diff mupdf-source/thirdparty/tesseract/src/classify/intmatcher.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/classify/intmatcher.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,1161 @@
+/******************************************************************************
+ ** Filename:    intmatcher.cpp
+ ** Purpose:     Generic high level classification routines.
+ ** Author:      Robert Moss
+ ** (c) Copyright Hewlett-Packard Company, 1988.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ ******************************************************************************/
+
+// Include automatically generated configuration file if running autoconf.
+#ifdef HAVE_CONFIG_H
+#  include "config_auto.h"
+#endif
+
+#include "intmatcher.h"
+
+#include "classify.h"
+#include "float2int.h"
+#include "fontinfo.h"
+#include "intproto.h"
+#include "scrollview.h"
+#include "shapetable.h"
+
+#include "helpers.h"
+
+#include <cassert>
+#include <cmath>
+
+namespace tesseract {
+
+/*----------------------------------------------------------------------------
+                    Global Data Definitions and Declarations
+----------------------------------------------------------------------------*/
+// Parameters of the sigmoid used to convert similarity to evidence in the
+// similarity_evidence_table_ that is used to convert distance metric to an
+// 8 bit evidence value in the secondary matcher. (See IntMatcher::Init).
+const float IntegerMatcher::kSEExponentialMultiplier = 0.0f;
+const float IntegerMatcher::kSimilarityCenter = 0.0075f;
+
+static const uint8_t offset_table[] = {
+    255, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2,
+    0,   1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0,
+    1,   0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1,
+    0,   3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0,
+    2,   0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
+    0,   1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0,
+    1,   0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1,
+    0,   2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0,
+    3,   0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0};
+
+static const uint8_t next_table[] = {
+    0,    0,    0,    0x2,  0,    0x4,  0x4,  0x6,  0,    0x8,  0x8,  0x0a, 0x08, 0x0c, 0x0c, 0x0e,
+    0,    0x10, 0x10, 0x12, 0x10, 0x14, 0x14, 0x16, 0x10, 0x18, 0x18, 0x1a, 0x18, 0x1c, 0x1c, 0x1e,
+    0,    0x20, 0x20, 0x22, 0x20, 0x24, 0x24, 0x26, 0x20, 0x28, 0x28, 0x2a, 0x28, 0x2c, 0x2c, 0x2e,
+    0x20, 0x30, 0x30, 0x32, 0x30, 0x34, 0x34, 0x36, 0x30, 0x38, 0x38, 0x3a, 0x38, 0x3c, 0x3c, 0x3e,
+    0,    0x40, 0x40, 0x42, 0x40, 0x44, 0x44, 0x46, 0x40, 0x48, 0x48, 0x4a, 0x48, 0x4c, 0x4c, 0x4e,
+    0x40, 0x50, 0x50, 0x52, 0x50, 0x54, 0x54, 0x56, 0x50, 0x58, 0x58, 0x5a, 0x58, 0x5c, 0x5c, 0x5e,
+    0x40, 0x60, 0x60, 0x62, 0x60, 0x64, 0x64, 0x66, 0x60, 0x68, 0x68, 0x6a, 0x68, 0x6c, 0x6c, 0x6e,
+    0x60, 0x70, 0x70, 0x72, 0x70, 0x74, 0x74, 0x76, 0x70, 0x78, 0x78, 0x7a, 0x78, 0x7c, 0x7c, 0x7e,
+    0,    0x80, 0x80, 0x82, 0x80, 0x84, 0x84, 0x86, 0x80, 0x88, 0x88, 0x8a, 0x88, 0x8c, 0x8c, 0x8e,
+    0x80, 0x90, 0x90, 0x92, 0x90, 0x94, 0x94, 0x96, 0x90, 0x98, 0x98, 0x9a, 0x98, 0x9c, 0x9c, 0x9e,
+    0x80, 0xa0, 0xa0, 0xa2, 0xa0, 0xa4, 0xa4, 0xa6, 0xa0, 0xa8, 0xa8, 0xaa, 0xa8, 0xac, 0xac, 0xae,
+    0xa0, 0xb0, 0xb0, 0xb2, 0xb0, 0xb4, 0xb4, 0xb6, 0xb0, 0xb8, 0xb8, 0xba, 0xb8, 0xbc, 0xbc, 0xbe,
+    0x80, 0xc0, 0xc0, 0xc2, 0xc0, 0xc4, 0xc4, 0xc6, 0xc0, 0xc8, 0xc8, 0xca, 0xc8, 0xcc, 0xcc, 0xce,
+    0xc0, 0xd0, 0xd0, 0xd2, 0xd0, 0xd4, 0xd4, 0xd6, 0xd0, 0xd8, 0xd8, 0xda, 0xd8, 0xdc, 0xdc, 0xde,
+    0xc0, 0xe0, 0xe0, 0xe2, 0xe0, 0xe4, 0xe4, 0xe6, 0xe0, 0xe8, 0xe8, 0xea, 0xe8, 0xec, 0xec, 0xee,
+    0xe0, 0xf0, 0xf0, 0xf2, 0xf0, 0xf4, 0xf4, 0xf6, 0xf0, 0xf8, 0xf8, 0xfa, 0xf8, 0xfc, 0xfc, 0xfe};
+
+// See http://b/19318793 (#6) for a complete discussion.
+
+/**
+ * Sort Key array in ascending order using heap sort
+ * algorithm.  Also sort Index array that is tied to
+ * the key array.
+ * @param n Number of elements to sort
+ * @param ra     Key array [1..n]
+ * @param rb     Index array [1..n]
+ */
+static void HeapSort(int n, int ra[], int rb[]) {
+  int i, rra, rrb;
+  int l, j, ir;
+
+  l = (n >> 1) + 1;
+  ir = n;
+  for (;;) {
+    if (l > 1) {
+      rra = ra[--l];
+      rrb = rb[l];
+    } else {
+      rra = ra[ir];
+      rrb = rb[ir];
+      ra[ir] = ra[1];
+      rb[ir] = rb[1];
+      if (--ir == 1) {
+        ra[1] = rra;
+        rb[1] = rrb;
+        return;
+      }
+    }
+    i = l;
+    j = l << 1;
+    while (j <= ir) {
+      if (j < ir && ra[j] < ra[j + 1]) {
+        ++j;
+      }
+      if (rra < ra[j]) {
+        ra[i] = ra[j];
+        rb[i] = rb[j];
+        j += (i = j);
+      } else {
+        j = ir + 1;
+      }
+    }
+    ra[i] = rra;
+    rb[i] = rrb;
+  }
+}
+
+// Encapsulation of the intermediate data and computations made by the class
+// pruner. The class pruner implements a simple linear classifier on binary
+// features by heavily quantizing the feature space, and applying
+// NUM_BITS_PER_CLASS (2)-bit weights to the features. Lack of resolution in
+// weights is compensated by a non-constant bias that is dependent on the
+// number of features present.
