diff mupdf-source/thirdparty/tesseract/src/classify/intproto.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/classify/intproto.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,1627 @@
+/******************************************************************************
+ ** Filename:    intproto.c
+ ** Purpose:     Definition of data structures for integer protos.
+ ** Author:      Dan Johnson
+ **
+ ** (c) Copyright Hewlett-Packard Company, 1988.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ ******************************************************************************/
+/*-----------------------------------------------------------------------------
+          Include Files and Type Defines
+-----------------------------------------------------------------------------*/
+
+#define _USE_MATH_DEFINES // for M_PI
+
+// Include automatically generated configuration file if running autoconf.
+#ifdef HAVE_CONFIG_H
+#  include "config_auto.h"
+#endif
+
+#include "intproto.h"
+
+#include "classify.h"
+#include "fontinfo.h"
+#include "mfoutline.h"
+#include "picofeat.h"
+#include "points.h"
+#include "shapetable.h"
+#ifndef GRAPHICS_DISABLED
+#include "svmnode.h"
+#endif
+
+#include "helpers.h"
+
+#include <algorithm>
+#include <cassert>
+#include <cmath> // for M_PI, std::floor
+#include <cstdio>
+
+namespace tesseract {
+
+/* match debug display constants*/
+#define PROTO_PRUNER_SCALE (4.0)
+
+#define INT_DESCENDER (0.0 * INT_CHAR_NORM_RANGE)
+#define INT_BASELINE (0.25 * INT_CHAR_NORM_RANGE)
+#define INT_XHEIGHT (0.75 * INT_CHAR_NORM_RANGE)
+#define INT_CAPHEIGHT (1.0 * INT_CHAR_NORM_RANGE)
+
+#define INT_XCENTER (0.5 * INT_CHAR_NORM_RANGE)
+#define INT_YCENTER (0.5 * INT_CHAR_NORM_RANGE)
+#define INT_XRADIUS (0.2 * INT_CHAR_NORM_RANGE)
+#define INT_YRADIUS (0.2 * INT_CHAR_NORM_RANGE)
+#define INT_MIN_X 0
+#define INT_MIN_Y 0
+#define INT_MAX_X INT_CHAR_NORM_RANGE
+#define INT_MAX_Y INT_CHAR_NORM_RANGE
+
+/** define pad used to snap near horiz/vertical protos to horiz/vertical */
+#define HV_TOLERANCE (0.0025) /* approx 0.9 degrees */
+
+typedef enum { StartSwitch, EndSwitch, LastSwitch } SWITCH_TYPE;
+#define MAX_NUM_SWITCHES 3
+
+struct FILL_SWITCH {
+  SWITCH_TYPE Type;
+  int8_t X, Y;
+  int16_t YInit;
+  int16_t Delta;
+};
+
+struct TABLE_FILLER {
+  uint8_t NextSwitch;
+  uint8_t AngleStart, AngleEnd;
+  int8_t X;
+  int16_t YStart, YEnd;
+  int16_t StartDelta, EndDelta;
+  FILL_SWITCH Switch[MAX_NUM_SWITCHES];
+};
+
+struct FILL_SPEC {
+  int8_t X;
+  int8_t YStart, YEnd;
+  uint8_t AngleStart, AngleEnd;
+};
+
+/* constants for conversion from old inttemp format */
+#define OLD_MAX_NUM_CONFIGS 32
+#define OLD_WERDS_PER_CONFIG_VEC ((OLD_MAX_NUM_CONFIGS + BITS_PER_WERD - 1) / BITS_PER_WERD)
+
+/*-----------------------------------------------------------------------------
+            Macros
+-----------------------------------------------------------------------------*/
+/** macro for performing circular increments of bucket indices */
+#define CircularIncrement(i, r) (((i) < (r)-1) ? ((i)++) : ((i) = 0))
+
+/** macro for mapping floats to ints without bounds checking */
+#define MapParam(P, O, N) (std::floor(((P) + (O)) * (N)))
+
+/*---------------------------------------------------------------------------
+            Private Function Prototypes
+----------------------------------------------------------------------------*/
+float BucketStart(int Bucket, float Offset, int NumBuckets);
+
+float BucketEnd(int Bucket, float Offset, int NumBuckets);
+
+void DoFill(FILL_SPEC *FillSpec, CLASS_PRUNER_STRUCT *Pruner, uint32_t ClassMask,
+            uint32_t ClassCount, uint32_t WordIndex);
+
+bool FillerDone(TABLE_FILLER *Filler);
+
+void FillPPCircularBits(uint32_t ParamTable[NUM_PP_BUCKETS][WERDS_PER_PP_VECTOR], int Bit,
+                        float Center, float Spread, bool debug);
+
+void FillPPLinearBits(uint32_t ParamTable[NUM_PP_BUCKETS][WERDS_PER_PP_VECTOR], int Bit,
+                      float Center, float Spread, bool debug);
+
+void GetCPPadsForLevel(int Level, float *EndPad, float *SidePad, float *AnglePad);
+
+ScrollView::Color GetMatchColorFor(float Evidence);
+
+void GetNextFill(TABLE_FILLER *Filler, FILL_SPEC *Fill);
+
+void InitTableFiller(float EndPad, float SidePad, float AnglePad, PROTO_STRUCT *Proto,
+                     TABLE_FILLER *Filler);
+
+#ifndef GRAPHICS_DISABLED
+void RenderIntFeature(ScrollView *window, const INT_FEATURE_STRUCT *Feature,
+                      ScrollView::Color color);
+
+void RenderIntProto(ScrollView *window, INT_CLASS_STRUCT *Class, PROTO_ID ProtoId, ScrollView::Color color);
+#endif // !GRAPHICS_DISABLED
+
+/*-----------------------------------------------------------------------------
+        Global Data Definitions and Declarations
+-----------------------------------------------------------------------------*/
+
+#ifndef GRAPHICS_DISABLED
+/* global display lists used to display proto and feature match information*/
+static ScrollView *IntMatchWindow = nullptr;
+static ScrollView *FeatureDisplayWindow = nullptr;
+static ScrollView *ProtoDisplayWindow = nullptr;
+#endif
+
+/*-----------------------------------------------------------------------------
+        Variables
+-----------------------------------------------------------------------------*/
+
+/* control knobs */
+static INT_VAR(classify_num_cp_levels, 3, "Number of Class Pruner Levels");
+static double_VAR(classify_cp_angle_pad_loose, 45.0, "Class Pruner Angle Pad Loose");
+static double_VAR(classify_cp_angle_pad_medium, 20.0, "Class Pruner Angle Pad Medium");
+static double_VAR(classify_cp_angle_pad_tight, 10.0, "CLass Pruner Angle Pad Tight");
+static double_VAR(classify_cp_end_pad_loose, 0.5, "Class Pruner End Pad Loose");
+static double_VAR(classify_cp_end_pad_medium, 0.5, "Class Pruner End Pad Medium");
+static double_VAR(classify_cp_end_pad_tight, 0.5, "Class Pruner End Pad Tight");
+static double_VAR(classify_cp_side_pad_loose, 2.5, "Class Pruner Side Pad Loose");
+static double_VAR(classify_cp_side_pad_medium, 1.2, "Class Pruner Side Pad Medium");
+static double_VAR(classify_cp_side_pad_tight, 0.6, "Class Pruner Side Pad Tight");
+static double_VAR(classify_pp_angle_pad, 45.0, "Proto Pruner Angle Pad");
+static double_VAR(classify_pp_end_pad, 0.5, "Proto Prune End Pad");
+static double_VAR(classify_pp_side_pad, 2.5, "Proto Pruner Side Pad");
+
+/**
+ * This routine truncates Param to lie within the range
+ * of Min-Max inclusive.
+ *
+ * @param Param   parameter value to be truncated
+ * @param Min, Max  parameter limits (inclusive)
+ *
+ * @return Truncated parameter.
+ */
+static int TruncateParam(float Param, int Min, int Max) {
+  int result;
+  if (Param < Min) {
+    result = Min;
+  } else if (Param > Max) {
+    result = Max;
+  } else {
+    result = static_cast<int>(std::floor(Param));
+  }
+  return result;
+}
+
+/*-----------------------------------------------------------------------------
+              Public Code
+-----------------------------------------------------------------------------*/
+/// Builds a feature from an FCOORD for position with all the necessary
+/// clipping and rounding.
+INT_FEATURE_STRUCT::INT_FEATURE_STRUCT(const FCOORD &pos, uint8_t theta)
+    : X(ClipToRange<int16_t>(static_cast<int16_t>(pos.x() + 0.5), 0, 255))
+    , Y(ClipToRange<int16_t>(static_cast<int16_t>(pos.y() + 0.5), 0, 255))
+    , Theta(theta)
+    , CP_misses(0) {}
+/** Builds a feature from ints with all the necessary clipping and casting. */
+INT_FEATURE_STRUCT::INT_FEATURE_STRUCT(int x, int y, int theta)
+    : X(static_cast<uint8_t>(ClipToRange<int>(x, 0, UINT8_MAX)))
+    , Y(static_cast<uint8_t>(ClipToRange<int>(y, 0, UINT8_MAX)))
+    , Theta(static_cast<uint8_t>(ClipToRange<int>(theta, 0, UINT8_MAX)))
+    , CP_misses(0) {}
+
+/**
+ * This routine adds a new class structure to a set of
+ * templates. Classes have to be added to Templates in
+ * the order of increasing ClassIds.
