diff mupdf-source/thirdparty/tesseract/src/ccmain/linerec.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/ccmain/linerec.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,306 @@
+///////////////////////////////////////////////////////////////////////
+// File:        linerec.cpp
+// Description: Top-level line-based recognition module for Tesseract.
+// Author:      Ray Smith
+//
+// (C) Copyright 2013, Google Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+///////////////////////////////////////////////////////////////////////
+
+#include "tesseractclass.h"
+
+#include <allheaders.h>
+#include "boxread.h"
+#include "imagedata.h" // for ImageData
+#include "lstmrecognizer.h"
+#include "pageres.h"
+#include "recodebeam.h"
+#include "tprintf.h"
+
+#include <algorithm>
+
+namespace tesseract {
+
+// Scale factor to make certainty more comparable to Tesseract.
+const float kCertaintyScale = 7.0f;
+// Worst acceptable certainty for a dictionary word.
+const float kWorstDictCertainty = -25.0f;
+
+// Generates training data for training a line recognizer, eg LSTM.
+// Breaks the page into lines, according to the boxes, and writes them to a
+// serialized DocumentData based on output_basename.
+// Return true if successful, false if an error occurred.
+bool Tesseract::TrainLineRecognizer(const char *input_imagename, const std::string &output_basename,
+                                    BLOCK_LIST *block_list) {
+  std::string lstmf_name = output_basename + ".lstmf";
+  DocumentData images(lstmf_name);
+  if (applybox_page > 0) {
+    // Load existing document for the previous pages.
+    if (!images.LoadDocument(lstmf_name.c_str(), 0, 0, nullptr)) {
+      tprintf("Failed to read training data from %s!\n", lstmf_name.c_str());
+      return false;
+    }
+  }
+  std::vector<TBOX> boxes;
+  std::vector<std::string> texts;
+  // Get the boxes for this page, if there are any.
+  if (!ReadAllBoxes(applybox_page, false, input_imagename, &boxes, &texts, nullptr, nullptr) ||
+      boxes.empty()) {
+    tprintf("Failed to read boxes from %s\n", input_imagename);
+    return false;
+  }
+  TrainFromBoxes(boxes, texts, block_list, &images);
+  if (images.PagesSize() == 0) {
+    tprintf("Failed to read pages from %s\n", input_imagename);
+    return false;
+  }
+  images.Shuffle();
+  if (!images.SaveDocument(lstmf_name.c_str(), nullptr)) {
+    tprintf("Failed to write training data to %s!\n", lstmf_name.c_str());
+    return false;
+  }
+  return true;
+}
+
+// Generates training data for training a line recognizer, eg LSTM.
+// Breaks the boxes into lines, normalizes them, converts to ImageData and
+// appends them to the given training_data.
+void Tesseract::TrainFromBoxes(const std::vector<TBOX> &boxes, const std::vector<std::string> &texts,
+                               BLOCK_LIST *block_list, DocumentData *training_data) {
+  auto box_count = boxes.size();
+  // Process all the text lines in this page, as defined by the boxes.
+  unsigned end_box = 0;
+  // Don't let \t, which marks newlines in the box file, get into the line
+  // content, as that makes the line unusable in training.
+  while (end_box < texts.size() && texts[end_box] == "\t") {
+    ++end_box;
+  }
+  for (auto start_box = end_box; start_box < box_count; start_box = end_box) {
+    // Find the textline of boxes starting at start and their bounding box.
+    TBOX line_box = boxes[start_box];
+    std::string line_str = texts[start_box];
+    for (end_box = start_box + 1; end_box < box_count && texts[end_box] != "\t"; ++end_box) {
+      line_box += boxes[end_box];
+      line_str += texts[end_box];
+    }
+    // Find the most overlapping block.
+    BLOCK *best_block = nullptr;
+    int best_overlap = 0;
+    BLOCK_IT b_it(block_list);
+    for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
+      BLOCK *block = b_it.data();
+      if (block->pdblk.poly_block() != nullptr && !block->pdblk.poly_block()->IsText()) {
+        continue; // Not a text block.