+class ClassPruner {
+public:
+  ClassPruner(int max_classes) {
+    // The unrolled loop in ComputeScores means that the array sizes need to
+    // be rounded up so that the array is big enough to accommodate the extra
+    // entries accessed by the unrolling. Each pruner word is of sized
+    // BITS_PER_WERD and each entry is NUM_BITS_PER_CLASS, so there are
+    // BITS_PER_WERD / NUM_BITS_PER_CLASS entries.
+    // See ComputeScores.
+    max_classes_ = max_classes;
+    rounded_classes_ =
+        RoundUp(max_classes, WERDS_PER_CP_VECTOR * BITS_PER_WERD / NUM_BITS_PER_CLASS);
+    class_count_ = new int[rounded_classes_];
+    norm_count_ = new int[rounded_classes_];
+    sort_key_ = new int[rounded_classes_ + 1];
+    sort_index_ = new int[rounded_classes_ + 1];
+    for (int i = 0; i < rounded_classes_; i++) {
+      class_count_[i] = 0;
+    }
+    pruning_threshold_ = 0;
+    num_features_ = 0;
+    num_classes_ = 0;
+  }
+
+  ~ClassPruner() {
+    delete[] class_count_;
+    delete[] norm_count_;
+    delete[] sort_key_;
+    delete[] sort_index_;
+  }
+
+  /// Computes the scores for every class in the character set, by summing the
+  /// weights for each feature and stores the sums internally in class_count_.
+  void ComputeScores(const INT_TEMPLATES_STRUCT *int_templates, int num_features,
+                     const INT_FEATURE_STRUCT *features) {
+    num_features_ = num_features;
+    auto num_pruners = int_templates->NumClassPruners;
+    for (int f = 0; f < num_features; ++f) {
+      const INT_FEATURE_STRUCT *feature = &features[f];
+      // Quantize the feature to NUM_CP_BUCKETS*NUM_CP_BUCKETS*NUM_CP_BUCKETS.
+      int x = feature->X * NUM_CP_BUCKETS >> 8;
+      int y = feature->Y * NUM_CP_BUCKETS >> 8;
+      int theta = feature->Theta * NUM_CP_BUCKETS >> 8;
+      int class_id = 0;
+      // Each CLASS_PRUNER_STRUCT only covers CLASSES_PER_CP(32) classes, so
+      // we need a collection of them, indexed by pruner_set.
+      for (unsigned pruner_set = 0; pruner_set < num_pruners; ++pruner_set) {
+        // Look up quantized feature in a 3-D array, an array of weights for
+        // each class.
+        const uint32_t *pruner_word_ptr = int_templates->ClassPruners[pruner_set]->p[x][y][theta];
+        for (int word = 0; word < WERDS_PER_CP_VECTOR; ++word) {
+          uint32_t pruner_word = *pruner_word_ptr++;
+          // This inner loop is unrolled to speed up the ClassPruner.
+          // Currently gcc would not unroll it unless it is set to O3
+          // level of optimization or -funroll-loops is specified.
+          /*
+uint32_t class_mask = (1 << NUM_BITS_PER_CLASS) - 1;
+for (int bit = 0; bit < BITS_PER_WERD/NUM_BITS_PER_CLASS; bit++) {
+  class_count_[class_id++] += pruner_word & class_mask;
+  pruner_word >>= NUM_BITS_PER_CLASS;
+}
+*/
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+          pruner_word >>= NUM_BITS_PER_CLASS;
+          class_count_[class_id++] += pruner_word & CLASS_PRUNER_CLASS_MASK;
+        }
+      }
+    }
+  }
+
+  /// Adjusts the scores according to the number of expected features. Used
+  /// in lieu of a constant bias, this penalizes classes that expect more
+  /// features than there are present. Thus an actual c will score higher for c
+  /// than e, even though almost all the features match e as well as c, because
+  /// e expects more features to be present.
+  void AdjustForExpectedNumFeatures(const uint16_t *expected_num_features, int cutoff_strength) {
+    for (int class_id = 0; class_id < max_classes_; ++class_id) {
+      if (num_features_ < expected_num_features[class_id]) {
+        int deficit = expected_num_features[class_id] - num_features_;
+        class_count_[class_id] -=
+            class_count_[class_id] * deficit / (num_features_ * cutoff_strength + deficit);
+      }
+    }
+  }
+
+  /// Zeros the scores for classes disabled in the unicharset.
+  /// Implements the black-list to recognize a subset of the character set.
+  void DisableDisabledClasses(const UNICHARSET &unicharset) {
+    for (int class_id = 0; class_id < max_classes_; ++class_id) {
+      if (!unicharset.get_enabled(class_id)) {
+        class_count_[class_id] = 0; // This char is disabled!
+      }
+    }
+  }
+
+  /** Zeros the scores of fragments. */
+  void DisableFragments(const UNICHARSET &unicharset) {
+    for (int class_id = 0; class_id < max_classes_; ++class_id) {
+      // Do not include character fragments in the class pruner
+      // results if disable_character_fragments is true.
+      if (unicharset.get_fragment(class_id)) {
+        class_count_[class_id] = 0;
+      }
+    }
+  }
+
+  /// Normalizes the counts for xheight, putting the normalized result in
+  /// norm_count_. Applies a simple subtractive penalty for incorrect vertical
+  /// position provided by the normalization_factors array, indexed by
+  /// character class, and scaled by the norm_multiplier.
+  void NormalizeForXheight(int norm_multiplier, const uint8_t *normalization_factors) {
+    for (int class_id = 0; class_id < max_classes_; class_id++) {
+      norm_count_[class_id] =
+          class_count_[class_id] - ((norm_multiplier * normalization_factors[class_id]) >> 8);
+    }
+  }
+
+  /** The nop normalization copies the class_count_ array to norm_count_. */
+  void NoNormalization() {
+    for (int class_id = 0; class_id < max_classes_; class_id++) {
+      norm_count_[class_id] = class_count_[class_id];
+    }
+  }
+
+  /// Prunes the classes using &lt;the maximum count> * pruning_factor/256 as a
+  /// threshold for keeping classes. If max_of_non_fragments, then ignore
+  /// fragments in computing the maximum count.