+ *
+ * @param Templates templates to add new class to
+ * @param ClassId   class id to associate new class with
+ * @param Class   class data structure to add to templates
+ *
+ * Globals: none
+ */
+void AddIntClass(INT_TEMPLATES_STRUCT *Templates, CLASS_ID ClassId, INT_CLASS_STRUCT *Class) {
+  int Pruner;
+
+  assert(LegalClassId(ClassId));
+  if (static_cast<unsigned>(ClassId) != Templates->NumClasses) {
+    fprintf(stderr,
+            "Please make sure that classes are added to templates"
+            " in increasing order of ClassIds\n");
+    exit(1);
+  }
+  ClassForClassId(Templates, ClassId) = Class;
+  Templates->NumClasses++;
+
+  if (Templates->NumClasses > MaxNumClassesIn(Templates)) {
+    Pruner = Templates->NumClassPruners++;
+    Templates->ClassPruners[Pruner] = new CLASS_PRUNER_STRUCT;
+    memset(Templates->ClassPruners[Pruner], 0, sizeof(CLASS_PRUNER_STRUCT));
+  }
+} /* AddIntClass */
+
+/**
+ * This routine returns the index of the next free config
+ * in Class.
+ *
+ * @param Class class to add new configuration to
+ *
+ * Globals: none
+ *
+ * @return Index of next free config.
+ */
+int AddIntConfig(INT_CLASS_STRUCT *Class) {
+  int Index;
+
+  assert(Class->NumConfigs < MAX_NUM_CONFIGS);
+
+  Index = Class->NumConfigs++;
+  Class->ConfigLengths[Index] = 0;
+  return Index;
+} /* AddIntConfig */
+
+/**
+ * This routine allocates the next free proto in Class and
+ * returns its index.
+ *
+ * @param Class class to add new proto to
+ *
+ * Globals: none
+ *
+ * @return Proto index of new proto.
+ */
+int AddIntProto(INT_CLASS_STRUCT *Class) {
+  if (Class->NumProtos >= MAX_NUM_PROTOS) {
+    return (NO_PROTO);
+  }
+
+  int Index = Class->NumProtos++;
+
+  if (Class->NumProtos > MaxNumIntProtosIn(Class)) {
+    int ProtoSetId = Class->NumProtoSets++;
+    auto ProtoSet = new PROTO_SET_STRUCT;
+    Class->ProtoSets[ProtoSetId] = ProtoSet;
+    memset(ProtoSet, 0, sizeof(*ProtoSet));
+
+    /* reallocate space for the proto lengths and install in class */
+    Class->ProtoLengths.resize(MaxNumIntProtosIn(Class));
+  }
+
+  /* initialize proto so its length is zero and it isn't in any configs */
+  Class->ProtoLengths[Index] = 0;
+  auto Proto = ProtoForProtoId(Class, Index);
+  for (uint32_t *Word = Proto->Configs; Word < Proto->Configs + WERDS_PER_CONFIG_VEC; *Word++ = 0) {
+  }
+
+  return (Index);
+}
+
+/**
+ * This routine adds Proto to the class pruning tables
+ * for the specified class in Templates.
+ *
+ * Globals:
+ *  - classify_num_cp_levels number of levels used in the class pruner
+ * @param Proto   floating-pt proto to add to class pruner
+ * @param ClassId   class id corresponding to Proto
+ * @param Templates set of templates containing class pruner
+ */
+void AddProtoToClassPruner(PROTO_STRUCT *Proto, CLASS_ID ClassId, INT_TEMPLATES_STRUCT *Templates)
+#define MAX_LEVEL 2
+{
+  CLASS_PRUNER_STRUCT *Pruner;
+  uint32_t ClassMask;
+  uint32_t ClassCount;
+  uint32_t WordIndex;
+  int Level;
+  float EndPad, SidePad, AnglePad;
+  TABLE_FILLER TableFiller;
+  FILL_SPEC FillSpec;
+
+  Pruner = CPrunerFor(Templates, ClassId);
+  WordIndex = CPrunerWordIndexFor(ClassId);
+  ClassMask = CPrunerMaskFor(MAX_LEVEL, ClassId);
+
+  for (Level = classify_num_cp_levels - 1; Level >= 0; Level--) {
+    GetCPPadsForLevel(Level, &EndPad, &SidePad, &AnglePad);
+    ClassCount = CPrunerMaskFor(Level, ClassId);
+    InitTableFiller(EndPad, SidePad, AnglePad, Proto, &TableFiller);
+
+    while (!FillerDone(&TableFiller)) {
+      GetNextFill(&TableFiller, &FillSpec);
+      DoFill(&FillSpec, Pruner, ClassMask, ClassCount, WordIndex);
+    }
+  }
+} /* AddProtoToClassPruner */
+
+/**
+ * This routine updates the proto pruner lookup tables
+ * for Class to include a new proto identified by ProtoId
+ * and described by Proto.
+ * @param Proto floating-pt proto to be added to proto pruner
+ * @param ProtoId id of proto
+ * @param Class integer class that contains desired proto pruner
+ * @param debug debug flag
+ * @note Globals: none
+ */
+void AddProtoToProtoPruner(PROTO_STRUCT *Proto, int ProtoId, INT_CLASS_STRUCT *Class, bool debug) {
+  float X, Y, Length;
+  float Pad;
+
+  if (ProtoId >= Class->NumProtos) {
+    tprintf("AddProtoToProtoPruner:assert failed: %d < %d", ProtoId, Class->NumProtos);
+  }
+  assert(ProtoId < Class->NumProtos);
+
+  int Index = IndexForProto(ProtoId);
+  auto ProtoSet = Class->ProtoSets[SetForProto(ProtoId)];
+
+  float Angle = Proto->Angle;
+#ifndef _WIN32
+  assert(!std::isnan(Angle));
+#endif
+
+  FillPPCircularBits(ProtoSet->ProtoPruner[PRUNER_ANGLE], Index, Angle + ANGLE_SHIFT,
+                     classify_pp_angle_pad / 360.0, debug);
+
+  Angle *= 2.0 * M_PI;
+  Length = Proto->Length;
+
+  X = Proto->X + X_SHIFT;
+  Pad = std::max(fabs(std::cos(Angle)) * (Length / 2.0 + classify_pp_end_pad * GetPicoFeatureLength()),
+                 fabs(std::sin(Angle)) * (classify_pp_side_pad * GetPicoFeatureLength()));
+
+  FillPPLinearBits(ProtoSet->ProtoPruner[PRUNER_X], Index, X, Pad, debug);
+
+  Y = Proto->Y + Y_SHIFT;
+  Pad = std::max(fabs(std::sin(Angle)) * (Length / 2.0 + classify_pp_end_pad * GetPicoFeatureLength()),
+                 fabs(std::cos(Angle)) * (classify_pp_side_pad * GetPicoFeatureLength()));
+
+  FillPPLinearBits(ProtoSet->ProtoPruner[PRUNER_Y], Index, Y, Pad, debug);
+} /* AddProtoToProtoPruner */
+
+/**
+ * Returns a quantized bucket for the given param shifted by offset,
+ * notionally (param + offset) * num_buckets, but clipped and casted to the
+ * appropriate type.
+ */
+uint8_t Bucket8For(float param, float offset, int num_buckets) {
+  int bucket = IntCastRounded(MapParam(param, offset, num_buckets));
+  return static_cast<uint8_t>(ClipToRange<int>(bucket, 0, num_buckets - 1));
+}
+uint16_t Bucket16For(float param, float offset, int num_buckets) {
+  int bucket = IntCastRounded(MapParam(param, offset, num_buckets));
+  return static_cast<uint16_t>(ClipToRange<int>(bucket, 0, num_buckets - 1));
+}
+
+/**
+ * Returns a quantized bucket for the given circular param shifted by offset,
+ * notionally (param + offset) * num_buckets, but modded and casted to the
+ * appropriate type.
+ */
+uint8_t CircBucketFor(float param, float offset, int num_buckets) {
+  int bucket = IntCastRounded(MapParam(param, offset, num_buckets));
+  return static_cast<uint8_t>(Modulo(bucket, num_buckets));
+} /* CircBucketFor */
+
+#ifndef GRAPHICS_DISABLED
+/**
+ * This routine clears the global feature and proto
+ * display lists.
+ *
+ * Globals:
+ * - FeatureShapes display list for features
+ * - ProtoShapes display list for protos
+ */
+void UpdateMatchDisplay() {
+  if (IntMatchWindow != nullptr) {
+    IntMatchWindow->Update();
+  }
+} /* ClearMatchDisplay */
+#endif
+
+/**
+ * This operation updates the config vectors of all protos
+ * in Class to indicate that the protos with 1's in Config
+ * belong to a new configuration identified by ConfigId.
+ * It is assumed that the length of the Config bit vector is
+ * equal to the number of protos in Class.
