Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/tesseract/src/ccstruct/linlsq.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/tesseract/src/ccstruct/linlsq.h Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,142 @@ +/********************************************************************** + * File: linlsq.h (Formerly llsq.h) + * Description: Linear Least squares fitting code. + * Author: Ray Smith + * + * (C) Copyright 1991, Hewlett-Packard Ltd. + ** Licensed under the Apache License, Version 2.0 (the "License"); + ** you may not use this file except in compliance with the License. + ** You may obtain a copy of the License at + ** http://www.apache.org/licenses/LICENSE-2.0 + ** Unless required by applicable law or agreed to in writing, software + ** distributed under the License is distributed on an "AS IS" BASIS, + ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + ** See the License for the specific language governing permissions and + ** limitations under the License. + * + **********************************************************************/ + +#ifndef TESSERACT_CCSTRUCT_LINLSQ_H_ +#define TESSERACT_CCSTRUCT_LINLSQ_H_ + +#include "points.h" // for FCOORD + +#include <algorithm> // for std::nth_element +#include <cstdint> // for int32_t + +namespace tesseract { + +class TESS_API LLSQ { +public: + LLSQ() { // constructor + clear(); // set to zeros + } + void clear(); // initialize + + // Adds an element with a weight of 1. + void add(double x, double y); + // Adds an element with a specified weight. + void add(double x, double y, double weight); + // Adds a whole LLSQ. + void add(const LLSQ &other); + // Deletes an element with a weight of 1. + void remove(double x, double y); + int32_t count() const { // no of elements + return static_cast<int>(total_weight + 0.5); + } + + double m() const; // get gradient + double c(double m) const; // get constant + double rms(double m, double c) const; // get error + double pearson() const; // get correlation coefficient. + + // Returns the x,y means as an FCOORD. + FCOORD mean_point() const; + + // Returns the average sum of squared perpendicular error from a line + // through mean_point() in the direction dir. + double rms_orth(const FCOORD &dir) const; + + // Returns the direction of the fitted line as a unit vector, using the + // least mean squared perpendicular distance. The line runs through the + // mean_point, i.e. a point p on the line is given by: + // p = mean_point() + lambda * vector_fit() for some real number lambda. + // Note that the result (0<=x<=1, -1<=y<=-1) is directionally ambiguous + // and may be negated without changing its meaning, since a line is only + // unique to a range of pi radians. + // Modernists prefer to think of this as an Eigenvalue problem, but + // Pearson had the simple solution in 1901. + // + // Note that this is equivalent to returning the Principal Component in PCA, + // or the eigenvector corresponding to the largest eigenvalue in the + // covariance matrix. + FCOORD vector_fit() const; + + // Returns the covariance. + double covariance() const { + if (total_weight > 0.0) { + return (sigxy - sigx * sigy / total_weight) / total_weight; + } else { + return 0.0; + } + } + double x_variance() const { + if (total_weight > 0.0) { + return (sigxx - sigx * sigx / total_weight) / total_weight; + } else { + return 0.0; + } + } + double y_variance() const { + if (total_weight > 0.0) { + return (sigyy - sigy * sigy / total_weight) / total_weight; + } else { + return 0.0; + } + } + +private: + double total_weight; // no of elements or sum of weights. + double sigx; // sum of x + double sigy; // sum of y + double sigxx; // sum x squared + double sigxy; // sum of xy + double sigyy; // sum y squared +}; + +// Returns the median value of the vector, given that the values are +// circular, with the given modulus. Values may be signed or unsigned, +// eg range from -pi to pi (modulus 2pi) or from 0 to 2pi (modulus 2pi). +// NOTE that the array is shuffled, but the time taken is linear. +// An assumption is made that most of the values are spread over no more than +// half the range, but wrap-around is accounted for if the median is near +// the wrap-around point. +// Cannot be a member of vector, as it makes heavy use of LLSQ. +// T must be an integer or float/double type. +template <typename T> +T MedianOfCircularValues(T modulus, std::vector<T> &v) { + LLSQ stats; + T halfrange = static_cast<T>(modulus / 2); + auto num_elements = v.size(); + for (auto i : v) { + stats.add(i, i + halfrange); + } + bool offset_needed = stats.y_variance() < stats.x_variance(); + if (offset_needed) { + for (auto i : v) { + i += halfrange; + } + } + auto median_index = num_elements / 2; + std::nth_element(v.begin(), v.begin() + median_index, v.end()); + if (offset_needed) { + for (auto i : v) { + i -= halfrange; + } + } + return v[median_index]; +} + +} // namespace tesseract + +#endif // TESSERACT_CCSTRUCT_LINLSQ_H_