+  void PruneAndSort(int pruning_factor, int keep_this, bool max_of_non_fragments,
+                    const UNICHARSET &unicharset) {
+    int max_count = 0;
+    for (int c = 0; c < max_classes_; ++c) {
+      if (norm_count_[c] > max_count &&
+          // This additional check is added in order to ensure that
+          // the classifier will return at least one non-fragmented
+          // character match.
+          // TODO(daria): verify that this helps accuracy and does not
+          // hurt performance.
+          (!max_of_non_fragments || !unicharset.get_fragment(c))) {
+        max_count = norm_count_[c];
+      }
+    }
+    // Prune Classes.
+    pruning_threshold_ = (max_count * pruning_factor) >> 8;
+    // Select Classes.
+    if (pruning_threshold_ < 1) {
+      pruning_threshold_ = 1;
+    }
+    num_classes_ = 0;
+    for (int class_id = 0; class_id < max_classes_; class_id++) {
+      if (norm_count_[class_id] >= pruning_threshold_ || class_id == keep_this) {
+        ++num_classes_;
+        sort_index_[num_classes_] = class_id;
+        sort_key_[num_classes_] = norm_count_[class_id];
+      }
+    }
+
+    // Sort Classes using Heapsort Algorithm.
+    if (num_classes_ > 1) {
+      HeapSort(num_classes_, sort_key_, sort_index_);
+    }
+  }
+
+  /** Prints debug info on the class pruner matches for the pruned classes only.
+   */
+  void DebugMatch(const Classify &classify, const INT_TEMPLATES_STRUCT *int_templates,
+                  const INT_FEATURE_STRUCT *features) const {
+    int num_pruners = int_templates->NumClassPruners;
+    int max_num_classes = int_templates->NumClasses;
+    for (int f = 0; f < num_features_; ++f) {
+      const INT_FEATURE_STRUCT *feature = &features[f];
+      tprintf("F=%3d(%d,%d,%d),", f, feature->X, feature->Y, feature->Theta);
+      // Quantize the feature to NUM_CP_BUCKETS*NUM_CP_BUCKETS*NUM_CP_BUCKETS.
+      int x = feature->X * NUM_CP_BUCKETS >> 8;
+      int y = feature->Y * NUM_CP_BUCKETS >> 8;
+      int theta = feature->Theta * NUM_CP_BUCKETS >> 8;
+      int class_id = 0;
+      for (int pruner_set = 0; pruner_set < num_pruners; ++pruner_set) {
+        // Look up quantized feature in a 3-D array, an array of weights for
+        // each class.
+        const uint32_t *pruner_word_ptr = int_templates->ClassPruners[pruner_set]->p[x][y][theta];
+        for (int word = 0; word < WERDS_PER_CP_VECTOR; ++word) {
+          uint32_t pruner_word = *pruner_word_ptr++;
+          for (int word_class = 0; word_class < 16 && class_id < max_num_classes;
+               ++word_class, ++class_id) {
+            if (norm_count_[class_id] >= pruning_threshold_) {
+              tprintf(" %s=%d,", classify.ClassIDToDebugStr(int_templates, class_id, 0).c_str(),
+                      pruner_word & CLASS_PRUNER_CLASS_MASK);
+            }
+            pruner_word >>= NUM_BITS_PER_CLASS;
+          }
+        }
+        tprintf("\n");
+      }
+    }
+  }
+
+  /** Prints a summary of the pruner result. */
+  void SummarizeResult(const Classify &classify, const INT_TEMPLATES_STRUCT *int_templates,
+                       const uint16_t *expected_num_features, int norm_multiplier,
+                       const uint8_t *normalization_factors) const {
+    tprintf("CP:%d classes, %d features:\n", num_classes_, num_features_);
+    for (int i = 0; i < num_classes_; ++i) {
+      int class_id = sort_index_[num_classes_ - i];
+      std::string class_string = classify.ClassIDToDebugStr(int_templates, class_id, 0);
+      tprintf(
+          "%s:Initial=%d, E=%d, Xht-adj=%d, N=%d, Rat=%.2f\n", class_string.c_str(),
+          class_count_[class_id], expected_num_features[class_id],
+          (norm_multiplier * normalization_factors[class_id]) >> 8, sort_key_[num_classes_ - i],
+          100.0 - 100.0 * sort_key_[num_classes_ - i] / (CLASS_PRUNER_CLASS_MASK * num_features_));
+    }
+  }
+
+  /// Copies the pruned, sorted classes into the output results and returns
+  /// the number of classes.
+  int SetupResults(std::vector<CP_RESULT_STRUCT> *results) const {
+    results->clear();
+    results->resize(num_classes_);
+    for (int c = 0; c < num_classes_; ++c) {
+      (*results)[c].Class = sort_index_[num_classes_ - c];
+      (*results)[c].Rating =
+          1.0f - sort_key_[num_classes_ - c] /
+                     (static_cast<float>(CLASS_PRUNER_CLASS_MASK) * num_features_);
+    }
+    return num_classes_;
+  }
+
+private:
+  /** Array[rounded_classes_] of initial counts for each class. */
+  int *class_count_;
+  /// Array[rounded_classes_] of modified counts for each class after
+  /// normalizing for expected number of features, disabled classes, fragments,
+  /// and xheights.
+  int *norm_count_;
+  /** Array[rounded_classes_ +1] of pruned counts that gets sorted */
+  int *sort_key_;
+  /** Array[rounded_classes_ +1] of classes corresponding to sort_key_. */
+  int *sort_index_;
+  /** Number of classes in this class pruner. */
+  int max_classes_;
+  /** Rounded up number of classes used for array sizes. */
+  int rounded_classes_;
+  /** Threshold count applied to prune classes. */
+  int pruning_threshold_;
+  /** The number of features used to compute the scores. */
+  int num_features_;
+  /** Final number of pruned classes. */
+  int num_classes_;
+};
+
+/*----------------------------------------------------------------------------
+              Public Code
+----------------------------------------------------------------------------*/
+/**
+ * Runs the class pruner from int_templates on the given features, returning
+ * the number of classes output in results.
