(i);
+        }
+      }
+    }
+    delete alt_word;
+  }
+  if (output_ambig_words_file_ != nullptr) {
+    fprintf(output_ambig_words_file_, "\n");
+  }
+
+  for (auto data : ambig_blob_choices) {
+    delete data;
+  }
+  return !ambigs_found;
+}
+
+void Dict::EndDangerousAmbigs() {}
+
+#endif // !defined(DISABLED_LEGACY_ENGINE)
+
+void Dict::SetupStopperPass1() {
+  reject_offset_ = 0.0;
+}
+
+void Dict::SetupStopperPass2() {
+  reject_offset_ = stopper_phase2_certainty_rejection_offset;
+}
+
+void Dict::ReplaceAmbig(int wrong_ngram_begin_index, int wrong_ngram_size,
+                        UNICHAR_ID correct_ngram_id, WERD_CHOICE *werd_choice, MATRIX *ratings) {
+  int num_blobs_to_replace = 0;
+  int begin_blob_index = 0;
+  int i;
+  // Rating and certainty for the new BLOB_CHOICE are derived from the
+  // replaced choices.
+  float new_rating = 0.0f;
+  float new_certainty = 0.0f;
+  BLOB_CHOICE *old_choice = nullptr;
+  for (i = 0; i < wrong_ngram_begin_index + wrong_ngram_size; ++i) {
+    if (i >= wrong_ngram_begin_index) {
+      int num_blobs = werd_choice->state(i);
+      int col = begin_blob_index + num_blobs_to_replace;
+      int row = col + num_blobs - 1;
+      BLOB_CHOICE_LIST *choices = ratings->get(col, row);
+      ASSERT_HOST(choices != nullptr);
+      old_choice = FindMatchingChoice(werd_choice->unichar_id(i), choices);
+      ASSERT_HOST(old_choice != nullptr);
+      new_rating += old_choice->rating();
+      new_certainty += old_choice->certainty();
+      num_blobs_to_replace += num_blobs;
+    } else {
+      begin_blob_index += werd_choice->state(i);
+    }
+  }
+  new_certainty /= wrong_ngram_size;
+  // If there is no entry in the ratings matrix, add it.
+  MATRIX_COORD coord(begin_blob_index, begin_blob_index + num_blobs_to_replace - 1);
+  if (!coord.Valid(*ratings)) {
+    ratings->IncreaseBandSize(coord.row - coord.col + 1);
+  }
+  if (ratings->get(coord.col, coord.row) == nullptr) {
+    ratings->put(coord.col, coord.row, new BLOB_CHOICE_LIST);
+  }
+  BLOB_CHOICE_LIST *new_choices = ratings->get(coord.col, coord.row);
+  BLOB_CHOICE *choice = FindMatchingChoice(correct_ngram_id, new_choices);
+  if (choice != nullptr) {
+    // Already there. Upgrade if new rating better.
+    if (new_rating < choice->rating()) {
+      choice->set_rating(new_rating);
+    }
+    if (new_certainty < choice->certainty()) {
+      choice->set_certainty(new_certainty);
+    }
+    // DO NOT SORT!! It will mess up the iterator in LanguageModel::UpdateState.
+  } else {
+    // Need a new choice with the correct_ngram_id.
+    choice = new BLOB_CHOICE(*old_choice);
+    choice->set_unichar_id(correct_ngram_id);
+    choice->set_rating(new_rating);
+    choice->set_certainty(new_certainty);
+    choice->set_classifier(BCC_AMBIG);
+    choice->set_matrix_cell(coord.col, coord.row);
+    BLOB_CHOICE_IT it(new_choices);
+    it.add_to_end(choice);
+  }
+  // Remove current unichar from werd_choice. On the last iteration
+  // set the correct replacement unichar instead of removing a unichar.
+  for (int replaced_count = 0; replaced_count < wrong_ngram_size; ++replaced_count) {
+    if (replaced_count + 1 == wrong_ngram_size) {
+      werd_choice->set_blob_choice(wrong_ngram_begin_index, num_blobs_to_replace, choice);
+    } else {
+      werd_choice->remove_unichar_id(wrong_ngram_begin_index + 1);
+    }
+  }
+  if (stopper_debug_level >= 1) {
+    werd_choice->print("ReplaceAmbig() ");
+    tprintf("Modified blob_choices: ");
+    print_ratings_list("\n", new_choices, getUnicharset());
+  }
+}
+
+int Dict::LengthOfShortestAlphaRun(const WERD_CHOICE &WordChoice) const {
+  int shortest = INT32_MAX;
+  int curr_len = 0;
+  for (unsigned w = 0; w < WordChoice.length(); ++w) {
+    if (WordChoice.unicharset()->get_isalpha(WordChoice.unichar_id(w))) {
+      curr_len++;
+    } else if (curr_len > 0) {
+      if (curr_len < shortest) {
+        shortest = curr_len;
+      }
+      curr_len = 0;
+    }
+  }
+  if (curr_len > 0 && curr_len < shortest) {
+    shortest = curr_len;
+  } else if (shortest == INT32_MAX) {
+    shortest = 0;
+  }
+  return shortest;
+}
+
+int Dict::UniformCertainties(const WERD_CHOICE &word) {
+  float Certainty;
+  float WorstCertainty = FLT_MAX;
+  float CertaintyThreshold;
+  double TotalCertainty;
+  double TotalCertaintySquared;
+  double Variance;
+  float Mean, StdDev;
+  int word_length = word.length();
+
+  if (word_length < 3) {
+    return true;
+  }
+
+  TotalCertainty = TotalCertaintySquared = 0.0;
+  for (int i = 0; i < word_length; ++i) {
+    Certainty = word.certainty(i);
+    TotalCertainty += Certainty;
+    TotalCertaintySquared += static_cast<double>(Certainty) * Certainty;
+    if (Certainty < WorstCertainty) {
+      WorstCertainty = Certainty;
+    }
+  }
+
+  // Subtract off worst certainty from statistics.
+  word_length--;
+  TotalCertainty -= WorstCertainty;
+  TotalCertaintySquared -= static_cast<double>(WorstCertainty) * WorstCertainty;
+
+  Mean = TotalCertainty / word_length;
+  Variance = ((word_length * TotalCertaintySquared - TotalCertainty * TotalCertainty) /
+              (word_length * (word_length - 1)));
+  if (Variance < 0.0) {
+    Variance = 0.0;
+  }
+  StdDev = sqrt(Variance);
+
+  CertaintyThreshold = Mean - stopper_allowable_character_badness * StdDev;
+  if (CertaintyThreshold > stopper_nondict_certainty_base) {
+    CertaintyThreshold = stopper_nondict_certainty_base;
+  }
+
+  if (word.certainty() < CertaintyThreshold) {
+    if (stopper_debug_level >= 1) {
+      tprintf(
+          "Stopper: Non-uniform certainty = %4.1f"
+          " (m=%4.1f, s=%4.1f, t=%4.1f)\n",
+          word.certainty(), Mean, StdDev, CertaintyThreshold);
+    }
+    return false;
+  } else {
+    return true;
+  }
+}
+
+} // namespace tesseract