diff mupdf-source/thirdparty/tesseract/src/dict/dawg.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/dict/dawg.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,458 @@
+/********************************************************************************
+ *
+ * File:         dawg.cpp  (Formerly dawg.c)
+ * Description:  Use a Directed Acyclic Word Graph
+ * Author:       Mark Seaman, OCR Technology
+ *
+ * (c) Copyright 1987, Hewlett-Packard Company.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ *
+ *********************************************************************************/
+/*----------------------------------------------------------------------
+              I n c l u d e s
+----------------------------------------------------------------------*/
+
+#include "dawg.h"
+
+#include "dict.h"
+#include "helpers.h"
+#include "tprintf.h"
+
+#include <memory>
+
+/*----------------------------------------------------------------------
+              F u n c t i o n s   f o r   D a w g
+----------------------------------------------------------------------*/
+namespace tesseract {
+
+// Destructor.
+// It is defined here, so the compiler can create a single vtable
+// instead of weak vtables in every compilation unit.
+Dawg::~Dawg() = default;
+
+bool Dawg::prefix_in_dawg(const WERD_CHOICE &word,
+                          bool requires_complete) const {
+  if (word.empty()) {
+    return !requires_complete;
+  }
+  NODE_REF node = 0;
+  int end_index = word.length() - 1;
+  for (int i = 0; i < end_index; i++) {
+    EDGE_REF edge = edge_char_of(node, word.unichar_id(i), false);
+    if (edge == NO_EDGE) {
+      return false;
+    }
+    if ((node = next_node(edge)) == 0) {
+      // This only happens if all words following this edge terminate --
+      // there are no larger words.  See Trie::add_word_to_dawg()
+      return false;
+    }
+  }
+  // Now check the last character.
+  return edge_char_of(node, word.unichar_id(end_index), requires_complete) !=
+         NO_EDGE;
+}
+
+bool Dawg::word_in_dawg(const WERD_CHOICE &word) const {
+  return prefix_in_dawg(word, true);
+}
+
+int Dawg::check_for_words(const char *filename, const UNICHARSET &unicharset,
+                          bool enable_wildcard) const {
+  if (filename == nullptr) {
+    return 0;
+  }
+
+  FILE *word_file;
+  char string[CHARS_PER_LINE];
+  int misses = 0;
+  UNICHAR_ID wildcard = unicharset.unichar_to_id(kWildcard);
+
+  word_file = fopen(filename, "r");
+  if (word_file == nullptr) {
+    tprintf("Error: Could not open file %s\n", filename);
+    ASSERT_HOST(word_file);
+  }
+
+  while (fgets(string, CHARS_PER_LINE, word_file) != nullptr) {
+    chomp_string(string); // remove newline
+    WERD_CHOICE word(string, unicharset);
+    if (word.length() > 0 && !word.contains_unichar_id(INVALID_UNICHAR_ID)) {
+      if (!match_words(&word, 0, 0,
+                       enable_wildcard ? wildcard : INVALID_UNICHAR_ID)) {
+        tprintf("Missing word: %s\n", string);
+        ++misses;
+      }
+    } else {
+      tprintf("Failed to create a valid word from %s\n", string);
+    }
+  }
+  fclose(word_file);
+  // Make sure the user sees this with fprintf instead of tprintf.