+ * @param int_templates          Class pruner tables
+ * @param num_features           Number of features in blob
+ * @param features               Array of features
+ * @param normalization_factors  Array of fudge factors from blob
+ *                               normalization process (by CLASS_INDEX)
+ * @param expected_num_features  Array of expected number of features
+ *                               for each class (by CLASS_INDEX)
+ * @param results                Sorted Array of pruned classes. Must be an
+ *                               array of size at least
+ *                               int_templates->NumClasses.
+ * @param keep_this
+ */
+int Classify::PruneClasses(const INT_TEMPLATES_STRUCT *int_templates, int num_features,
+                           int keep_this, const INT_FEATURE_STRUCT *features,
+                           const uint8_t *normalization_factors,
+                           const uint16_t *expected_num_features,
+                           std::vector<CP_RESULT_STRUCT> *results) {
+  ClassPruner pruner(int_templates->NumClasses);
+  // Compute initial match scores for all classes.
+  pruner.ComputeScores(int_templates, num_features, features);
+  // Adjust match scores for number of expected features.
+  pruner.AdjustForExpectedNumFeatures(expected_num_features, classify_cp_cutoff_strength);
+  // Apply disabled classes in unicharset - only works without a shape_table.
+  if (shape_table_ == nullptr) {
+    pruner.DisableDisabledClasses(unicharset);
+  }
+  // If fragments are disabled, remove them, also only without a shape table.
+  if (disable_character_fragments && shape_table_ == nullptr) {
+    pruner.DisableFragments(unicharset);
+  }
+
+  // If we have good x-heights, apply the given normalization factors.
+  if (normalization_factors != nullptr) {
+    pruner.NormalizeForXheight(classify_class_pruner_multiplier, normalization_factors);
+  } else {
+    pruner.NoNormalization();
+  }
+  // Do the actual pruning and sort the short-list.
+  pruner.PruneAndSort(classify_class_pruner_threshold, keep_this, shape_table_ == nullptr,
+                      unicharset);
+
+  if (classify_debug_level > 2) {
+    pruner.DebugMatch(*this, int_templates, features);
+  }
+  if (classify_debug_level > 1) {
+    pruner.SummarizeResult(*this, int_templates, expected_num_features,
+                           classify_class_pruner_multiplier, normalization_factors);
+  }
+  // Convert to the expected output format.
+  return pruner.SetupResults(results);
+}
+
+/**
+ * IntegerMatcher returns the best configuration and rating
+ * for a single class.  The class matched against is determined
+ * by the uniqueness of the ClassTemplate parameter.  The
+ * best rating and its associated configuration are returned.
+ *
+ * Globals:
+ * - local_matcher_multiplier_ Normalization factor multiplier
+ * param ClassTemplate Prototypes & tables for a class
+ * param NumFeatures Number of features in blob
+ * param Features Array of features
+ * param NormalizationFactor Fudge factor from blob normalization process
+ * param Result Class rating & configuration: (0.0 -> 1.0), 0=bad, 1=good
+ * param Debug Debugger flag: 1=debugger on
+ */
+void IntegerMatcher::Match(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask, BIT_VECTOR ConfigMask,
+                           int16_t NumFeatures, const INT_FEATURE_STRUCT *Features,
+                           UnicharRating *Result, int AdaptFeatureThreshold, int Debug,
+                           bool SeparateDebugWindows) {
+  auto *tables = new ScratchEvidence();
+  int Feature;
+
+  if (MatchDebuggingOn(Debug)) {
+    tprintf("Integer Matcher -------------------------------------------\n");
+  }
+
+  tables->Clear(ClassTemplate);
+  Result->feature_misses = 0;
+
+  for (Feature = 0; Feature < NumFeatures; Feature++) {
+    int csum = UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature,
+                                      &Features[Feature], tables, Debug);
+    // Count features that were missed over all configs.
+    if (csum == 0) {
+      ++Result->feature_misses;
+    }
+  }
+
+#ifndef GRAPHICS_DISABLED
+  if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug)) {
+    DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables, NumFeatures, Debug);
+  }
+
+  if (DisplayProtoMatchesOn(Debug)) {
+    DisplayProtoDebugInfo(ClassTemplate, ConfigMask, *tables, SeparateDebugWindows);
+  }
+
+  if (DisplayFeatureMatchesOn(Debug)) {
+    DisplayFeatureDebugInfo(ClassTemplate, ProtoMask, ConfigMask, NumFeatures, Features,
+                            AdaptFeatureThreshold, Debug, SeparateDebugWindows);
+  }
+#endif
+
+  tables->UpdateSumOfProtoEvidences(ClassTemplate, ConfigMask);
+  tables->NormalizeSums(ClassTemplate, NumFeatures);
+
+  FindBestMatch(ClassTemplate, *tables, Result);
+
+#ifndef GRAPHICS_DISABLED
+  if (PrintMatchSummaryOn(Debug)) {
+    Result->Print();
+  }
+
+  if (MatchDebuggingOn(Debug)) {
+    tprintf("Match Complete --------------------------------------------\n");
+  }
+#endif
+
+  delete tables;
+}
+
+/**
+ * FindGoodProtos finds all protos whose normalized proto-evidence
+ * exceed AdaptProtoThreshold.  The list is ordered by increasing
+ * proto id number.
+ *
+ * Globals:
+ * - local_matcher_multiplier_    Normalization factor multiplier
+ * param ClassTemplate Prototypes & tables for a class
+ * param ProtoMask AND Mask for proto word
+ * param ConfigMask AND Mask for config word
+ * param NumFeatures Number of features in blob
+ * param Features Array of features
+ * param ProtoArray Array of good protos
+ * param AdaptProtoThreshold Threshold for good protos
+ * param Debug Debugger flag: 1=debugger on
+ * @return Number of good protos in ProtoArray.
