Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/ccstruct/matrix.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/ccstruct/matrix.cpp Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,170 @@ +/****************************************************************************** + * + * File: matrix.cpp (Formerly matrix.c) + * Description: Ratings matrix code. (Used by associator) + * Author: Mark Seaman, OCR Technology + * + * (c) Copyright 1990, Hewlett-Packard Company. + ** Licensed under the Apache License, Version 2.0 (the "License"); + ** you may not use this file except in compliance with the License. + ** You may obtain a copy of the License at + ** http://www.apache.org/licenses/LICENSE-2.0 + ** Unless required by applicable law or agreed to in writing, software + ** distributed under the License is distributed on an "AS IS" BASIS, + ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + ** See the License for the specific language governing permissions and + ** limitations under the License. + * + *****************************************************************************/ +/*---------------------------------------------------------------------- + I n c l u d e s +----------------------------------------------------------------------*/ +#include "matrix.h" + +#include "ratngs.h" +#include "tprintf.h" +#include "unicharset.h" + +namespace tesseract { + +// Destructor. +// It is defined here, so the compiler can create a single vtable +// instead of weak vtables in every compilation unit. +MATRIX::~MATRIX() = default; + +// Returns true if there are any real classification results. +bool MATRIX::Classified(int col, int row, int wildcard_id) const { + if (get(col, row) == NOT_CLASSIFIED) { + return false; + } + BLOB_CHOICE_IT b_it(get(col, row)); + for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { + BLOB_CHOICE *choice = b_it.data(); + if (choice->IsClassified()) { + return true; + } + } + return false; +} + +// Expands the existing matrix in-place to make the band wider, without +// losing any existing data. +void MATRIX::IncreaseBandSize(int bandwidth) { + ResizeWithCopy(dimension(), bandwidth); +} + +// Returns a bigger MATRIX with a new column and row in the matrix in order +// to split the blob at the given (ind,ind) diagonal location. +// Entries are relocated to the new MATRIX using the transformation defined +// by MATRIX_COORD::MapForSplit. +// Transfers the pointer data to the new MATRIX and deletes *this. +MATRIX *MATRIX::ConsumeAndMakeBigger(int ind) { + int dim = dimension(); + int band_width = bandwidth(); + // Check to see if bandwidth needs expanding. + for (int col = ind; col >= 0 && col > ind - band_width; --col) { + if (array_[col * band_width + band_width - 1] != empty_) { + ++band_width; + break; + } + } + auto *result = new MATRIX(dim + 1, band_width); + + for (int col = 0; col < dim; ++col) { + for (int row = col; row < dim && row < col + bandwidth(); ++row) { + MATRIX_COORD coord(col, row); + coord.MapForSplit(ind); + BLOB_CHOICE_LIST *choices = get(col, row); + if (choices != nullptr) { + // Correct matrix location on each choice. + BLOB_CHOICE_IT bc_it(choices); + for (bc_it.mark_cycle_pt(); !bc_it.cycled_list(); bc_it.forward()) { + BLOB_CHOICE *choice = bc_it.data(); + choice->set_matrix_cell(coord.col, coord.row); + } + ASSERT_HOST(coord.Valid(*result)); + result->put(coord.col, coord.row, choices); + } + } + } + delete this; + return result; +} + +// Makes and returns a deep copy of *this, including all the BLOB_CHOICEs +// on the lists, but not any LanguageModelState that may be attached to the +// BLOB_CHOICEs. +MATRIX *MATRIX::DeepCopy() const { + int dim = dimension(); + int band_width = bandwidth(); + auto *result = new MATRIX(dim, band_width); + for (int col = 0; col < dim; ++col) { + for (int row = col; row < dim && row < col + band_width; ++row) { + BLOB_CHOICE_LIST *choices = get(col, row); + if (choices != nullptr) { + auto *copy_choices = new BLOB_CHOICE_LIST; + copy_choices->deep_copy(choices, &BLOB_CHOICE::deep_copy); + result->put(col, row, copy_choices); + } + } + } + return result; +} + +// Print the best guesses out of the match rating matrix. +void MATRIX::print(const UNICHARSET &unicharset) const { + tprintf("Ratings Matrix (top 3 choices)\n"); + int dim = dimension(); + int band_width = bandwidth(); + int row, col; + for (col = 0; col < dim; ++col) { + for (row = col; row < dim && row < col + band_width; ++row) { + BLOB_CHOICE_LIST *rating = this->get(col, row); + if (rating == NOT_CLASSIFIED) { + continue; + } + BLOB_CHOICE_IT b_it(rating); + tprintf("col=%d row=%d ", col, row); + for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { + tprintf("%s rat=%g cert=%g ", unicharset.id_to_unichar(b_it.data()->unichar_id()), + b_it.data()->rating(), b_it.data()->certainty()); + } + tprintf("\n"); + } + tprintf("\n"); + } + tprintf("\n"); + for (col = 0; col < dim; ++col) { + tprintf("\t%d", col); + } + tprintf("\n"); + for (row = 0; row < dim; ++row) { + for (col = 0; col <= row; ++col) { + if (col == 0) { + tprintf("%d\t", row); + } + if (row >= col + band_width) { + tprintf(" \t"); + continue; + } + BLOB_CHOICE_LIST *rating = this->get(col, row); + if (rating != NOT_CLASSIFIED) { + BLOB_CHOICE_IT b_it(rating); + int counter = 0; + for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) { + tprintf("%s ", unicharset.id_to_unichar(b_it.data()->unichar_id())); + ++counter; + if (counter == 3) { + break; + } + } + tprintf("\t"); + } else { + tprintf(" \t"); + } + } + tprintf("\n"); + } +} + +} // namespace tesseract