+  if (debug_level_) {
+    tprintf("Number of lost words=%d\n", misses);
+  }
+  return misses;
+}
+
+void Dawg::iterate_words(const UNICHARSET &unicharset,
+                         std::function<void(const WERD_CHOICE *)> cb) const {
+  WERD_CHOICE word(&unicharset);
+  iterate_words_rec(word, 0, cb);
+}
+
+static void CallWithUTF8(const std::function<void(const char *)> &cb,
+                         const WERD_CHOICE *wc) {
+  std::string s;
+  wc->string_and_lengths(&s, nullptr);
+  cb(s.c_str());
+}
+
+void Dawg::iterate_words(const UNICHARSET &unicharset,
+                         const std::function<void(const char *)> &cb) const {
+  using namespace std::placeholders; // for _1
+  std::function<void(const WERD_CHOICE *)> shim(
+      std::bind(CallWithUTF8, cb, _1));
+  WERD_CHOICE word(&unicharset);
+  iterate_words_rec(word, 0, shim);
+}
+
+void Dawg::iterate_words_rec(
+    const WERD_CHOICE &word_so_far, NODE_REF to_explore,
+    const std::function<void(const WERD_CHOICE *)> &cb) const {
+  NodeChildVector children;
+  this->unichar_ids_of(to_explore, &children, false);
+  for (auto &i : children) {
+    WERD_CHOICE next_word(word_so_far);
+    next_word.append_unichar_id(i.unichar_id, 1, 0.0, 0.0);
+    if (this->end_of_word(i.edge_ref)) {
+      cb(&next_word);
+    }
+    NODE_REF next = next_node(i.edge_ref);
+    if (next != 0) {
+      iterate_words_rec(next_word, next, cb);
+    }
+  }
+}
+
+bool Dawg::match_words(WERD_CHOICE *word, uint32_t index, NODE_REF node,
+                       UNICHAR_ID wildcard) const {
+  if (wildcard != INVALID_UNICHAR_ID && word->unichar_id(index) == wildcard) {
+    bool any_matched = false;
+    NodeChildVector vec;
+    this->unichar_ids_of(node, &vec, false);
+    for (auto &i : vec) {
+      word->set_unichar_id(i.unichar_id, index);
+      if (match_words(word, index, node, wildcard)) {
+        any_matched = true;
+      }
+    }
+    word->set_unichar_id(wildcard, index);
+    return any_matched;
+  } else {
+    auto word_end = index == word->length() - 1;
+    auto edge = edge_char_of(node, word->unichar_id(index), word_end);
+    if (edge != NO_EDGE) { // normal edge in DAWG
+      node = next_node(edge);
+      if (word_end) {
+        if (debug_level_ > 1) {
+          word->print("match_words() found: ");
+        }
+        return true;
+      } else if (node != 0) {
+        return match_words(word, index + 1, node, wildcard);
+      }
+    }
+  }
+  return false;
+}
+
+void Dawg::init(int unicharset_size) {
+  ASSERT_HOST(unicharset_size > 0);
+  unicharset_size_ = unicharset_size;
+  // Set bit masks. We will use the value unicharset_size_ as a null char, so
+  // the actual number of unichars is unicharset_size_ + 1.
+  flag_start_bit_ = ceil(log(unicharset_size_ + 1.0) / log(2.0));
+  next_node_start_bit_ = flag_start_bit_ + NUM_FLAG_BITS;
+  letter_mask_ = ~(~0ull << flag_start_bit_);
+  next_node_mask_ = ~0ull << (flag_start_bit_ + NUM_FLAG_BITS);
+  flags_mask_ = ~(letter_mask_ | next_node_mask_);
+}
+
+/*----------------------------------------------------------------------
+         F u n c t i o n s   f o r   S q u i s h e d    D a w g
+----------------------------------------------------------------------*/
+
+SquishedDawg::~SquishedDawg() {
+  delete[] edges_;
+}
+
+EDGE_REF SquishedDawg::edge_char_of(NODE_REF node, UNICHAR_ID unichar_id,
+                                    bool word_end) const {
+  EDGE_REF edge = node;
+  if (node == 0) { // binary search
+    EDGE_REF start = 0;
+    EDGE_REF end = num_forward_edges_in_node0 - 1;
