diff mupdf-source/thirdparty/tesseract/src/ccmain/paragraphs_internal.h @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/ccmain/paragraphs_internal.h	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,306 @@
+/**********************************************************************
+ * File:        paragraphs_internal.h
+ * Description: Paragraph Detection internal data structures.
+ * Author:      David Eger
+ *
+ * (C) Copyright 2011, Google Inc.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ *
+ **********************************************************************/
+
+#ifndef TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_
+#define TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_
+
+#include <tesseract/publictypes.h> // for ParagraphJustification
+#include "paragraphs.h"
+
+// NO CODE OUTSIDE OF paragraphs.cpp AND TESTS SHOULD NEED TO ACCESS
+// DATA STRUCTURES OR FUNCTIONS IN THIS FILE.
+
+namespace tesseract {
+
+class UNICHARSET;
+class WERD_CHOICE;
+
+// Return whether the given word is likely to be a list item start word.
+TESS_API
+bool AsciiLikelyListItem(const std::string &word);
+
+// Set right word attributes given either a unicharset and werd or a utf8
+// string.
+TESS_API
+void RightWordAttributes(const UNICHARSET *unicharset, const WERD_CHOICE *werd, const std::string &utf8,
+                         bool *is_list, bool *starts_idea, bool *ends_idea);
+
+// Set left word attributes given either a unicharset and werd or a utf8 string.
+TESS_API
+void LeftWordAttributes(const UNICHARSET *unicharset, const WERD_CHOICE *werd, const std::string &utf8,
+                        bool *is_list, bool *starts_idea, bool *ends_idea);
+
+enum LineType {
+  LT_START = 'S',    // First line of a paragraph.
+  LT_BODY = 'C',     // Continuation line of a paragraph.
+  LT_UNKNOWN = 'U',  // No clues.
+  LT_MULTIPLE = 'M', // Matches for both LT_START and LT_BODY.
+};
+
+// The first paragraph in a page of body text is often un-indented.
+// This is a typographic convention which is common to indicate either that:
+// (1) The paragraph is the continuation of a previous paragraph, or
+// (2) The paragraph is the first paragraph in a chapter.
+//
+// I refer to such paragraphs as "crown"s, and the output of the paragraph
+// detection algorithm attempts to give them the same paragraph model as
+// the rest of the body text.
+//
+// Nonetheless, while building hypotheses, it is useful to mark the lines
+// of crown paragraphs temporarily as crowns, either aligned left or right.
+extern const ParagraphModel *kCrownLeft;
+extern const ParagraphModel *kCrownRight;
+
+inline bool StrongModel(const ParagraphModel *model) {
+  return model != nullptr && model != kCrownLeft && model != kCrownRight;
+}
+
+struct LineHypothesis {
+  LineHypothesis() : ty(LT_UNKNOWN), model(nullptr) {}
+  LineHypothesis(LineType line_type, const ParagraphModel *m) : ty(line_type), model(m) {}
+  LineHypothesis(const LineHypothesis &other) = default;
+
+  // Copy assignment operator.
+  LineHypothesis &operator=(const LineHypothesis &other) = default;
+
+  bool operator==(const LineHypothesis &other) const {
+    return ty == other.ty && model == other.model;
+  }
+
+  LineType ty;
+  const ParagraphModel *model;
+};
+
+class ParagraphTheory; // Forward Declaration
+
+using SetOfModels = std::vector<const ParagraphModel *>;
+
+// Row Scratch Registers are data generated by the paragraph detection
+// algorithm based on a RowInfo input.
+class RowScratchRegisters {
+public:
+  // We presume row will outlive us.
+  void Init(const RowInfo &row);
+
+  LineType GetLineType() const;
+
+  LineType GetLineType(const ParagraphModel *model) const;
+
+  // Mark this as a start line type, sans model.  This is useful for the
+  // initial marking of probable body lines or paragraph start lines.
+  void SetStartLine();
+
+  // Mark this as a body line type, sans model.  This is useful for the
+  // initial marking of probably body lines or paragraph start lines.