+ * @param Config    config to be added to class
+ * @param ConfigId  id to be used for new config
+ * @param Class   class to add new config to
+ */
+void ConvertConfig(BIT_VECTOR Config, int ConfigId, INT_CLASS_STRUCT *Class) {
+  int ProtoId;
+  INT_PROTO_STRUCT *Proto;
+  int TotalLength;
+
+  for (ProtoId = 0, TotalLength = 0; ProtoId < Class->NumProtos; ProtoId++) {
+    if (test_bit(Config, ProtoId)) {
+      Proto = ProtoForProtoId(Class, ProtoId);
+      SET_BIT(Proto->Configs, ConfigId);
+      TotalLength += Class->ProtoLengths[ProtoId];
+    }
+  }
+  Class->ConfigLengths[ConfigId] = TotalLength;
+} /* ConvertConfig */
+
+/**
+ * This routine converts Proto to integer format and
+ * installs it as ProtoId in Class.
+ * @param Proto floating-pt proto to be converted to integer format
+ * @param ProtoId id of proto
+ * @param Class integer class to add converted proto to
+ */
+void Classify::ConvertProto(PROTO_STRUCT *Proto, int ProtoId, INT_CLASS_STRUCT *Class) {
+  assert(ProtoId < Class->NumProtos);
+
+  INT_PROTO_STRUCT *P = ProtoForProtoId(Class, ProtoId);
+
+  float Param = Proto->A * 128;
+  P->A = TruncateParam(Param, -128, 127);
+
+  Param = -Proto->B * 256;
+  P->B = TruncateParam(Param, 0, 255);
+
+  Param = Proto->C * 128;
+  P->C = TruncateParam(Param, -128, 127);
+
+  Param = Proto->Angle * 256;
+  if (Param < 0 || Param >= 256) {
+    P->Angle = 0;
+  } else {
+    P->Angle = static_cast<uint8_t>(Param);
+  }
+
+  /* round proto length to nearest integer number of pico-features */
+  Param = (Proto->Length / GetPicoFeatureLength()) + 0.5;
+  Class->ProtoLengths[ProtoId] = TruncateParam(Param, 1, 255);
+  if (classify_learning_debug_level >= 2) {
+    tprintf("Converted ffeat to (A=%d,B=%d,C=%d,L=%d)", P->A, P->B, P->C,
+            Class->ProtoLengths[ProtoId]);
+  }
+} /* ConvertProto */
+
+/**
+ * This routine converts from the old floating point format
+ * to the new integer format.
+ * @param FloatProtos prototypes in old floating pt format
+ * @param target_unicharset the UNICHARSET to use
+ * @return New set of training templates in integer format.
+ * @note Globals: none
+ */
+INT_TEMPLATES_STRUCT *Classify::CreateIntTemplates(CLASSES FloatProtos,
+                                           const UNICHARSET &target_unicharset) {
+  CLASS_TYPE FClass;
+  INT_CLASS_STRUCT *IClass;
+  int ProtoId;
+  int ConfigId;
+
+  auto IntTemplates = new INT_TEMPLATES_STRUCT;
+
+  for (unsigned ClassId = 0; ClassId < target_unicharset.size(); ClassId++) {
+    FClass = &(FloatProtos[ClassId]);
+    if (FClass->NumProtos == 0 && FClass->NumConfigs == 0 &&
+        strcmp(target_unicharset.id_to_unichar(ClassId), " ") != 0) {
+      tprintf("Warning: no protos/configs for %s in CreateIntTemplates()\n",
+              target_unicharset.id_to_unichar(ClassId));
+    }
+    assert(UnusedClassIdIn(IntTemplates, ClassId));
+    IClass = new INT_CLASS_STRUCT(FClass->NumProtos, FClass->NumConfigs);
+    unsigned fs_size = FClass->font_set.size();
+    FontSet fs;
+    fs.reserve(fs_size);
+    for (unsigned i = 0; i < fs_size; ++i) {
+      fs.push_back(FClass->font_set[i]);
+    }
+    IClass->font_set_id = this->fontset_table_.push_back(std::move(fs));
+    AddIntClass(IntTemplates, ClassId, IClass);
+
+    for (ProtoId = 0; ProtoId < FClass->NumProtos; ProtoId++) {
+      AddIntProto(IClass);
+      ConvertProto(ProtoIn(FClass, ProtoId), ProtoId, IClass);
+      AddProtoToProtoPruner(ProtoIn(FClass, ProtoId), ProtoId, IClass,
+                            classify_learning_debug_level >= 2);
+      AddProtoToClassPruner(ProtoIn(FClass, ProtoId), ClassId, IntTemplates);
+    }
+
+    for (ConfigId = 0; ConfigId < FClass->NumConfigs; ConfigId++) {
+      AddIntConfig(IClass);
+      ConvertConfig(FClass->Configurations[ConfigId], ConfigId, IClass);
+    }
+  }
+  return (IntTemplates);
+} /* CreateIntTemplates */
+
+#ifndef GRAPHICS_DISABLED
+/**
+ * This routine renders the specified feature into a
+ * global display list.
+ *
+ * Globals:
+ * - FeatureShapes global display list for features
+ * @param Feature   pico-feature to be displayed
+ * @param Evidence  best evidence for this feature (0-1)
+ */
+void DisplayIntFeature(const INT_FEATURE_STRUCT *Feature, float Evidence) {
+  ScrollView::Color color = GetMatchColorFor(Evidence);
+  RenderIntFeature(IntMatchWindow, Feature, color);
+  if (FeatureDisplayWindow) {
+    RenderIntFeature(FeatureDisplayWindow, Feature, color);
+  }
+} /* DisplayIntFeature */
+
+/**
+ * This routine renders the specified proto into a
+ * global display list.
+ *
+ * Globals:
+ * - ProtoShapes global display list for protos
+ * @param Class   class to take proto from
+ * @param ProtoId   id of proto in Class to be displayed
+ * @param Evidence  total evidence for proto (0-1)
+ */
+void DisplayIntProto(INT_CLASS_STRUCT *Class, PROTO_ID ProtoId, float Evidence) {
+  ScrollView::Color color = GetMatchColorFor(Evidence);
+  RenderIntProto(IntMatchWindow, Class, ProtoId, color);
+  if (ProtoDisplayWindow) {
+    RenderIntProto(ProtoDisplayWindow, Class, ProtoId, color);
+  }
+} /* DisplayIntProto */
+#endif
+
+/// This constructor creates a new integer class data structure
+/// and returns it.  Sufficient space is allocated
+/// to handle the specified number of protos and configs.
+/// @param MaxNumProtos  number of protos to allocate space for
+/// @param MaxNumConfigs number of configs to allocate space for
+INT_CLASS_STRUCT::INT_CLASS_STRUCT(int MaxNumProtos, int MaxNumConfigs) :
+  NumProtos(0),
+  NumProtoSets((MaxNumProtos + PROTOS_PER_PROTO_SET - 1) / PROTOS_PER_PROTO_SET),
+  NumConfigs(0),
+  ProtoLengths(MaxNumIntProtosIn(this))
+{
+  assert(MaxNumConfigs <= MAX_NUM_CONFIGS);
+  assert(NumProtoSets <= MAX_NUM_PROTO_SETS);
+
+  for (int i = 0; i < NumProtoSets; i++) {
+    /* allocate space for a proto set, install in class, and initialize */
+    auto ProtoSet = new PROTO_SET_STRUCT;
+    memset(ProtoSet, 0, sizeof(*ProtoSet));
+    ProtoSets[i] = ProtoSet;
+
+    /* allocate space for the proto lengths and install in class */
+  }
+  memset(ConfigLengths, 0, sizeof(ConfigLengths));
+}
+
+INT_CLASS_STRUCT::~INT_CLASS_STRUCT() {
+  for (int i = 0; i < NumProtoSets; i++) {
+    delete ProtoSets[i];
+  }
+}
+
+/// This constructor allocates a new set of integer templates
+/// initialized to hold 0 classes.
+INT_TEMPLATES_STRUCT::INT_TEMPLATES_STRUCT() {
+  NumClasses = 0;
+  NumClassPruners = 0;
+
+  for (int i = 0; i < MAX_NUM_CLASSES; i++) {
+    ClassForClassId(this, i) = nullptr;
+  }
+}
+
+INT_TEMPLATES_STRUCT::~INT_TEMPLATES_STRUCT() {
+  for (unsigned i = 0; i < NumClasses; i++) {
+    delete Class[i];
+  }
+  for (unsigned i = 0; i < NumClassPruners; i++) {
+    delete ClassPruners[i];
+  }
+}
+
+/**
+ * This routine reads a set of integer templates from
+ * File.  File must already be open and must be in the
+ * correct binary format.
+ * @param  fp open file to read templates from
+ * @return Pointer to integer templates read from File.
+ * @note Globals: none
+ */
+INT_TEMPLATES_STRUCT *Classify::ReadIntTemplates(TFile *fp) {
+  int j, w, x, y, z;
+  INT_TEMPLATES_STRUCT *Templates;
+  CLASS_PRUNER_STRUCT *Pruner;
+  INT_CLASS_STRUCT *Class;
+
+  /* variables for conversion from older inttemp formats */
+  int b, bit_number, last_cp_bit_number, new_b, new_i, new_w;
+  CLASS_ID class_id, max_class_id;
+  std::vector<CLASS_ID> ClassIdFor(MAX_NUM_CLASSES);
+  std::vector<CLASS_PRUNER_STRUCT *> TempClassPruner(MAX_NUM_CLASS_PRUNERS);
+  uint32_t SetBitsForMask =          // word with NUM_BITS_PER_CLASS
+      (1 << NUM_BITS_PER_CLASS) - 1; // set starting at bit 0
+  uint32_t Mask, NewMask, ClassBits;
+  unsigned MaxNumConfigs = MAX_NUM_CONFIGS;
+  unsigned WerdsPerConfigVec = WERDS_PER_CONFIG_VEC;
+
+  /* first read the high level template struct */
+  Templates = new INT_TEMPLATES_STRUCT;
+  // Read Templates in parts for 64 bit compatibility.