+ */
+int IntegerMatcher::FindGoodProtos(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask,
+                                   BIT_VECTOR ConfigMask, int16_t NumFeatures,
+                                   INT_FEATURE_ARRAY Features, PROTO_ID *ProtoArray,
+                                   int AdaptProtoThreshold, int Debug) {
+  auto *tables = new ScratchEvidence();
+  int NumGoodProtos = 0;
+
+  /* DEBUG opening heading */
+  if (MatchDebuggingOn(Debug)) {
+    tprintf("Find Good Protos -------------------------------------------\n");
+  }
+
+  tables->Clear(ClassTemplate);
+
+  for (int Feature = 0; Feature < NumFeatures; Feature++) {
+    UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature, &(Features[Feature]),
+                           tables, Debug);
+  }
+
+#ifndef GRAPHICS_DISABLED
+  if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug)) {
+    DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables, NumFeatures, Debug);
+  }
+#endif
+
+  /* Average Proto Evidences & Find Good Protos */
+  for (int proto = 0; proto < ClassTemplate->NumProtos; proto++) {
+    /* Compute Average for Actual Proto */
+    int Temp = 0;
+    for (uint8_t i = 0; i < MAX_PROTO_INDEX && i < ClassTemplate->ProtoLengths[proto]; i++) {
+      Temp += tables->proto_evidence_[proto][i];
+    }
+
+    Temp /= ClassTemplate->ProtoLengths[proto];
+
+    /* Find Good Protos */
+    if (Temp >= AdaptProtoThreshold) {
+      *ProtoArray = proto;
+      ProtoArray++;
+      NumGoodProtos++;
+    }
+  }
+
+  if (MatchDebuggingOn(Debug)) {
+    tprintf("Match Complete --------------------------------------------\n");
+  }
+  delete tables;
+
+  return NumGoodProtos;
+}
+
+/**
+ * FindBadFeatures finds all features with maximum feature-evidence <
+ * AdaptFeatureThresh. The list is ordered by increasing feature number.
+ * @param ClassTemplate Prototypes & tables for a class
+ * @param ProtoMask AND Mask for proto word
+ * @param ConfigMask AND Mask for config word
+ * @param NumFeatures Number of features in blob
+ * @param Features Array of features
+ * @param FeatureArray Array of bad features
+ * @param AdaptFeatureThreshold Threshold for bad features
+ * @param Debug Debugger flag: 1=debugger on
+ * @return Number of bad features in FeatureArray.
+ */
+int IntegerMatcher::FindBadFeatures(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask,
+                                    BIT_VECTOR ConfigMask, int16_t NumFeatures,
+                                    INT_FEATURE_ARRAY Features, FEATURE_ID *FeatureArray,
+                                    int AdaptFeatureThreshold, int Debug) {
+  auto *tables = new ScratchEvidence();
+  int NumBadFeatures = 0;
+
+  /* DEBUG opening heading */
+  if (MatchDebuggingOn(Debug)) {
+    tprintf("Find Bad Features -------------------------------------------\n");
+  }
+
+  tables->Clear(ClassTemplate);
+
+  for (int Feature = 0; Feature < NumFeatures; Feature++) {
+    UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature, &Features[Feature],
+                           tables, Debug);
+
+    /* Find Best Evidence for Current Feature */
+    int best = 0;
+    assert(ClassTemplate->NumConfigs < MAX_NUM_CONFIGS);
+    for (int i = 0; i < MAX_NUM_CONFIGS && i < ClassTemplate->NumConfigs; i++) {
+      if (tables->feature_evidence_[i] > best) {
+        best = tables->feature_evidence_[i];
+      }
+    }
+
+    /* Find Bad Features */
+    if (best < AdaptFeatureThreshold) {
+      *FeatureArray = Feature;
+      FeatureArray++;
+      NumBadFeatures++;
+    }
+  }
+
+#ifndef GRAPHICS_DISABLED
+  if (PrintProtoMatchesOn(Debug) || PrintMatchSummaryOn(Debug)) {
+    DebugFeatureProtoError(ClassTemplate, ProtoMask, ConfigMask, *tables, NumFeatures, Debug);
+  }
+#endif
+
+  if (MatchDebuggingOn(Debug)) {
+    tprintf("Match Complete --------------------------------------------\n");
+  }
+
+  delete tables;
+  return NumBadFeatures;
+}
+
+IntegerMatcher::IntegerMatcher(tesseract::IntParam *classify_debug_level)
+    : classify_debug_level_(classify_debug_level) {
+  /* Initialize table for evidence to similarity lookup */
+  for (int i = 0; i < SE_TABLE_SIZE; i++) {
+    uint32_t IntSimilarity = i << (27 - SE_TABLE_BITS);
+    double Similarity = (static_cast<double>(IntSimilarity)) / 65536.0 / 65536.0;
+    double evidence = Similarity / kSimilarityCenter;
+    evidence = 255.0 / (evidence * evidence + 1.0);
+
+    if (kSEExponentialMultiplier > 0.0) {
+      double scale =
+          1.0 - std::exp(-kSEExponentialMultiplier) *
+                    exp(kSEExponentialMultiplier * (static_cast<double>(i) / SE_TABLE_SIZE));
+      evidence *= ClipToRange(scale, 0.0, 1.0);
+    }
+
+    similarity_evidence_table_[i] = static_cast<uint8_t>(evidence + 0.5);
+  }
+
+  /* Initialize evidence computation variables */
+  evidence_table_mask_ = ((1 << kEvidenceTableBits) - 1) << (9 - kEvidenceTableBits);
+  mult_trunc_shift_bits_ = (14 - kIntEvidenceTruncBits);
+  table_trunc_shift_bits_ = (27 - SE_TABLE_BITS - (mult_trunc_shift_bits_ << 1));
+  evidence_mult_mask_ = ((1 << kIntEvidenceTruncBits) - 1);
+}
+
+/*----------------------------------------------------------------------------
+              Private Code
+----------------------------------------------------------------------------*/
+void ScratchEvidence::Clear(const INT_CLASS_STRUCT *class_template) {
+  memset(sum_feature_evidence_, 0, class_template->NumConfigs * sizeof(sum_feature_evidence_[0]));
+  memset(proto_evidence_, 0, class_template->NumProtos * sizeof(proto_evidence_[0]));
+}
+
+void ScratchEvidence::ClearFeatureEvidence(const INT_CLASS_STRUCT *class_template) {
+  memset(feature_evidence_, 0, class_template->NumConfigs * sizeof(feature_evidence_[0]));
+}
+
+/**
+ * Print debugging information for Configurations
+ */
+static void IMDebugConfiguration(int FeatureNum, uint16_t ActualProtoNum, uint8_t Evidence,
+                                 uint32_t ConfigWord) {
+  tprintf("F = %3d, P = %3d, E = %3d, Configs = ", FeatureNum, static_cast<int>(ActualProtoNum),
+          static_cast<int>(Evidence));
+  while (ConfigWord) {
+    if (ConfigWord & 1) {
+      tprintf("1");
+    } else {
+      tprintf("0");
+    }
+    ConfigWord >>= 1;
+  }
+  tprintf("\n");
+}
+
+/**
+ * Print debugging information for Configurations
+ */
+static void IMDebugConfigurationSum(int FeatureNum, uint8_t *FeatureEvidence, int32_t ConfigCount) {
+  tprintf("F=%3d, C=", FeatureNum);
+  for (int ConfigNum = 0; ConfigNum < ConfigCount; ConfigNum++) {
+    tprintf("%4d", FeatureEvidence[ConfigNum]);
+  }
+  tprintf("\n");
+}
+
+/**
+ * For the given feature: prune protos, compute evidence,
+ * update Feature Evidence, Proto Evidence, and Sum of Feature
+ * Evidence tables.
