diff mupdf-source/thirdparty/tesseract/src/ccstruct/linlsq.h @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/ccstruct/linlsq.h	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,142 @@
+/**********************************************************************
+ * File:        linlsq.h  (Formerly llsq.h)
+ * Description: Linear Least squares fitting code.
+ * Author:      Ray Smith
+ *
+ * (C) Copyright 1991, Hewlett-Packard Ltd.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ *
+ **********************************************************************/
+
+#ifndef TESSERACT_CCSTRUCT_LINLSQ_H_
+#define TESSERACT_CCSTRUCT_LINLSQ_H_
+
+#include "points.h" // for FCOORD
+
+#include <algorithm> // for std::nth_element
+#include <cstdint> // for int32_t
+
+namespace tesseract {
+
+class TESS_API LLSQ {
+public:
+  LLSQ() {   // constructor
+    clear(); // set to zeros
+  }
+  void clear(); // initialize
+
+  // Adds an element with a weight of 1.
+  void add(double x, double y);
+  // Adds an element with a specified weight.
+  void add(double x, double y, double weight);
+  // Adds a whole LLSQ.
+  void add(const LLSQ &other);
+  // Deletes an element with a weight of 1.
+  void remove(double x, double y);
+  int32_t count() const { // no of elements
+    return static_cast<int>(total_weight + 0.5);
+  }
+
+  double m() const;                     // get gradient
+  double c(double m) const;             // get constant
+  double rms(double m, double c) const; // get error
+  double pearson() const;               // get correlation coefficient.
+
+  // Returns the x,y means as an FCOORD.
+  FCOORD mean_point() const;
+
+  // Returns the average sum of squared perpendicular error from a line
+  // through mean_point() in the direction dir.
+  double rms_orth(const FCOORD &dir) const;
+
+  // Returns the direction of the fitted line as a unit vector, using the
+  // least mean squared perpendicular distance. The line runs through the
+  // mean_point, i.e. a point p on the line is given by:
+  // p = mean_point() + lambda * vector_fit() for some real number lambda.
+  // Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous
+  // and may be negated without changing its meaning, since a line is only
+  // unique to a range of pi radians.
+  // Modernists prefer to think of this as an Eigenvalue problem, but
+  // Pearson had the simple solution in 1901.
+  //
+  // Note that this is equivalent to returning the Principal Component in PCA,
+  // or the eigenvector corresponding to the largest eigenvalue in the
+  // covariance matrix.
+  FCOORD vector_fit() const;
+
+  // Returns the covariance.
+  double covariance() const {
+    if (total_weight > 0.0) {
+      return (sigxy - sigx * sigy / total_weight) / total_weight;
+    } else {
+      return 0.0;
+    }
+  }
+  double x_variance() const {
+    if (total_weight > 0.0) {
+      return (sigxx - sigx * sigx / total_weight) / total_weight;
+    } else {
+      return 0.0;
+    }
+  }
+  double y_variance() const {
+    if (total_weight > 0.0) {
+      return (sigyy - sigy * sigy / total_weight) / total_weight;
+    } else {
+      return 0.0;
+    }
+  }
+
+private:
+  double total_weight; // no of elements or sum of weights.
+  double sigx;         // sum of x
+  double sigy;         // sum of y
+  double sigxx;        // sum x squared
+  double sigxy;        // sum of xy
+  double sigyy;        // sum y squared
+};
+
+// Returns the median value of the vector, given that the values are
+// circular, with the given modulus. Values may be signed or unsigned,
+// eg range from -pi to pi (modulus 2pi) or from 0 to 2pi (modulus 2pi).
+// NOTE that the array is shuffled, but the time taken is linear.
+// An assumption is made that most of the values are spread over no more than
+// half the range, but wrap-around is accounted for if the median is near
+// the wrap-around point.
+// Cannot be a member of vector, as it makes heavy use of LLSQ.
+// T must be an integer or float/double type.
+template <typename T>
+T MedianOfCircularValues(T modulus, std::vector<T> &v) {
+  LLSQ stats;
+  T halfrange = static_cast<T>(modulus / 2);
+  auto num_elements = v.size();
+  for (auto i : v) {
+    stats.add(i, i + halfrange);
+  }
+  bool offset_needed = stats.y_variance() < stats.x_variance();
+  if (offset_needed) {
+    for (auto i : v) {
+      i += halfrange;
+    }
+  }
+  auto median_index = num_elements / 2;
+  std::nth_element(v.begin(), v.begin() + median_index, v.end());
+  if (offset_needed) {
+    for (auto i : v) {
+      i -= halfrange;
+    }
+  }
+  return v[median_index];
+}
+
+} // namespace tesseract
+
+#endif // TESSERACT_CCSTRUCT_LINLSQ_H_