+  uint32_t unicharset_size;
+  if (fp->FReadEndian(&unicharset_size, sizeof(unicharset_size), 1) != 1) {
+    tprintf("Bad read of inttemp!\n");
+  }
+  int32_t version_id = 0;
+  if (fp->FReadEndian(&version_id, sizeof(version_id), 1) != 1 ||
+      fp->FReadEndian(&Templates->NumClassPruners, sizeof(Templates->NumClassPruners), 1) != 1) {
+    tprintf("Bad read of inttemp!\n");
+  }
+  if (version_id < 0) {
+    // This file has a version id!
+    version_id = -version_id;
+    if (fp->FReadEndian(&Templates->NumClasses, sizeof(Templates->NumClasses), 1) != 1) {
+      tprintf("Bad read of inttemp!\n");
+    }
+  } else {
+    Templates->NumClasses = version_id;
+  }
+
+  if (version_id < 3) {
+    MaxNumConfigs = OLD_MAX_NUM_CONFIGS;
+    WerdsPerConfigVec = OLD_WERDS_PER_CONFIG_VEC;
+  }
+
+  if (version_id < 2) {
+    std::vector<int16_t> IndexFor(MAX_NUM_CLASSES);
+    if (fp->FReadEndian(&IndexFor[0], sizeof(IndexFor[0]), unicharset_size) != unicharset_size) {
+      tprintf("Bad read of inttemp!\n");
+    }
+    if (fp->FReadEndian(&ClassIdFor[0], sizeof(ClassIdFor[0]), Templates->NumClasses) !=
+        Templates->NumClasses) {
+      tprintf("Bad read of inttemp!\n");
+    }
+  }
+
+  /* then read in the class pruners */
+  const unsigned kNumBuckets = NUM_CP_BUCKETS * NUM_CP_BUCKETS * NUM_CP_BUCKETS * WERDS_PER_CP_VECTOR;
+  for (unsigned i = 0; i < Templates->NumClassPruners; i++) {
+    Pruner = new CLASS_PRUNER_STRUCT;
+    if (fp->FReadEndian(Pruner, sizeof(Pruner->p[0][0][0][0]), kNumBuckets) != kNumBuckets) {
+      tprintf("Bad read of inttemp!\n");
+    }
+    if (version_id < 2) {
+      TempClassPruner[i] = Pruner;
+    } else {
+      Templates->ClassPruners[i] = Pruner;
+    }
+  }
+
+  /* fix class pruners if they came from an old version of inttemp */
+  if (version_id < 2) {
+    // Allocate enough class pruners to cover all the class ids.
+    max_class_id = 0;
+    for (unsigned i = 0; i < Templates->NumClasses; i++) {
+      if (ClassIdFor[i] > max_class_id) {
+        max_class_id = ClassIdFor[i];
+      }
+    }
+    for (int i = 0; i <= CPrunerIdFor(max_class_id); i++) {
+      Templates->ClassPruners[i] = new CLASS_PRUNER_STRUCT;
+      memset(Templates->ClassPruners[i], 0, sizeof(CLASS_PRUNER_STRUCT));
+    }
+    // Convert class pruners from the old format (indexed by class index)
+    // to the new format (indexed by class id).
+    last_cp_bit_number = NUM_BITS_PER_CLASS * Templates->NumClasses - 1;
+    for (unsigned i = 0; i < Templates->NumClassPruners; i++) {
+      for (x = 0; x < NUM_CP_BUCKETS; x++) {
+        for (y = 0; y < NUM_CP_BUCKETS; y++) {
+          for (z = 0; z < NUM_CP_BUCKETS; z++) {
+            for (w = 0; w < WERDS_PER_CP_VECTOR; w++) {
+              if (TempClassPruner[i]->p[x][y][z][w] == 0) {
+                continue;
+              }
+              for (b = 0; b < BITS_PER_WERD; b += NUM_BITS_PER_CLASS) {
+                bit_number = i * BITS_PER_CP_VECTOR + w * BITS_PER_WERD + b;
+                if (bit_number > last_cp_bit_number) {
+                  break; // the rest of the bits in this word are not used
+                }
+                class_id = ClassIdFor[bit_number / NUM_BITS_PER_CLASS];
+                // Single out NUM_BITS_PER_CLASS bits relating to class_id.
+                Mask = SetBitsForMask << b;
+                ClassBits = TempClassPruner[i]->p[x][y][z][w] & Mask;
+                // Move these bits to the new position in which they should
+                // appear (indexed corresponding to the class_id).
+                new_i = CPrunerIdFor(class_id);
+                new_w = CPrunerWordIndexFor(class_id);
+                new_b = CPrunerBitIndexFor(class_id) * NUM_BITS_PER_CLASS;
+                if (new_b > b) {
+                  ClassBits <<= (new_b - b);
+                } else {
+                  ClassBits >>= (b - new_b);
+                }
+                // Copy bits relating to class_id to the correct position
+                // in Templates->ClassPruner.
+                NewMask = SetBitsForMask << new_b;
+                Templates->ClassPruners[new_i]->p[x][y][z][new_w] &= ~NewMask;
+                Templates->ClassPruners[new_i]->p[x][y][z][new_w] |= ClassBits;
+              }
+            }
+          }
+        }
+      }
+    }
+    for (unsigned i = 0; i < Templates->NumClassPruners; i++) {
+      delete TempClassPruner[i];
+    }
+  }
+
+  /* then read in each class */
+  for (unsigned i = 0; i < Templates->NumClasses; i++) {
+    /* first read in the high level struct for the class */
+    Class = new INT_CLASS_STRUCT;
+    if (fp->FReadEndian(&Class->NumProtos, sizeof(Class->NumProtos), 1) != 1 ||
+        fp->FRead(&Class->NumProtoSets, sizeof(Class->NumProtoSets), 1) != 1 ||
+        fp->FRead(&Class->NumConfigs, sizeof(Class->NumConfigs), 1) != 1) {
+      tprintf("Bad read of inttemp!\n");
+    }
+    if (version_id == 0) {
+      // Only version 0 writes 5 pointless pointers to the file.
+      for (j = 0; j < 5; ++j) {
+        int32_t junk;
+        if (fp->FRead(&junk, sizeof(junk), 1) != 1) {
+          tprintf("Bad read of inttemp!\n");
+        }
+      }
+    }
+    unsigned num_configs = version_id < 4 ? MaxNumConfigs : Class->NumConfigs;
+    ASSERT_HOST(num_configs <= MaxNumConfigs);
+    if (fp->FReadEndian(Class->ConfigLengths, sizeof(uint16_t), num_configs) != num_configs) {
+      tprintf("Bad read of inttemp!\n");
+    }
+    if (version_id < 2) {
+      ClassForClassId(Templates, ClassIdFor[i]) = Class;
+    } else {
+      ClassForClassId(Templates, i) = Class;
+    }
+
+    /* then read in the proto lengths */
+    Class->ProtoLengths.clear();
+    if (MaxNumIntProtosIn(Class) > 0) {
+      Class->ProtoLengths.resize(MaxNumIntProtosIn(Class));
+      if (fp->FRead(&Class->ProtoLengths[0], sizeof(uint8_t), MaxNumIntProtosIn(Class)) !=
+          MaxNumIntProtosIn(Class)) {
+        tprintf("Bad read of inttemp!\n");
+      }
+    }
+
+    /* then read in the proto sets */
+    for (j = 0; j < Class->NumProtoSets; j++) {
+      auto ProtoSet = new PROTO_SET_STRUCT;
+      unsigned num_buckets = NUM_PP_PARAMS * NUM_PP_BUCKETS * WERDS_PER_PP_VECTOR;
+      if (fp->FReadEndian(&ProtoSet->ProtoPruner, sizeof(ProtoSet->ProtoPruner[0][0][0]),
+                          num_buckets) != num_buckets) {
+        tprintf("Bad read of inttemp!\n");
+      }
+      for (x = 0; x < PROTOS_PER_PROTO_SET; x++) {
+        if (fp->FRead(&ProtoSet->Protos[x].A, sizeof(ProtoSet->Protos[x].A), 1) != 1 ||
+            fp->FRead(&ProtoSet->Protos[x].B, sizeof(ProtoSet->Protos[x].B), 1) != 1 ||
+            fp->FRead(&ProtoSet->Protos[x].C, sizeof(ProtoSet->Protos[x].C), 1) != 1 ||
+            fp->FRead(&ProtoSet->Protos[x].Angle, sizeof(ProtoSet->Protos[x].Angle), 1) != 1) {
+          tprintf("Bad read of inttemp!\n");
+        }
+        if (fp->FReadEndian(&ProtoSet->Protos[x].Configs, sizeof(ProtoSet->Protos[x].Configs[0]),
+                            WerdsPerConfigVec) != WerdsPerConfigVec) {
+          tprintf("Bad read of inttemp!\n");
+        }
+      }
+      Class->ProtoSets[j] = ProtoSet;
+    }
+    if (version_id < 4) {
+      Class->font_set_id = -1;
+    } else {
+      fp->FReadEndian(&Class->font_set_id, sizeof(Class->font_set_id), 1);
+    }
+  }
+
+  if (version_id < 2) {
+    /* add an empty nullptr class with class id 0 */
+    assert(UnusedClassIdIn(Templates, 0));
+    ClassForClassId(Templates, 0) = new INT_CLASS_STRUCT(1, 1);
+    ClassForClassId(Templates, 0)->font_set_id = -1;
+    Templates->NumClasses++;
+    /* make sure the classes are contiguous */
+    for (unsigned i = 0; i < MAX_NUM_CLASSES; i++) {
+      if (i < Templates->NumClasses) {
+        if (ClassForClassId(Templates, i) == nullptr) {
+          fprintf(stderr, "Non-contiguous class ids in inttemp\n");
+          exit(1);
+        }
+      } else {
+        if (ClassForClassId(Templates, i) != nullptr) {
+          fprintf(stderr, "Class id %u exceeds NumClassesIn (Templates) %u\n", i,
+                  Templates->NumClasses);
+          exit(1);
+        }
+      }
+    }
+  }
+  if (version_id >= 4) {
+    using namespace std::placeholders; // for _1, _2
+    this->fontinfo_table_.read(fp, std::bind(read_info, _1, _2));
+    if (version_id >= 5) {
+      this->fontinfo_table_.read(fp, std::bind(read_spacing_info, _1, _2));
+    }
+    this->fontset_table_.read(fp, [](auto *f, auto *fs) { return f->DeSerialize(*fs); } );
+  }
+
+  return (Templates);
+} /* ReadIntTemplates */
+
+#ifndef GRAPHICS_DISABLED
+/**
+ * This routine sends the shapes in the global display
+ * lists to the match debugger window.