+ * @param ClassTemplate Prototypes & tables for a class
+ * @param FeatureNum Current feature number (for DEBUG only)
+ * @param Feature Pointer to a feature struct
+ * @param tables Evidence tables
+ * @param Debug Debugger flag: 1=debugger on
+ * @return sum of feature evidence tables
+ */
+int IntegerMatcher::UpdateTablesForFeature(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask,
+                                           BIT_VECTOR ConfigMask, int FeatureNum,
+                                           const INT_FEATURE_STRUCT *Feature,
+                                           ScratchEvidence *tables, int Debug) {
+  uint32_t ConfigWord;
+  uint32_t ProtoWord;
+  uint32_t ProtoNum;
+  uint32_t ActualProtoNum;
+  uint8_t proto_byte;
+  int32_t proto_word_offset;
+  int32_t proto_offset;
+  PROTO_SET_STRUCT *ProtoSet;
+  uint32_t *ProtoPrunerPtr;
+  INT_PROTO_STRUCT *Proto;
+  int ProtoSetIndex;
+  uint8_t Evidence;
+  uint32_t XFeatureAddress;
+  uint32_t YFeatureAddress;
+  uint32_t ThetaFeatureAddress;
+
+  tables->ClearFeatureEvidence(ClassTemplate);
+
+  /* Precompute Feature Address offset for Proto Pruning */
+  XFeatureAddress = ((Feature->X >> 2) << 1);
+  YFeatureAddress = (NUM_PP_BUCKETS << 1) + ((Feature->Y >> 2) << 1);
+  ThetaFeatureAddress = (NUM_PP_BUCKETS << 2) + ((Feature->Theta >> 2) << 1);
+
+  for (ProtoSetIndex = 0, ActualProtoNum = 0; ProtoSetIndex < ClassTemplate->NumProtoSets;
+       ProtoSetIndex++) {
+    ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
+    ProtoPrunerPtr = reinterpret_cast<uint32_t *>((*ProtoSet).ProtoPruner);
+    for (ProtoNum = 0; ProtoNum < PROTOS_PER_PROTO_SET; ProtoNum += (PROTOS_PER_PROTO_SET >> 1),
+        ActualProtoNum += (PROTOS_PER_PROTO_SET >> 1), ProtoMask++, ProtoPrunerPtr++) {
+      /* Prune Protos of current Proto Set */
+      ProtoWord = *(ProtoPrunerPtr + XFeatureAddress);
+      ProtoWord &= *(ProtoPrunerPtr + YFeatureAddress);
+      ProtoWord &= *(ProtoPrunerPtr + ThetaFeatureAddress);
+      ProtoWord &= *ProtoMask;
+
+      if (ProtoWord != 0) {
+        proto_byte = ProtoWord & 0xff;
+        ProtoWord >>= 8;
+        proto_word_offset = 0;
+        while (ProtoWord != 0 || proto_byte != 0) {
+          while (proto_byte == 0) {
+            proto_byte = ProtoWord & 0xff;
+            ProtoWord >>= 8;
+            proto_word_offset += 8;
+          }
+          proto_offset = offset_table[proto_byte] + proto_word_offset;
+          proto_byte = next_table[proto_byte];
+          Proto = &(ProtoSet->Protos[ProtoNum + proto_offset]);
+          ConfigWord = Proto->Configs[0];
+          int32_t A3 = (((Proto->A * (Feature->X - 128)) * 2) - (Proto->B * (Feature->Y - 128)) +
+                        (Proto->C * 512));
+          int32_t M3 = ((static_cast<int8_t>(Feature->Theta - Proto->Angle)) * kIntThetaFudge) * 2;
+
+          if (A3 < 0) {
+            A3 = ~A3;
+          }
+          if (M3 < 0) {
+            M3 = ~M3;
+          }
+          A3 >>= mult_trunc_shift_bits_;
+          M3 >>= mult_trunc_shift_bits_;
+          if (static_cast<uint32_t>(A3) > evidence_mult_mask_) {
+            A3 = evidence_mult_mask_;
+          }
+          if (static_cast<uint32_t>(M3) > evidence_mult_mask_) {
+            M3 = evidence_mult_mask_;
+          }
+
+          uint32_t A4 = (A3 * A3) + (M3 * M3);
+          A4 >>= table_trunc_shift_bits_;
+          if (A4 > evidence_table_mask_) {
+            Evidence = 0;
+          } else {
+            Evidence = similarity_evidence_table_[A4];
+          }
+
+          if (PrintFeatureMatchesOn(Debug)) {
+            IMDebugConfiguration(FeatureNum, ActualProtoNum + proto_offset, Evidence, ConfigWord);
+          }
+
+          ConfigWord &= *ConfigMask;
+
+          uint8_t feature_evidence_index = 0;
+          uint8_t config_byte = 0;
+          while (ConfigWord != 0 || config_byte != 0) {
+            while (config_byte == 0) {
+              config_byte = ConfigWord & 0xff;
+              ConfigWord >>= 8;
+              feature_evidence_index += 8;
+            }
+            const uint8_t config_offset = offset_table[config_byte] + feature_evidence_index - 8;
+            config_byte = next_table[config_byte];
+            if (Evidence > tables->feature_evidence_[config_offset]) {
+              tables->feature_evidence_[config_offset] = Evidence;
+            }
+          }
+
+          uint8_t ProtoIndex = ClassTemplate->ProtoLengths[ActualProtoNum + proto_offset];
+          if (ProtoIndex > MAX_PROTO_INDEX) {
+            // Avoid buffer overflow.
+            // TODO: A better fix is still open.