+    int compare;
+    while (start <= end) {
+      edge = (start + end) >> 1; // (start + end) / 2
+      compare = given_greater_than_edge_rec(NO_EDGE, word_end, unichar_id,
+                                            edges_[edge]);
+      if (compare == 0) { // given == vec[k]
+        return edge;
+      } else if (compare == 1) { // given > vec[k]
+        start = edge + 1;
+      } else { // given < vec[k]
+        end = edge - 1;
+      }
+    }
+  } else { // linear search
+    if (edge != NO_EDGE && edge_occupied(edge)) {
+      do {
+        if ((unichar_id_from_edge_rec(edges_[edge]) == unichar_id) &&
+            (!word_end || end_of_word_from_edge_rec(edges_[edge]))) {
+          return (edge);
+        }
+      } while (!last_edge(edge++));
+    }
+  }
+  return (NO_EDGE); // not found
+}
+
+int32_t SquishedDawg::num_forward_edges(NODE_REF node) const {
+  EDGE_REF edge = node;
+  int32_t num = 0;
+
+  if (forward_edge(edge)) {
+    do {
+      num++;
+    } while (!last_edge(edge++));
+  }
+
+  return (num);
+}
+
+void SquishedDawg::print_node(NODE_REF node, int max_num_edges) const {
+  if (node == NO_EDGE) {
+    return; // nothing to print
+  }
+
+  EDGE_REF edge = node;
+  const char *forward_string = "FORWARD";
+  const char *backward_string = "       ";
+
+  const char *last_string = "LAST";
+  const char *not_last_string = "    ";
+
+  const char *eow_string = "EOW";
+  const char *not_eow_string = "   ";
+
+  const char *direction;
+  const char *is_last;
+  const char *eow;
+
+  UNICHAR_ID unichar_id;
+
+  if (edge_occupied(edge)) {
+    do {
+      direction = forward_edge(edge) ? forward_string : backward_string;
+      is_last = last_edge(edge) ? last_string : not_last_string;
+      eow = end_of_word(edge) ? eow_string : not_eow_string;
+
+      unichar_id = edge_letter(edge);
+      tprintf(REFFORMAT " : next = " REFFORMAT ", unichar_id = %d, %s %s %s\n",
+              edge, next_node(edge), unichar_id, direction, is_last, eow);
+
+      if (edge - node > max_num_edges) {
+        return;
+      }
+    } while (!last_edge(edge++));
+
+    if (edge < num_edges_ && edge_occupied(edge) && backward_edge(edge)) {
+      do {
+        direction = forward_edge(edge) ? forward_string : backward_string;
+        is_last = last_edge(edge) ? last_string : not_last_string;
+        eow = end_of_word(edge) ? eow_string : not_eow_string;
+
+        unichar_id = edge_letter(edge);
+        tprintf(REFFORMAT " : next = " REFFORMAT
+                          ", unichar_id = %d, %s %s %s\n",
+                edge, next_node(edge), unichar_id, direction, is_last, eow);
+
+        if (edge - node > MAX_NODE_EDGES_DISPLAY) {
+          return;
+        }
+      } while (!last_edge(edge++));
+    }
+  } else {
+    tprintf(REFFORMAT " : no edges in this node\n", node);
+  }
+  tprintf("\n");
+}
+
+void SquishedDawg::print_edge(EDGE_REF edge) const {
+  if (edge == NO_EDGE) {
+    tprintf("NO_EDGE\n");
+  } else {
+    tprintf(REFFORMAT " : next = " REFFORMAT ", unichar_id = '%d', %s %s %s\n",
+            edge, next_node(edge), edge_letter(edge),
+            (forward_edge(edge) ? "FORWARD" : "       "),
+            (last_edge(edge) ? "LAST" : "    "),
+            (end_of_word(edge) ? "EOW" : ""));
+  }
+}
+
+bool SquishedDawg::read_squished_dawg(TFile *file) {
+  if (debug_level_) {
+    tprintf("Reading squished dawg\n");
+  }
+
+  // Read the magic number and check that it matches kDawgMagicNumber, as
+  // auto-endian fixing should make sure it is always correct.