+ *
+ * Globals:
+ * - FeatureShapes display list containing feature matches
+ * - ProtoShapes display list containing proto matches
+ */
+void Classify::ShowMatchDisplay() {
+  InitIntMatchWindowIfReqd();
+  if (ProtoDisplayWindow) {
+    ProtoDisplayWindow->Clear();
+  }
+  if (FeatureDisplayWindow) {
+    FeatureDisplayWindow->Clear();
+  }
+  ClearFeatureSpaceWindow(static_cast<NORM_METHOD>(static_cast<int>(classify_norm_method)),
+                          IntMatchWindow);
+  IntMatchWindow->ZoomToRectangle(INT_MIN_X, INT_MIN_Y, INT_MAX_X, INT_MAX_Y);
+  if (ProtoDisplayWindow) {
+    ProtoDisplayWindow->ZoomToRectangle(INT_MIN_X, INT_MIN_Y, INT_MAX_X, INT_MAX_Y);
+  }
+  if (FeatureDisplayWindow) {
+    FeatureDisplayWindow->ZoomToRectangle(INT_MIN_X, INT_MIN_Y, INT_MAX_X, INT_MAX_Y);
+  }
+} /* ShowMatchDisplay */
+
+/// Clears the given window and draws the featurespace guides for the
+/// appropriate normalization method.
+void ClearFeatureSpaceWindow(NORM_METHOD norm_method, ScrollView *window) {
+  window->Clear();
+
+  window->Pen(ScrollView::GREY);
+  // Draw the feature space limit rectangle.
+  window->Rectangle(0, 0, INT_MAX_X, INT_MAX_Y);
+  if (norm_method == baseline) {
+    window->SetCursor(0, INT_DESCENDER);
+    window->DrawTo(INT_MAX_X, INT_DESCENDER);
+    window->SetCursor(0, INT_BASELINE);
+    window->DrawTo(INT_MAX_X, INT_BASELINE);
+    window->SetCursor(0, INT_XHEIGHT);
+    window->DrawTo(INT_MAX_X, INT_XHEIGHT);
+    window->SetCursor(0, INT_CAPHEIGHT);
+    window->DrawTo(INT_MAX_X, INT_CAPHEIGHT);
+  } else {
+    window->Rectangle(INT_XCENTER - INT_XRADIUS, INT_YCENTER - INT_YRADIUS,
+                      INT_XCENTER + INT_XRADIUS, INT_YCENTER + INT_YRADIUS);
+  }
+}
+#endif
+
+/**
+ * This routine writes Templates to File.  The format
+ * is an efficient binary format.  File must already be open
+ * for writing.
+ * @param File open file to write templates to
+ * @param Templates templates to save into File
+ * @param target_unicharset the UNICHARSET to use
+ */
+void Classify::WriteIntTemplates(FILE *File, INT_TEMPLATES_STRUCT *Templates,
+                                 const UNICHARSET &target_unicharset) {
+  INT_CLASS_STRUCT *Class;
+  uint32_t unicharset_size = target_unicharset.size();
+  int version_id = -5; // When negated by the reader -1 becomes +1 etc.
+
+  if (Templates->NumClasses != unicharset_size) {
+    tprintf(
+        "Warning: executing WriteIntTemplates() with %d classes in"
+        " Templates, while target_unicharset size is %" PRIu32 "\n",
+        Templates->NumClasses, unicharset_size);
+  }
+
+  /* first write the high level template struct */
+  fwrite(&unicharset_size, sizeof(unicharset_size), 1, File);
+  fwrite(&version_id, sizeof(version_id), 1, File);
+  fwrite(&Templates->NumClassPruners, sizeof(Templates->NumClassPruners), 1, File);
+  fwrite(&Templates->NumClasses, sizeof(Templates->NumClasses), 1, File);
+
+  /* then write out the class pruners */
+  for (unsigned i = 0; i < Templates->NumClassPruners; i++) {
+    fwrite(Templates->ClassPruners[i], sizeof(CLASS_PRUNER_STRUCT), 1, File);
+  }
+
+  /* then write out each class */
+  for (unsigned i = 0; i < Templates->NumClasses; i++) {
+    Class = Templates->Class[i];
+
+    /* first write out the high level struct for the class */
+    fwrite(&Class->NumProtos, sizeof(Class->NumProtos), 1, File);
+    fwrite(&Class->NumProtoSets, sizeof(Class->NumProtoSets), 1, File);
+    ASSERT_HOST(Class->NumConfigs == this->fontset_table_.at(Class->font_set_id).size());
+    fwrite(&Class->NumConfigs, sizeof(Class->NumConfigs), 1, File);
+    for (int j = 0; j < Class->NumConfigs; ++j) {
+      fwrite(&Class->ConfigLengths[j], sizeof(uint16_t), 1, File);
+    }
+
+    /* then write out the proto lengths */
+    if (MaxNumIntProtosIn(Class) > 0) {
+      fwrite(&Class->ProtoLengths[0], sizeof(uint8_t), MaxNumIntProtosIn(Class), File);
+    }
+
+    /* then write out the proto sets */
+    for (int j = 0; j < Class->NumProtoSets; j++) {
+      fwrite(Class->ProtoSets[j], sizeof(PROTO_SET_STRUCT), 1, File);
+    }
+
+    /* then write the fonts info */
+    fwrite(&Class->font_set_id, sizeof(int), 1, File);
+  }
+
+  /* Write the fonts info tables */
+  using namespace std::placeholders; // for _1, _2
+  this->fontinfo_table_.write(File, std::bind(write_info, _1, _2));
+  this->fontinfo_table_.write(File, std::bind(write_spacing_info, _1, _2));
+  this->fontset_table_.write(File, std::bind(write_set, _1, _2));
+} /* WriteIntTemplates */
+
+/*-----------------------------------------------------------------------------
+              Private Code
+-----------------------------------------------------------------------------*/
+/**
+ * This routine returns the parameter value which
+ * corresponds to the beginning of the specified bucket.
+ * The bucket number should have been generated using the
+ * BucketFor() function with parameters Offset and NumBuckets.
+ * @param Bucket    bucket whose start is to be computed
+ * @param Offset    offset used to map params to buckets
+ * @param NumBuckets  total number of buckets
+ * @return Param value corresponding to start position of Bucket.
+ * @note Globals: none
+ */
+float BucketStart(int Bucket, float Offset, int NumBuckets) {
+  return static_cast<float>(Bucket) / NumBuckets - Offset;
+
+} /* BucketStart */
+
+/**
+ * This routine returns the parameter value which
+ * corresponds to the end of the specified bucket.
+ * The bucket number should have been generated using the
+ * BucketFor() function with parameters Offset and NumBuckets.
+ * @param Bucket    bucket whose end is to be computed
+ * @param Offset    offset used to map params to buckets
+ * @param NumBuckets  total number of buckets
+ * @return Param value corresponding to end position of Bucket.
+ * @note Globals: none
+ */
+float BucketEnd(int Bucket, float Offset, int NumBuckets) {
+  return static_cast<float>(Bucket + 1) / NumBuckets - Offset;
+} /* BucketEnd */
+
+/**
+ * This routine fills in the section of a class pruner
+ * corresponding to a single x value for a single proto of
+ * a class.