+      }
+      TBOX block_box = block->pdblk.bounding_box();
+      block_box.rotate(block->re_rotation());
+      if (block_box.major_overlap(line_box)) {
+        TBOX overlap_box = line_box.intersection(block_box);
+        if (overlap_box.area() > best_overlap) {
+          best_overlap = overlap_box.area();
+          best_block = block;
+        }
+      }
+    }
+    ImageData *imagedata = nullptr;
+    if (best_block == nullptr) {
+      tprintf("No block overlapping textline: %s\n", line_str.c_str());
+    } else {
+      imagedata = GetLineData(line_box, boxes, texts, start_box, end_box, *best_block);
+    }
+    if (imagedata != nullptr) {
+      training_data->AddPageToDocument(imagedata);
+    }
+    // Don't let \t, which marks newlines in the box file, get into the line
+    // content, as that makes the line unusable in training.
+    while (end_box < texts.size() && texts[end_box] == "\t") {
+      ++end_box;
+    }
+  }
+}
+
+// Returns an Imagedata containing the image of the given box,
+// and ground truth boxes/truth text if available in the input.
+// The image is not normalized in any way.
+ImageData *Tesseract::GetLineData(const TBOX &line_box, const std::vector<TBOX> &boxes,
+                                  const std::vector<std::string> &texts, int start_box, int end_box,
+                                  const BLOCK &block) {
+  TBOX revised_box;
+  ImageData *image_data = GetRectImage(line_box, block, kImagePadding, &revised_box);
+  if (image_data == nullptr) {
+    return nullptr;
+  }
+  image_data->set_page_number(applybox_page);
+  // Copy the boxes and shift them so they are relative to the image.
+  FCOORD block_rotation(block.re_rotation().x(), -block.re_rotation().y());
+  ICOORD shift = -revised_box.botleft();
+  std::vector<TBOX> line_boxes;
+  std::vector<std::string> line_texts;
+  for (int b = start_box; b < end_box; ++b) {
+    TBOX box = boxes[b];
+    box.rotate(block_rotation);
+    box.move(shift);
+    line_boxes.push_back(box);
+    line_texts.push_back(texts[b]);
+  }
+  std::vector<int> page_numbers(line_boxes.size(), applybox_page);
+  image_data->AddBoxes(line_boxes, line_texts, page_numbers);
+  return image_data;
+}
+
+// Helper gets the image of a rectangle, using the block.re_rotation() if
+// needed to get to the image, and rotating the result back to horizontal
+// layout. (CJK characters will be on their left sides) The vertical text flag
+// is set in the returned ImageData if the text was originally vertical, which
+// can be used to invoke a different CJK recognition engine. The revised_box
+// is also returned to enable calculation of output bounding boxes.
+ImageData *Tesseract::GetRectImage(const TBOX &box, const BLOCK &block, int padding,
+                                   TBOX *revised_box) const {
+  TBOX wbox = box;
+  wbox.pad(padding, padding);
+  *revised_box = wbox;
+  // Number of clockwise 90 degree rotations needed to get back to tesseract
+  // coords from the clipped image.
+  int num_rotations = 0;
+  if (block.re_rotation().y() > 0.0f) {
+    num_rotations = 1;
+  } else if (block.re_rotation().x() < 0.0f) {
+    num_rotations = 2;
+  } else if (block.re_rotation().y() < 0.0f) {
+    num_rotations = 3;
+  }
+  // Handle two cases automatically: 1 the box came from the block, 2 the box
+  // came from a box file, and refers to the image, which the block may not.
+  if (block.pdblk.bounding_box().major_overlap(*revised_box)) {
+    revised_box->rotate(block.re_rotation());
+  }
+  // Now revised_box always refers to the image.
+  // BestPix is never colormapped, but may be of any depth.
+  Image pix = BestPix();
+  int width = pixGetWidth(pix);
+  int height = pixGetHeight(pix);
+  TBOX image_box(0, 0, width, height);
+  // Clip to image bounds;
+  *revised_box &= image_box;
+  if (revised_box->null_box()) {
+    return nullptr;
+  }
+  Box *clip_box = boxCreate(revised_box->left(), height - revised_box->top(), revised_box->width(),
+                            revised_box->height());
+  Image box_pix = pixClipRectangle(pix, clip_box, nullptr);
+  boxDestroy(&clip_box);
+  if (box_pix == nullptr) {
+    return nullptr;
+  }
+  if (num_rotations > 0) {
+    Image rot_pix = pixRotateOrth(box_pix, num_rotations);
+    box_pix.destroy();
+    box_pix = rot_pix;
+  }
+  // Convert sub-8-bit images to 8 bit.