+            ProtoIndex = MAX_PROTO_INDEX;
+          }
+          uint8_t *UINT8Pointer = &(tables->proto_evidence_[ActualProtoNum + proto_offset][0]);
+          for (; Evidence > 0 && ProtoIndex > 0; ProtoIndex--, UINT8Pointer++) {
+            if (Evidence > *UINT8Pointer) {
+              uint8_t Temp = *UINT8Pointer;
+              *UINT8Pointer = Evidence;
+              Evidence = Temp;
+            }
+          }
+        }
+      }
+    }
+  }
+
+  if (PrintFeatureMatchesOn(Debug)) {
+    IMDebugConfigurationSum(FeatureNum, tables->feature_evidence_, ClassTemplate->NumConfigs);
+  }
+
+  int *IntPointer = tables->sum_feature_evidence_;
+  uint8_t *UINT8Pointer = tables->feature_evidence_;
+  int SumOverConfigs = 0;
+  for (int ConfigNum = ClassTemplate->NumConfigs; ConfigNum > 0; ConfigNum--) {
+    int evidence = *UINT8Pointer++;
+    SumOverConfigs += evidence;
+    *IntPointer++ += evidence;
+  }
+  return SumOverConfigs;
+}
+
+/**
+ * Print debugging information for Configurations
+ */
+#ifndef GRAPHICS_DISABLED
+void IntegerMatcher::DebugFeatureProtoError(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask,
+                                            BIT_VECTOR ConfigMask, const ScratchEvidence &tables,
+                                            int16_t NumFeatures, int Debug) {
+  float ProtoConfigs[MAX_NUM_CONFIGS];
+  int ConfigNum;
+  uint32_t ConfigWord;
+  int ProtoSetIndex;
+  uint16_t ProtoNum;
+  uint8_t ProtoWordNum;
+  PROTO_SET_STRUCT *ProtoSet;
+
+  if (PrintMatchSummaryOn(Debug)) {
+    tprintf("Configuration Mask:\n");
+    for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
+      tprintf("%1d", (((*ConfigMask) >> ConfigNum) & 1));
+    }
+    tprintf("\n");
+
+    tprintf("Feature Error for Configurations:\n");
+    for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
+      tprintf(" %5.1f", 100.0 * (1.0 - static_cast<float>(tables.sum_feature_evidence_[ConfigNum]) /
+                                           NumFeatures / 256.0));
+    }
+    tprintf("\n\n\n");
+  }
+
+  if (PrintMatchSummaryOn(Debug)) {
+    tprintf("Proto Mask:\n");
+    for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
+      for (ProtoWordNum = 0; ProtoWordNum < 2; ProtoWordNum++, ProtoMask++) {
+        uint16_t ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
+        for (ProtoNum = 0; ((ProtoNum < (PROTOS_PER_PROTO_SET >> 1)) &&
+                            (ActualProtoNum < ClassTemplate->NumProtos));
+             ProtoNum++, ActualProtoNum++) {
+          tprintf("%1d", (((*ProtoMask) >> ProtoNum) & 1));
+        }
+        tprintf("\n");
+      }
+    }
+    tprintf("\n");
+  }
+
+  for (int i = 0; i < ClassTemplate->NumConfigs; i++) {
+    ProtoConfigs[i] = 0;
+  }
+
+  if (PrintProtoMatchesOn(Debug)) {
+    tprintf("Proto Evidence:\n");
+    for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
+      ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
+      uint16_t ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
+      for (ProtoNum = 0;
+           ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < ClassTemplate->NumProtos));
+           ProtoNum++, ActualProtoNum++) {
+        tprintf("P %3d =", ActualProtoNum);
+        int temp = 0;
+        for (uint8_t j = 0; j < ClassTemplate->ProtoLengths[ActualProtoNum]; j++) {
+          uint8_t data = tables.proto_evidence_[ActualProtoNum][j];
+          tprintf(" %d", data);
+          temp += data;
+        }
+
+        tprintf(" = %6.4f%%\n", temp / 256.0 / ClassTemplate->ProtoLengths[ActualProtoNum]);
+
+        ConfigWord = ProtoSet->Protos[ProtoNum].Configs[0];
+        ConfigNum = 0;
+        while (ConfigWord) {
+          tprintf("%5d", ConfigWord & 1 ? temp : 0);
+          if (ConfigWord & 1) {
+            ProtoConfigs[ConfigNum] += temp;
+          }
+          ConfigNum++;
+          ConfigWord >>= 1;
+        }
+        tprintf("\n");
+      }
+    }
+  }
+
+  if (PrintMatchSummaryOn(Debug)) {
+    tprintf("Proto Error for Configurations:\n");
+    for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
+      tprintf(" %5.1f", 100.0 * (1.0 - ProtoConfigs[ConfigNum] /
+                                           ClassTemplate->ConfigLengths[ConfigNum] / 256.0));
+    }
+    tprintf("\n\n");
+  }
+
+  if (PrintProtoMatchesOn(Debug)) {
+    tprintf("Proto Sum for Configurations:\n");
+    for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
+      tprintf(" %4.1f", ProtoConfigs[ConfigNum] / 256.0);
+    }
+    tprintf("\n\n");
+
+    tprintf("Proto Length for Configurations:\n");
+    for (ConfigNum = 0; ConfigNum < ClassTemplate->NumConfigs; ConfigNum++) {
+      tprintf(" %4.1f", static_cast<float>(ClassTemplate->ConfigLengths[ConfigNum]));
+    }
+    tprintf("\n\n");
+  }
+}
+
+void IntegerMatcher::DisplayProtoDebugInfo(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ConfigMask,
+                                           const ScratchEvidence &tables,
+                                           bool SeparateDebugWindows) {
+  uint16_t ProtoNum;
+  PROTO_SET_STRUCT *ProtoSet;
+  int ProtoSetIndex;
+
+  InitIntMatchWindowIfReqd();
+  if (SeparateDebugWindows) {
+    InitFeatureDisplayWindowIfReqd();
+    InitProtoDisplayWindowIfReqd();
+  }
+
+  for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
+    ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
+    uint16_t ActualProtoNum = ProtoSetIndex * PROTOS_PER_PROTO_SET;
+    for (ProtoNum = 0;