+ * @param FillSpec  specifies which bits to fill in pruner
+ * @param Pruner    class pruner to be filled
+ * @param ClassMask indicates which bits to change in each word
+ * @param ClassCount  indicates what to change bits to
+ * @param WordIndex indicates which word to change
+ */
+void DoFill(FILL_SPEC *FillSpec, CLASS_PRUNER_STRUCT *Pruner, uint32_t ClassMask,
+            uint32_t ClassCount, uint32_t WordIndex) {
+  int X, Y, Angle;
+  uint32_t OldWord;
+
+  X = FillSpec->X;
+  if (X < 0) {
+    X = 0;
+  }
+  if (X >= NUM_CP_BUCKETS) {
+    X = NUM_CP_BUCKETS - 1;
+  }
+
+  if (FillSpec->YStart < 0) {
+    FillSpec->YStart = 0;
+  }
+  if (FillSpec->YEnd >= NUM_CP_BUCKETS) {
+    FillSpec->YEnd = NUM_CP_BUCKETS - 1;
+  }
+
+  for (Y = FillSpec->YStart; Y <= FillSpec->YEnd; Y++) {
+    for (Angle = FillSpec->AngleStart;; CircularIncrement(Angle, NUM_CP_BUCKETS)) {
+      OldWord = Pruner->p[X][Y][Angle][WordIndex];
+      if (ClassCount > (OldWord & ClassMask)) {
+        OldWord &= ~ClassMask;
+        OldWord |= ClassCount;
+        Pruner->p[X][Y][Angle][WordIndex] = OldWord;
+      }
+      if (Angle == FillSpec->AngleEnd) {
+        break;
+      }
+    }
+  }
+} /* DoFill */
+
+/**
+ * Return true if the specified table filler is done, i.e.
+ * if it has no more lines to fill.
+ * @param Filler    table filler to check if done
+ * @return true if no more lines to fill, false otherwise.
+ * @note Globals: none
+ */
+bool FillerDone(TABLE_FILLER *Filler) {
+  FILL_SWITCH *Next;
+
+  Next = &(Filler->Switch[Filler->NextSwitch]);
+
+  return Filler->X > Next->X && Next->Type == LastSwitch;
+
+} /* FillerDone */
+
+/**
+ * This routine sets Bit in each bit vector whose
+ * bucket lies within the range Center +- Spread.  The fill
+ * is done for a circular dimension, i.e. bucket 0 is adjacent
+ * to the last bucket.  It is assumed that Center and Spread
+ * are expressed in a circular coordinate system whose range
+ * is 0 to 1.
+ * @param ParamTable  table of bit vectors, one per param bucket
+ * @param Bit bit position in vectors to be filled
+ * @param Center center of filled area
+ * @param Spread spread of filled area
+ * @param debug debug flag
+ */
+void FillPPCircularBits(uint32_t ParamTable[NUM_PP_BUCKETS][WERDS_PER_PP_VECTOR], int Bit,
+                        float Center, float Spread, bool debug) {
+  int i, FirstBucket, LastBucket;
+
+  if (Spread > 0.5) {
+    Spread = 0.5;
+  }
+
+  FirstBucket = static_cast<int>(std::floor((Center - Spread) * NUM_PP_BUCKETS));
+  if (FirstBucket < 0) {
+    FirstBucket += NUM_PP_BUCKETS;
+  }
+
+  LastBucket = static_cast<int>(std::floor((Center + Spread) * NUM_PP_BUCKETS));
+  if (LastBucket >= NUM_PP_BUCKETS) {
+    LastBucket -= NUM_PP_BUCKETS;
+  }
+  if (debug) {
+    tprintf("Circular fill from %d to %d", FirstBucket, LastBucket);
+  }
+  for (i = FirstBucket; true; CircularIncrement(i, NUM_PP_BUCKETS)) {
+    SET_BIT(ParamTable[i], Bit);
+
+    /* exit loop after we have set the bit for the last bucket */
+    if (i == LastBucket) {
+      break;
+    }
+  }
+
+} /* FillPPCircularBits */
+
+/**
+ * This routine sets Bit in each bit vector whose
+ * bucket lies within the range Center +- Spread.  The fill
+ * is done for a linear dimension, i.e. there is no wrap-around
+ * for this dimension.  It is assumed that Center and Spread
+ * are expressed in a linear coordinate system whose range
+ * is approximately 0 to 1.  Values outside this range will
+ * be clipped.
+ * @param ParamTable table of bit vectors, one per param bucket
+ * @param Bit bit number being filled
+ * @param Center center of filled area
+ * @param Spread spread of filled area
+ * @param debug debug flag
+ */
+void FillPPLinearBits(uint32_t ParamTable[NUM_PP_BUCKETS][WERDS_PER_PP_VECTOR], int Bit,
+                      float Center, float Spread, bool debug) {
+  int i, FirstBucket, LastBucket;
+
+  FirstBucket = static_cast<int>(std::floor((Center - Spread) * NUM_PP_BUCKETS));
+  if (FirstBucket < 0) {
+    FirstBucket = 0;
+  }
+
+  LastBucket = static_cast<int>(std::floor((Center + Spread) * NUM_PP_BUCKETS));
+  if (LastBucket >= NUM_PP_BUCKETS) {
+    LastBucket = NUM_PP_BUCKETS - 1;
+  }
+
+  if (debug) {
+    tprintf("Linear fill from %d to %d", FirstBucket, LastBucket);
+  }
+  for (i = FirstBucket; i <= LastBucket; i++) {
+    SET_BIT(ParamTable[i], Bit);
+  }
+
+} /* FillPPLinearBits */
+
+/*---------------------------------------------------------------------------*/
+#ifndef GRAPHICS_DISABLED
+/**
+ * This routine prompts the user with Prompt and waits
+ * for the user to enter something in the debug window.
+ * @param Prompt prompt to print while waiting for input from window
+ * @param adaptive_on
+ * @param pretrained_on
+ * @param shape_id
+ * @return Character entered in the debug window.
+ * @note Globals: none
+ */
+CLASS_ID Classify::GetClassToDebug(const char *Prompt, bool *adaptive_on, bool *pretrained_on,
+                                   int *shape_id) {
+  tprintf("%s\n", Prompt);
+  SVEventType ev_type;
+  int unichar_id = INVALID_UNICHAR_ID;
+  // Wait until a click or popup event.
+  do {
+    auto ev = IntMatchWindow->AwaitEvent(SVET_ANY);
+    ev_type = ev->type;
+    if (ev_type == SVET_POPUP) {
+      if (ev->command_id == IDA_SHAPE_INDEX) {
+        if (shape_table_ != nullptr) {
+          *shape_id = atoi(ev->parameter);
+          *adaptive_on = false;
+          *pretrained_on = true;
+          if (*shape_id >= 0 && static_cast<unsigned>(*shape_id) < shape_table_->NumShapes()) {
+            int font_id;
+            shape_table_->GetFirstUnicharAndFont(*shape_id, &unichar_id, &font_id);
+            tprintf("Shape %d, first unichar=%d, font=%d\n", *shape_id, unichar_id, font_id);
+            return unichar_id;
+          }
+          tprintf("Shape index '%s' not found in shape table\n", ev->parameter);
+        } else {
+          tprintf("No shape table loaded!\n");
+        }
+      } else {
+        if (unicharset.contains_unichar(ev->parameter)) {
+          unichar_id = unicharset.unichar_to_id(ev->parameter);
+          if (ev->command_id == IDA_ADAPTIVE) {
+            *adaptive_on = true;
+            *pretrained_on = false;
+            *shape_id = -1;
+          } else if (ev->command_id == IDA_STATIC) {
+            *adaptive_on = false;
+            *pretrained_on = true;
+          } else {
+            *adaptive_on = true;
+            *pretrained_on = true;
+          }
+          if (ev->command_id == IDA_ADAPTIVE || shape_table_ == nullptr) {
+            *shape_id = -1;
+            return unichar_id;
+          }
+          for (unsigned s = 0; s < shape_table_->NumShapes(); ++s) {
+            if (shape_table_->GetShape(s).ContainsUnichar(unichar_id)) {
+              tprintf("%s\n", shape_table_->DebugStr(s).c_str());
+            }
+          }
+        } else {
+          tprintf("Char class '%s' not found in unicharset", ev->parameter);
+        }
+      }
+    }
+  } while (ev_type != SVET_CLICK);
+  return 0;
+} /* GetClassToDebug */
+
+#endif
+
+/**
+ * This routine copies the appropriate global pad variables
+ * into EndPad, SidePad, and AnglePad.  This is a kludge used
+ * to get around the fact that global control variables cannot
+ * be arrays.  If the specified level is illegal, the tightest
+ * possible pads are returned.