+  int16_t magic;
+  if (!file->DeSerialize(&magic)) {
+    return false;
+  }
+  if (magic != kDawgMagicNumber) {
+    tprintf("Bad magic number on dawg: %d vs %d\n", magic, kDawgMagicNumber);
+    return false;
+  }
+
+  int32_t unicharset_size;
+  if (!file->DeSerialize(&unicharset_size)) {
+    return false;
+  }
+  if (!file->DeSerialize(&num_edges_)) {
+    return false;
+  }
+  ASSERT_HOST(num_edges_ > 0); // DAWG should not be empty
+  Dawg::init(unicharset_size);
+
+  edges_ = new EDGE_RECORD[num_edges_];
+  if (!file->DeSerialize(&edges_[0], num_edges_)) {
+    return false;
+  }
+  if (debug_level_ > 2) {
+    tprintf("type: %d lang: %s perm: %d unicharset_size: %d num_edges: %d\n",
+            type_, lang_.c_str(), perm_, unicharset_size_, num_edges_);
+    for (EDGE_REF edge = 0; edge < num_edges_; ++edge) {
+      print_edge(edge);
+    }
+  }
+  return true;
+}
+
+std::unique_ptr<EDGE_REF[]> SquishedDawg::build_node_map(
+    int32_t *num_nodes) const {
+  EDGE_REF edge;
+  std::unique_ptr<EDGE_REF[]> node_map(new EDGE_REF[num_edges_]);
+  int32_t node_counter;
+  int32_t num_edges;
+
+  for (edge = 0; edge < num_edges_; edge++) { // init all slots
+    node_map[edge] = -1;
+  }
+
+  node_counter = num_forward_edges(0);
+
+  *num_nodes = 0;
+  for (edge = 0; edge < num_edges_; edge++) { // search all slots
+
+    if (forward_edge(edge)) {
+      (*num_nodes)++; // count nodes links
+      node_map[edge] = (edge ? node_counter : 0);
+      num_edges = num_forward_edges(edge);
+      if (edge != 0) {
+        node_counter += num_edges;
+      }
+      edge += num_edges;
+      if (edge >= num_edges_) {
+        break;
+      }
+      if (backward_edge(edge)) {
+        while (!last_edge(edge++)) {
+          ;
+        }
+      }
+      edge--;
+    }
+  }
+  return node_map;
+}
+
+bool SquishedDawg::write_squished_dawg(TFile *file) {
+  EDGE_REF edge;
+  int32_t num_edges;
+  int32_t node_count = 0;
+  EDGE_REF old_index;
+  EDGE_RECORD temp_record;
+
+  if (debug_level_) {
+    tprintf("write_squished_dawg\n");
+  }
+
+  std::unique_ptr<EDGE_REF[]> node_map(build_node_map(&node_count));
+
+  // Write the magic number to help detecting a change in endianness.
+  int16_t magic = kDawgMagicNumber;
+  if (!file->Serialize(&magic)) {
+    return false;
+  }
+  if (!file->Serialize(&unicharset_size_)) {
+    return false;
+  }
+
+  // Count the number of edges in this Dawg.
+  num_edges = 0;
+  for (edge = 0; edge < num_edges_; edge++) {
+    if (forward_edge(edge)) {
+      num_edges++;
+    }
+  }
+
+  // Write edge count to file.
+  if (!file->Serialize(&num_edges)) {
+    return false;
+  }
+
+  if (debug_level_) {
+    tprintf("%d nodes in DAWG\n", node_count);
+    tprintf("%d edges in DAWG\n", num_edges);
+  }
+
+  for (edge = 0; edge < num_edges_; edge++) {
+    if (forward_edge(edge)) { // write forward edges
+      do {
+        old_index = next_node_from_edge_rec(edges_[edge]);
+        set_next_node(edge, node_map[old_index]);
+        temp_record = edges_[edge];
+        if (!file->Serialize(&temp_record)) {
+          return false;
+        }
+        set_next_node(edge, old_index);
+      } while (!last_edge(edge++));
+
+      if (edge >= num_edges_) {
+        break;
+      }
+      if (backward_edge(edge)) { // skip back links
+        while (!last_edge(edge++)) {
+          ;
+        }
+      }
+
+      edge--;
+    }
+  }
+  return true;
+}
+
+} // namespace tesseract