+  void SetBodyLine();
+
+  // Record that this row fits as a paragraph start line in the given model,
+  void AddStartLine(const ParagraphModel *model);
+  // Record that this row fits as a paragraph body line in the given model,
+  void AddBodyLine(const ParagraphModel *model);
+
+  // Clear all hypotheses about this line.
+  void SetUnknown() {
+    hypotheses_.clear();
+  }
+
+  // Append all hypotheses of strong models that match this row as a start.
+  void StartHypotheses(SetOfModels *models) const;
+
+  // Append all hypotheses of strong models matching this row.
+  void StrongHypotheses(SetOfModels *models) const;
+
+  // Append all hypotheses for this row.
+  void NonNullHypotheses(SetOfModels *models) const;
+
+  // Discard any hypotheses whose model is not in the given list.
+  void DiscardNonMatchingHypotheses(const SetOfModels &models);
+
+  // If we have only one hypothesis and that is that this line is a paragraph
+  // start line of a certain model, return that model.  Else return nullptr.
+  const ParagraphModel *UniqueStartHypothesis() const;
+
+  // If we have only one hypothesis and that is that this line is a paragraph
+  // body line of a certain model, return that model.  Else return nullptr.
+  const ParagraphModel *UniqueBodyHypothesis() const;
+
+  // Return the indentation for the side opposite of the aligned side.
+  int OffsideIndent(tesseract::ParagraphJustification just) const {
+    switch (just) {
+      case tesseract::JUSTIFICATION_RIGHT:
+        return lindent_;
+      case tesseract::JUSTIFICATION_LEFT:
+        return rindent_;
+      default:
+        return lindent_ > rindent_ ? lindent_ : rindent_;
+    }
+  }
+
+  // Return the indentation for the side the text is aligned to.
+  int AlignsideIndent(tesseract::ParagraphJustification just) const {
+    switch (just) {
+      case tesseract::JUSTIFICATION_RIGHT:
+        return rindent_;
+      case tesseract::JUSTIFICATION_LEFT:
+        return lindent_;
+      default:
+        return lindent_ > rindent_ ? lindent_ : rindent_;
+    }
+  }
+
+  // Append header fields to a vector of row headings.
+  static void AppendDebugHeaderFields(std::vector<std::string> &header);
+
+  // Append data for this row to a vector of debug strings.
+  void AppendDebugInfo(const ParagraphTheory &theory, std::vector<std::string> &dbg) const;
+
+  const RowInfo *ri_;
+
+  // These four constants form a horizontal box model for the white space
+  // on the edges of each line.  At each point in the algorithm, the following
+  // shall hold:
+  //   ri_->pix_ldistance = lmargin_ + lindent_
+  //   ri_->pix_rdistance = rindent_ + rmargin_
+  int lmargin_;
+  int lindent_;
+  int rindent_;
+  int rmargin_;
+
+private:
+  // Hypotheses of either LT_START or LT_BODY
+  std::vector<LineHypothesis> hypotheses_;
+};
+
+// A collection of convenience functions for wrapping the set of
+// Paragraph Models we believe correctly model the paragraphs in the image.
+class ParagraphTheory {
+public:
+  // We presume models will outlive us, and that models will take ownership
+  // of any ParagraphModel *'s we add.
+  explicit ParagraphTheory(std::vector<ParagraphModel *> *models) : models_(models) {}
+  std::vector<ParagraphModel *> &models() {
+    return *models_;
+  }
+  const std::vector<ParagraphModel *> &models() const {
+    return *models_;
+  }
+
+  // Return an existing model if one that is Comparable() can be found.
+  // Else, allocate a new copy of model to save and return a pointer to it.
+  const ParagraphModel *AddModel(const ParagraphModel &model);
+
+  // Discard any models we've made that are not in the list of used models.
+  void DiscardUnusedModels(const SetOfModels &used_models);
+
+  // Return the set of all non-centered models.
+  void NonCenteredModels(SetOfModels *models);
+
+  // If any of the non-centered paragraph models we know about fit
+  // rows[start, end), return it.  Else nullptr.