+ * @param Level   "tightness" level to return pads for
+ * @param EndPad    place to put end pad for Level
+ * @param SidePad   place to put side pad for Level
+ * @param AnglePad  place to put angle pad for Level
+ */
+void GetCPPadsForLevel(int Level, float *EndPad, float *SidePad, float *AnglePad) {
+  switch (Level) {
+    case 0:
+      *EndPad = classify_cp_end_pad_loose * GetPicoFeatureLength();
+      *SidePad = classify_cp_side_pad_loose * GetPicoFeatureLength();
+      *AnglePad = classify_cp_angle_pad_loose / 360.0;
+      break;
+
+    case 1:
+      *EndPad = classify_cp_end_pad_medium * GetPicoFeatureLength();
+      *SidePad = classify_cp_side_pad_medium * GetPicoFeatureLength();
+      *AnglePad = classify_cp_angle_pad_medium / 360.0;
+      break;
+
+    case 2:
+      *EndPad = classify_cp_end_pad_tight * GetPicoFeatureLength();
+      *SidePad = classify_cp_side_pad_tight * GetPicoFeatureLength();
+      *AnglePad = classify_cp_angle_pad_tight / 360.0;
+      break;
+
+    default:
+      *EndPad = classify_cp_end_pad_tight * GetPicoFeatureLength();
+      *SidePad = classify_cp_side_pad_tight * GetPicoFeatureLength();
+      *AnglePad = classify_cp_angle_pad_tight / 360.0;
+      break;
+  }
+  if (*AnglePad > 0.5) {
+    *AnglePad = 0.5;
+  }
+
+} /* GetCPPadsForLevel */
+
+/**
+ * @param Evidence  evidence value to return color for
+ * @return Color which corresponds to specified Evidence value.
+ * @note Globals: none
+ */
+ScrollView::Color GetMatchColorFor(float Evidence) {
+  assert(Evidence >= 0.0);
+  assert(Evidence <= 1.0);
+
+  if (Evidence >= 0.90) {
+    return ScrollView::WHITE;
+  } else if (Evidence >= 0.75) {
+    return ScrollView::GREEN;
+  } else if (Evidence >= 0.50) {
+    return ScrollView::RED;
+  } else {
+    return ScrollView::BLUE;
+  }
+} /* GetMatchColorFor */
+
+/**
+ * This routine returns (in Fill) the specification of
+ * the next line to be filled from Filler.  FillerDone() should
+ * always be called before GetNextFill() to ensure that we
+ * do not run past the end of the fill table.
+ * @param Filler    filler to get next fill spec from
+ * @param Fill    place to put spec for next fill
+ */
+void GetNextFill(TABLE_FILLER *Filler, FILL_SPEC *Fill) {
+  FILL_SWITCH *Next;
+
+  /* compute the fill assuming no switches will be encountered */
+  Fill->AngleStart = Filler->AngleStart;
+  Fill->AngleEnd = Filler->AngleEnd;
+  Fill->X = Filler->X;
+  Fill->YStart = Filler->YStart >> 8;
+  Fill->YEnd = Filler->YEnd >> 8;
+
+  /* update the fill info and the filler for ALL switches at this X value */
+  Next = &(Filler->Switch[Filler->NextSwitch]);
+  while (Filler->X >= Next->X) {
+    Fill->X = Filler->X = Next->X;
+    if (Next->Type == StartSwitch) {
+      Fill->YStart = Next->Y;
+      Filler->StartDelta = Next->Delta;
+      Filler->YStart = Next->YInit;
+    } else if (Next->Type == EndSwitch) {
+      Fill->YEnd = Next->Y;
+      Filler->EndDelta = Next->Delta;
+      Filler->YEnd = Next->YInit;
+    } else { /* Type must be LastSwitch */
+      break;
+    }
+    Filler->NextSwitch++;
+    Next = &(Filler->Switch[Filler->NextSwitch]);
+  }
+
+  /* prepare the filler for the next call to this routine */
+  Filler->X++;
+  Filler->YStart += Filler->StartDelta;
+  Filler->YEnd += Filler->EndDelta;
+
+} /* GetNextFill */
+
+/**
+ * This routine computes a data structure (Filler)
+ * which can be used to fill in a rectangle surrounding
+ * the specified Proto. Results are returned in Filler.
+ *
+ * @param EndPad, SidePad, AnglePad padding to add to proto
+ * @param Proto       proto to create a filler for
+ * @param Filler        place to put table filler
+ */
+void InitTableFiller(float EndPad, float SidePad, float AnglePad, PROTO_STRUCT *Proto, TABLE_FILLER *Filler)
+#define XS X_SHIFT
+#define YS Y_SHIFT
+#define AS ANGLE_SHIFT
+#define NB NUM_CP_BUCKETS
+{
+  float Angle;
+  float X, Y, HalfLength;
+  float Cos, Sin;
+  float XAdjust, YAdjust;
+  FPOINT Start, Switch1, Switch2, End;
+  int S1 = 0;
+  int S2 = 1;
+
+  Angle = Proto->Angle;
+  X = Proto->X;
+  Y = Proto->Y;
+  HalfLength = Proto->Length / 2.0;
+
+  Filler->AngleStart = CircBucketFor(Angle - AnglePad, AS, NB);
+  Filler->AngleEnd = CircBucketFor(Angle + AnglePad, AS, NB);
+  Filler->NextSwitch = 0;
+
+  if (fabs(Angle - 0.0) < HV_TOLERANCE || fabs(Angle - 0.5) < HV_TOLERANCE) {
+    /* horizontal proto - handle as special case */
+    Filler->X = Bucket8For(X - HalfLength - EndPad, XS, NB);
+    Filler->YStart = Bucket16For(Y - SidePad, YS, NB * 256);
+    Filler->YEnd = Bucket16For(Y + SidePad, YS, NB * 256);
+    Filler->StartDelta = 0;
+    Filler->EndDelta = 0;
+    Filler->Switch[0].Type = LastSwitch;
+    Filler->Switch[0].X = Bucket8For(X + HalfLength + EndPad, XS, NB);
+  } else if (fabs(Angle - 0.25) < HV_TOLERANCE || fabs(Angle - 0.75) < HV_TOLERANCE) {
+    /* vertical proto - handle as special case */
+    Filler->X = Bucket8For(X - SidePad, XS, NB);
+    Filler->YStart = Bucket16For(Y - HalfLength - EndPad, YS, NB * 256);
+    Filler->YEnd = Bucket16For(Y + HalfLength + EndPad, YS, NB * 256);
+    Filler->StartDelta = 0;
+    Filler->EndDelta = 0;
+    Filler->Switch[0].Type = LastSwitch;
+    Filler->Switch[0].X = Bucket8For(X + SidePad, XS, NB);
+  } else {
+    /* diagonal proto */
+
+    if ((Angle > 0.0 && Angle < 0.25) || (Angle > 0.5 && Angle < 0.75)) {
+      /* rising diagonal proto */
+      Angle *= 2.0 * M_PI;
+      Cos = fabs(std::cos(Angle));
+      Sin = fabs(std::sin(Angle));
+
+      /* compute the positions of the corners of the acceptance region */
+      Start.x = X - (HalfLength + EndPad) * Cos - SidePad * Sin;
+      Start.y = Y - (HalfLength + EndPad) * Sin + SidePad * Cos;
+      End.x = 2.0 * X - Start.x;
+      End.y = 2.0 * Y - Start.y;
+      Switch1.x = X - (HalfLength + EndPad) * Cos + SidePad * Sin;
+      Switch1.y = Y - (HalfLength + EndPad) * Sin - SidePad * Cos;
+      Switch2.x = 2.0 * X - Switch1.x;
+      Switch2.y = 2.0 * Y - Switch1.y;
+
+      if (Switch1.x > Switch2.x) {
+        S1 = 1;
+        S2 = 0;
+      }
+
+      /* translate into bucket positions and deltas */
+      Filler->X = Bucket8For(Start.x, XS, NB);
+      Filler->StartDelta = -static_cast<int16_t>((Cos / Sin) * 256);
+      Filler->EndDelta = static_cast<int16_t>((Sin / Cos) * 256);
+
+      XAdjust = BucketEnd(Filler->X, XS, NB) - Start.x;
+      YAdjust = XAdjust * Cos / Sin;
+      Filler->YStart = Bucket16For(Start.y - YAdjust, YS, NB * 256);
+      YAdjust = XAdjust * Sin / Cos;
+      Filler->YEnd = Bucket16For(Start.y + YAdjust, YS, NB * 256);
+
+      Filler->Switch[S1].Type = StartSwitch;
+      Filler->Switch[S1].X = Bucket8For(Switch1.x, XS, NB);
+      Filler->Switch[S1].Y = Bucket8For(Switch1.y, YS, NB);
+      XAdjust = Switch1.x - BucketStart(Filler->Switch[S1].X, XS, NB);
+      YAdjust = XAdjust * Sin / Cos;
+      Filler->Switch[S1].YInit = Bucket16For(Switch1.y - YAdjust, YS, NB * 256);
+      Filler->Switch[S1].Delta = Filler->EndDelta;
+
+      Filler->Switch[S2].Type = EndSwitch;
+      Filler->Switch[S2].X = Bucket8For(Switch2.x, XS, NB);
+      Filler->Switch[S2].Y = Bucket8For(Switch2.y, YS, NB);
+      XAdjust = Switch2.x - BucketStart(Filler->Switch[S2].X, XS, NB);
+      YAdjust = XAdjust * Cos / Sin;