+  int depth = pixGetDepth(box_pix);
+  if (depth < 8) {
+    Image grey;
+    grey = pixConvertTo8(box_pix, false);
+    box_pix.destroy();
+    box_pix = grey;
+  }
+  bool vertical_text = false;
+  if (num_rotations > 0) {
+    // Rotated the clipped revised box back to internal coordinates.
+    FCOORD rotation(block.re_rotation().x(), -block.re_rotation().y());
+    revised_box->rotate(rotation);
+    if (num_rotations != 2) {
+      vertical_text = true;
+    }
+  }
+  return new ImageData(vertical_text, box_pix);
+}
+
+// Recognizes a word or group of words, converting to WERD_RES in *words.
+// Analogous to classify_word_pass1, but can handle a group of words as well.
+void Tesseract::LSTMRecognizeWord(const BLOCK &block, ROW *row, WERD_RES *word,
+                                  PointerVector<WERD_RES> *words) {
+  TBOX word_box = word->word->bounding_box();
+  // Get the word image - no frills.
+  if (tessedit_pageseg_mode == PSM_SINGLE_WORD || tessedit_pageseg_mode == PSM_RAW_LINE) {
+    // In single word mode, use the whole image without any other row/word
+    // interpretation.
+    word_box = TBOX(0, 0, ImageWidth(), ImageHeight());
+  } else {
+    float baseline = row->base_line((word_box.left() + word_box.right()) / 2);
+    if (baseline + row->descenders() < word_box.bottom()) {
+      word_box.set_bottom(baseline + row->descenders());
+    }
+    if (baseline + row->x_height() + row->ascenders() > word_box.top()) {
+      word_box.set_top(baseline + row->x_height() + row->ascenders());
+    }
+  }
+  ImageData *im_data = GetRectImage(word_box, block, kImagePadding, &word_box);
+  if (im_data == nullptr) {
+    return;
+  }
+
+  bool do_invert = tessedit_do_invert;
+  float threshold = do_invert ? double(invert_threshold) : 0.0f;
+  lstm_recognizer_->RecognizeLine(*im_data, threshold, classify_debug_level > 0,
+                                  kWorstDictCertainty / kCertaintyScale, word_box, words,
+                                  lstm_choice_mode, lstm_choice_iterations);
+  delete im_data;
+  SearchWords(words);
+}
+
+// Apply segmentation search to the given set of words, within the constraints
+// of the existing ratings matrix. If there is already a best_choice on a word
+// leaves it untouched and just sets the done/accepted etc flags.
+void Tesseract::SearchWords(PointerVector<WERD_RES> *words) {
+  // Run the segmentation search on the network outputs and make a BoxWord
+  // for each of the output words.
+  // If we drop a word as junk, then there is always a space in front of the
+  // next.
+  const Dict *stopper_dict = lstm_recognizer_->GetDict();
+  if (stopper_dict == nullptr) {
+    stopper_dict = &getDict();
+  }
+  for (unsigned w = 0; w < words->size(); ++w) {
+    WERD_RES *word = (*words)[w];
+    if (word->best_choice == nullptr) {
+      // It is a dud.
+      word->SetupFake(lstm_recognizer_->GetUnicharset());
+    } else {
+      // Set the best state.
+      for (unsigned i = 0; i < word->best_choice->length(); ++i) {
+        int length = word->best_choice->state(i);
+        word->best_state.push_back(length);
+      }
+      word->reject_map.initialise(word->best_choice->length());
+      word->tess_failed = false;
+      word->tess_accepted = true;
+      word->tess_would_adapt = false;
+      word->done = true;
+      word->tesseract = this;
+      float word_certainty = std::min(word->space_certainty, word->best_choice->certainty());
+      word_certainty *= kCertaintyScale;
+      if (getDict().stopper_debug_level >= 1) {
+        tprintf("Best choice certainty=%g, space=%g, scaled=%g, final=%g\n",
+                word->best_choice->certainty(), word->space_certainty,
+                std::min(word->space_certainty, word->best_choice->certainty()) * kCertaintyScale,
+                word_certainty);
+        word->best_choice->print();
+      }
+      word->best_choice->set_certainty(word_certainty);
+
+      word->tess_accepted = stopper_dict->AcceptableResult(word);
+    }
+  }
+}
+
+} // namespace tesseract.