+  const ParagraphModel *Fits(const std::vector<RowScratchRegisters> *rows, int start,
+                             int end) const;
+
+  int IndexOf(const ParagraphModel *model) const;
+
+private:
+  std::vector<ParagraphModel *> *models_;
+  std::vector<ParagraphModel *> models_we_added_;
+};
+
+bool ValidFirstLine(const std::vector<RowScratchRegisters> *rows, int row,
+                    const ParagraphModel *model);
+bool ValidBodyLine(const std::vector<RowScratchRegisters> *rows, int row,
+                   const ParagraphModel *model);
+bool CrownCompatible(const std::vector<RowScratchRegisters> *rows, int a, int b,
+                     const ParagraphModel *model);
+
+// A class for smearing Paragraph Model hypotheses to surrounding rows.
+// The idea here is that StrongEvidenceClassify first marks only exceedingly
+// obvious start and body rows and constructs models of them.  Thereafter,
+// we may have left over unmarked lines (mostly end-of-paragraph lines) which
+// were too short to have much confidence about, but which fit the models we've
+// constructed perfectly and which we ought to mark.  This class is used to
+// "smear" our models over the text.
+class ParagraphModelSmearer {
+public:
+  ParagraphModelSmearer(std::vector<RowScratchRegisters> *rows, int row_start, int row_end,
+                        ParagraphTheory *theory);
+
+  // Smear forward paragraph models from existing row markings to subsequent
+  // text lines if they fit, and mark any thereafter still unmodeled rows
+  // with any model in the theory that fits them.
+  void Smear();
+
+private:
+  // Record in open_models_ for rows [start_row, end_row) the list of models
+  // currently open at each row.
+  // A model is still open in a row if some previous row has said model as a
+  // start hypothesis, and all rows since (including this row) would fit as
+  // either a body or start line in that model.
+  void CalculateOpenModels(int row_start, int row_end);
+
+  SetOfModels &OpenModels(int row) {
+    return open_models_[row - row_start_ + 1];
+  }
+
+  ParagraphTheory *theory_;
+  std::vector<RowScratchRegisters> *rows_;
+  int row_start_;
+  int row_end_;
+
+  // open_models_ corresponds to rows[start_row_ - 1, end_row_]
+  //
+  // open_models_:  Contains models which there was an active (open) paragraph
+  //                as of the previous line and for which the left and right
+  //                indents admit the possibility that this text line continues
+  //                to fit the same model.
+  // TODO(eger): Think about whether we can get rid of "Open" models and just
+  //   use the current hypotheses on RowScratchRegisters.
+  std::vector<SetOfModels> open_models_;
+};
+
+// Clear all hypotheses about lines [start, end) and reset the margins to the
+// percentile (0..100) value of the left and right row edges for this run of
+// rows.
+void RecomputeMarginsAndClearHypotheses(std::vector<RowScratchRegisters> *rows, int start,
+                                        int end, int percentile);
+
+// Return the median inter-word space in rows[row_start, row_end).
+int InterwordSpace(const std::vector<RowScratchRegisters> &rows, int row_start, int row_end);
+
+// Return whether the first word on the after line can fit in the space at
+// the end of the before line (knowing which way the text is aligned and read).
+bool FirstWordWouldHaveFit(const RowScratchRegisters &before, const RowScratchRegisters &after,
+                           tesseract::ParagraphJustification justification);
+
+// Return whether the first word on the after line can fit in the space at
+// the end of the before line (not knowing the text alignment).
+bool FirstWordWouldHaveFit(const RowScratchRegisters &before, const RowScratchRegisters &after);
+
+// Do rows[start, end) form a single instance of the given paragraph model?
+bool RowsFitModel(const std::vector<RowScratchRegisters> *rows, int start, int end,
+                  const ParagraphModel *model);
+
+// Given a set of row_owners pointing to PARAs or nullptr (no paragraph known),
+// normalize each row_owner to point to an actual PARA, and output the
+// paragraphs in order onto paragraphs.
+void CanonicalizeDetectionResults(std::vector<PARA *> *row_owners, PARA_LIST *paragraphs);
+
+} // namespace tesseract
+
+#endif // TESSERACT_CCMAIN_PARAGRAPHS_INTERNAL_H_