+      Filler->Switch[S2].YInit = Bucket16For(Switch2.y + YAdjust, YS, NB * 256);
+      Filler->Switch[S2].Delta = Filler->StartDelta;
+
+      Filler->Switch[2].Type = LastSwitch;
+      Filler->Switch[2].X = Bucket8For(End.x, XS, NB);
+    } else {
+      /* falling diagonal proto */
+      Angle *= 2.0 * M_PI;
+      Cos = fabs(std::cos(Angle));
+      Sin = fabs(std::sin(Angle));
+
+      /* compute the positions of the corners of the acceptance region */
+      Start.x = X - (HalfLength + EndPad) * Cos - SidePad * Sin;
+      Start.y = Y + (HalfLength + EndPad) * Sin - SidePad * Cos;
+      End.x = 2.0 * X - Start.x;
+      End.y = 2.0 * Y - Start.y;
+      Switch1.x = X - (HalfLength + EndPad) * Cos + SidePad * Sin;
+      Switch1.y = Y + (HalfLength + EndPad) * Sin + SidePad * Cos;
+      Switch2.x = 2.0 * X - Switch1.x;
+      Switch2.y = 2.0 * Y - Switch1.y;
+
+      if (Switch1.x > Switch2.x) {
+        S1 = 1;
+        S2 = 0;
+      }
+
+      /* translate into bucket positions and deltas */
+      Filler->X = Bucket8For(Start.x, XS, NB);
+      Filler->StartDelta = static_cast<int16_t>(
+          ClipToRange<int>(-IntCastRounded((Sin / Cos) * 256), INT16_MIN, INT16_MAX));
+      Filler->EndDelta = static_cast<int16_t>(
+          ClipToRange<int>(IntCastRounded((Cos / Sin) * 256), INT16_MIN, INT16_MAX));
+
+      XAdjust = BucketEnd(Filler->X, XS, NB) - Start.x;
+      YAdjust = XAdjust * Sin / Cos;
+      Filler->YStart = Bucket16For(Start.y - YAdjust, YS, NB * 256);
+      YAdjust = XAdjust * Cos / Sin;
+      Filler->YEnd = Bucket16For(Start.y + YAdjust, YS, NB * 256);
+
+      Filler->Switch[S1].Type = EndSwitch;
+      Filler->Switch[S1].X = Bucket8For(Switch1.x, XS, NB);
+      Filler->Switch[S1].Y = Bucket8For(Switch1.y, YS, NB);
+      XAdjust = Switch1.x - BucketStart(Filler->Switch[S1].X, XS, NB);
+      YAdjust = XAdjust * Sin / Cos;
+      Filler->Switch[S1].YInit = Bucket16For(Switch1.y + YAdjust, YS, NB * 256);
+      Filler->Switch[S1].Delta = Filler->StartDelta;
+
+      Filler->Switch[S2].Type = StartSwitch;
+      Filler->Switch[S2].X = Bucket8For(Switch2.x, XS, NB);
+      Filler->Switch[S2].Y = Bucket8For(Switch2.y, YS, NB);
+      XAdjust = Switch2.x - BucketStart(Filler->Switch[S2].X, XS, NB);
+      YAdjust = XAdjust * Cos / Sin;
+      Filler->Switch[S2].YInit = Bucket16For(Switch2.y - YAdjust, YS, NB * 256);
+      Filler->Switch[S2].Delta = Filler->EndDelta;
+
+      Filler->Switch[2].Type = LastSwitch;
+      Filler->Switch[2].X = Bucket8For(End.x, XS, NB);
+    }
+  }
+} /* InitTableFiller */
+
+/*---------------------------------------------------------------------------*/
+#ifndef GRAPHICS_DISABLED
+/**
+ * This routine renders the specified feature into ShapeList.
+ * @param window to add feature rendering to
+ * @param Feature feature to be rendered
+ * @param color color to use for feature rendering
+ * @return New shape list with rendering of Feature added.
+ * @note Globals: none
+ */
+void RenderIntFeature(ScrollView *window, const INT_FEATURE_STRUCT *Feature,
+                      ScrollView::Color color) {
+  float X, Y, Dx, Dy, Length;
+
+  window->Pen(color);
+  assert(Feature != nullptr);
+  assert(color != 0);
+
+  X = Feature->X;
+  Y = Feature->Y;
+  Length = GetPicoFeatureLength() * 0.7 * INT_CHAR_NORM_RANGE;
+  // The -PI has no significant effect here, but the value of Theta is computed
+  // using BinaryAnglePlusPi in intfx.cpp.
+  Dx = (Length / 2.0) * cos((Feature->Theta / 256.0) * 2.0 * M_PI - M_PI);
+  Dy = (Length / 2.0) * sin((Feature->Theta / 256.0) * 2.0 * M_PI - M_PI);
+
+  window->SetCursor(X, Y);
+  window->DrawTo(X + Dx, Y + Dy);
+} /* RenderIntFeature */
+
+/**
+ * This routine extracts the parameters of the specified
+ * proto from the class description and adds a rendering of
+ * the proto onto the ShapeList.
+ *
+ * @param window ScrollView instance
+ * @param Class class that proto is contained in
+ * @param ProtoId id of proto to be rendered
+ * @param color color to render proto in
+ *
+ * Globals: none
+ *
+ * @return New shape list with a rendering of one proto added.
+ */
+void RenderIntProto(ScrollView *window, INT_CLASS_STRUCT *Class, PROTO_ID ProtoId,
+                    ScrollView::Color color) {
+  INT_PROTO_STRUCT *Proto;
+  int ProtoSetIndex;
+  int ProtoWordIndex;
+  float Length;
+  int Xmin, Xmax, Ymin, Ymax;
+  float X, Y, Dx, Dy;
+  uint32_t ProtoMask;
+  int Bucket;
+
+  assert(ProtoId >= 0);
+  assert(Class != nullptr);
+  assert(ProtoId < Class->NumProtos);
+  assert(color != 0);
+  window->Pen(color);
+
+  auto ProtoSet = Class->ProtoSets[SetForProto(ProtoId)];
+  ProtoSetIndex = IndexForProto(ProtoId);
+  Proto = &(ProtoSet->Protos[ProtoSetIndex]);
+  Length = (Class->ProtoLengths[ProtoId] * GetPicoFeatureLength() * INT_CHAR_NORM_RANGE);
+  ProtoMask = PPrunerMaskFor(ProtoId);
+  ProtoWordIndex = PPrunerWordIndexFor(ProtoId);
+
+  // find the x and y extent of the proto from the proto pruning table
+  Xmin = Ymin = NUM_PP_BUCKETS;
+  Xmax = Ymax = 0;
+  for (Bucket = 0; Bucket < NUM_PP_BUCKETS; Bucket++) {
+    if (ProtoMask & ProtoSet->ProtoPruner[PRUNER_X][Bucket][ProtoWordIndex]) {
+      UpdateRange(Bucket, &Xmin, &Xmax);
+    }
+
+    if (ProtoMask & ProtoSet->ProtoPruner[PRUNER_Y][Bucket][ProtoWordIndex]) {
+      UpdateRange(Bucket, &Ymin, &Ymax);
+    }
+  }
+  X = (Xmin + Xmax + 1) / 2.0 * PROTO_PRUNER_SCALE;
+  Y = (Ymin + Ymax + 1) / 2.0 * PROTO_PRUNER_SCALE;
+  // The -PI has no significant effect here, but the value of Theta is computed
+  // using BinaryAnglePlusPi in intfx.cpp.
+  Dx = (Length / 2.0) * cos((Proto->Angle / 256.0) * 2.0 * M_PI - M_PI);
+  Dy = (Length / 2.0) * sin((Proto->Angle / 256.0) * 2.0 * M_PI - M_PI);
+
+  window->SetCursor(X - Dx, Y - Dy);
+  window->DrawTo(X + Dx, Y + Dy);
+} /* RenderIntProto */
+#endif
+
+#ifndef GRAPHICS_DISABLED
+/**
+ * Initializes the int matcher window if it is not already
+ * initialized.
+ */
+void InitIntMatchWindowIfReqd() {
+  if (IntMatchWindow == nullptr) {
+    IntMatchWindow = CreateFeatureSpaceWindow("IntMatchWindow", 50, 200);
+    auto *popup_menu = new SVMenuNode();
+
+    popup_menu->AddChild("Debug Adapted classes", IDA_ADAPTIVE, "x", "Class to debug");
+    popup_menu->AddChild("Debug Static classes", IDA_STATIC, "x", "Class to debug");
+    popup_menu->AddChild("Debug Both", IDA_BOTH, "x", "Class to debug");
+    popup_menu->AddChild("Debug Shape Index", IDA_SHAPE_INDEX, "0", "Index to debug");
+    popup_menu->BuildMenu(IntMatchWindow, false);
+  }
+}
+
+/**
+ * Initializes the proto display window if it is not already
+ * initialized.
+ */
+void InitProtoDisplayWindowIfReqd() {
+  if (ProtoDisplayWindow == nullptr) {
+    ProtoDisplayWindow = CreateFeatureSpaceWindow("ProtoDisplayWindow", 550, 200);
+  }
+}
+
+/**
+ * Initializes the feature display window if it is not already
+ * initialized.
+ */
+void InitFeatureDisplayWindowIfReqd() {
+  if (FeatureDisplayWindow == nullptr) {
+    FeatureDisplayWindow = CreateFeatureSpaceWindow("FeatureDisplayWindow", 50, 700);
+  }
+}
+
+/// Creates a window of the appropriate size for displaying elements
+/// in feature space.
+ScrollView *CreateFeatureSpaceWindow(const char *name, int xpos, int ypos) {
+  return new ScrollView(name, xpos, ypos, 520, 520, 260, 260, true);
+}
+#endif // !GRAPHICS_DISABLED
+
+} // namespace tesseract