+         ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < ClassTemplate->NumProtos));
+         ProtoNum++, ActualProtoNum++) {
+      /* Compute Average for Actual Proto */
+      int temp = 0;
+      for (uint8_t i = 0; i < ClassTemplate->ProtoLengths[ActualProtoNum]; i++) {
+        temp += tables.proto_evidence_[ActualProtoNum][i];
+      }
+
+      temp /= ClassTemplate->ProtoLengths[ActualProtoNum];
+
+      if ((ProtoSet->Protos[ProtoNum]).Configs[0] & (*ConfigMask)) {
+        DisplayIntProto(ClassTemplate, ActualProtoNum, temp / 255.0);
+      }
+    }
+  }
+}
+
+void IntegerMatcher::DisplayFeatureDebugInfo(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ProtoMask,
+                                             BIT_VECTOR ConfigMask, int16_t NumFeatures,
+                                             const INT_FEATURE_STRUCT *Features,
+                                             int AdaptFeatureThreshold, int Debug,
+                                             bool SeparateDebugWindows) {
+  auto *tables = new ScratchEvidence();
+
+  tables->Clear(ClassTemplate);
+
+  InitIntMatchWindowIfReqd();
+  if (SeparateDebugWindows) {
+    InitFeatureDisplayWindowIfReqd();
+    InitProtoDisplayWindowIfReqd();
+  }
+
+  for (int Feature = 0; Feature < NumFeatures; Feature++) {
+    UpdateTablesForFeature(ClassTemplate, ProtoMask, ConfigMask, Feature, &Features[Feature],
+                           tables, 0);
+
+    /* Find Best Evidence for Current Feature */
+    int best = 0;
+    assert(ClassTemplate->NumConfigs < MAX_NUM_CONFIGS);
+    for (int i = 0; i < MAX_NUM_CONFIGS && i < ClassTemplate->NumConfigs; i++) {
+      if (tables->feature_evidence_[i] > best) {
+        best = tables->feature_evidence_[i];
+      }
+    }
+
+    /* Update display for current feature */
+    if (ClipMatchEvidenceOn(Debug)) {
+      if (best < AdaptFeatureThreshold) {
+        DisplayIntFeature(&Features[Feature], 0.0);
+      } else {
+        DisplayIntFeature(&Features[Feature], 1.0);
+      }
+    } else {
+      DisplayIntFeature(&Features[Feature], best / 255.0);
+    }
+  }
+
+  delete tables;
+}
+#endif
+
+/**
+ * Add sum of Proto Evidences into Sum Of Feature Evidence Array
+ */
+void ScratchEvidence::UpdateSumOfProtoEvidences(INT_CLASS_STRUCT *ClassTemplate, BIT_VECTOR ConfigMask) {
+  int *IntPointer;
+  uint32_t ConfigWord;
+  int ProtoSetIndex;
+  uint16_t ProtoNum;
+  PROTO_SET_STRUCT *ProtoSet;
+  int NumProtos;
+
+  NumProtos = ClassTemplate->NumProtos;
+
+  for (ProtoSetIndex = 0; ProtoSetIndex < ClassTemplate->NumProtoSets; ProtoSetIndex++) {
+    ProtoSet = ClassTemplate->ProtoSets[ProtoSetIndex];
+    uint16_t ActualProtoNum = (ProtoSetIndex * PROTOS_PER_PROTO_SET);
+    for (ProtoNum = 0; ((ProtoNum < PROTOS_PER_PROTO_SET) && (ActualProtoNum < NumProtos));
+         ProtoNum++, ActualProtoNum++) {
+      int temp = 0;
+      for (uint8_t i = 0; i < MAX_PROTO_INDEX && i < ClassTemplate->ProtoLengths[ActualProtoNum];
+           i++) {
+        temp += proto_evidence_[ActualProtoNum][i];
+      }
+
+      ConfigWord = ProtoSet->Protos[ProtoNum].Configs[0];
+      ConfigWord &= *ConfigMask;
+      IntPointer = sum_feature_evidence_;
+      while (ConfigWord) {
+        if (ConfigWord & 1) {
+          *IntPointer += temp;
+        }
+        IntPointer++;
+        ConfigWord >>= 1;
+      }
+    }
+  }
+}
+
+/**
+ * Normalize Sum of Proto and Feature Evidence by dividing by the sum of
+ * the Feature Lengths and the Proto Lengths for each configuration.
+ */
+void ScratchEvidence::NormalizeSums(INT_CLASS_STRUCT *ClassTemplate, int16_t NumFeatures) {
+  // ClassTemplate->NumConfigs can become larger than MAX_NUM_CONFIGS.
+  for (int i = 0; i < MAX_NUM_CONFIGS && i < ClassTemplate->NumConfigs; i++) {
+    sum_feature_evidence_[i] =
+        (sum_feature_evidence_[i] << 8) / (NumFeatures + ClassTemplate->ConfigLengths[i]);
+  }
+}
+
+/**
+ * Find the best match for the current class and update the Result
+ * with the configuration and match rating.
+ * @return The best normalized sum of evidences
+ */
+int IntegerMatcher::FindBestMatch(INT_CLASS_STRUCT *class_template, const ScratchEvidence &tables,
+                                  UnicharRating *result) {
+  int best_match = 0;
+  result->config = 0;
+  result->fonts.clear();
+  result->fonts.reserve(class_template->NumConfigs);
+
+  // Find best match.
+  // ClassTemplate->NumConfigs can become larger than MAX_NUM_CONFIGS.
+  for (int c = 0; c < MAX_NUM_CONFIGS && c < class_template->NumConfigs; ++c) {
+    int rating = tables.sum_feature_evidence_[c];
+    if (*classify_debug_level_ > 2) {
+      tprintf("Config %d, rating=%d\n", c, rating);
+    }
+    if (rating > best_match) {
+      result->config = c;
+      best_match = rating;
+    }
+    result->fonts.emplace_back(c, rating);
+  }
+
+  // Compute confidence on a Probability scale.
+  result->rating = best_match / 65536.0f;
+
+  return best_match;
+}
+
+/**
+ * Applies the CN normalization factor to the given rating and returns
+ * the modified rating.
+ */
+float IntegerMatcher::ApplyCNCorrection(float rating, int blob_length, int normalization_factor,
+                                        int matcher_multiplier) {
+  int divisor = blob_length + matcher_multiplier;
+  return divisor == 0
+             ? 1.0f
+             : (rating * blob_length + matcher_multiplier * normalization_factor / 256.0f) /
+                   divisor;
+}
+
+} // namespace tesseract