diff mupdf-source/thirdparty/tesseract/src/ccmain/applybox.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/tesseract/src/ccmain/applybox.cpp	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,784 @@
+/**********************************************************************
+ * File:        applybox.cpp  (Formerly applybox.c)
+ * Description: Re segment rows according to box file data
+ * Author:      Phil Cheatle
+ *
+ * (C) Copyright 1993, Hewlett-Packard Ltd.
+ ** Licensed under the Apache License, Version 2.0 (the "License");
+ ** you may not use this file except in compliance with the License.
+ ** You may obtain a copy of the License at
+ ** http://www.apache.org/licenses/LICENSE-2.0
+ ** Unless required by applicable law or agreed to in writing, software
+ ** distributed under the License is distributed on an "AS IS" BASIS,
+ ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ ** See the License for the specific language governing permissions and
+ ** limitations under the License.
+ *
+ **********************************************************************/
+
+#ifndef DISABLED_LEGACY_ENGINE
+#  include <allheaders.h>
+#  include <cctype>
+#  include <cerrno>
+#  include <cstring>
+#  include "boxread.h"
+#endif // ndef DISABLED_LEGACY_ENGINE
+#include <tesseract/unichar.h>
+#include "pageres.h"
+#include "tesseractclass.h"
+#include "tesserrstream.h"  // for tesserr
+#include "unicharset.h"
+
+#ifndef DISABLED_LEGACY_ENGINE
+/** Max number of blobs to classify together in FindSegmentation. */
+const int kMaxGroupSize = 4;
+/// Max fraction of median allowed as deviation in xheight before switching
+/// to median.
+const double kMaxXHeightDeviationFraction = 0.125;
+#endif // ndef DISABLED_LEGACY_ENGINE
+
+/**
+ * The box file is assumed to contain box definitions, one per line, of the
+ * following format for blob-level boxes:
+ * @verbatim
+ *   <UTF8 str> <left> <bottom> <right> <top> <page id>
+ * @endverbatim
+ * and for word/line-level boxes:
+ * @verbatim
+ *   WordStr <left> <bottom> <right> <top> <page id> #<space-delimited word str>
+ * @endverbatim
+ * NOTES:
+ * The boxes use tesseract coordinates, i.e. 0,0 is at BOTTOM-LEFT.
+ *
+ * <page id> is 0-based, and the page number is used for multipage input (tiff).
+ *
+ * In the blob-level form, each line represents a recognizable unit, which may
+ * be several UTF-8 bytes, but there is a bounding box around each recognizable
+ * unit, and no classifier is needed to train in this mode (bootstrapping.)
+ *
+ * In the word/line-level form, the line begins with the literal "WordStr", and
+ * the bounding box bounds either a whole line or a whole word. The recognizable
+ * units in the word/line are listed after the # at the end of the line and
+ * are space delimited, ignoring any original spaces on the line.
+ * Eg.
+ * @verbatim
+ * word -> #w o r d
+ * multi word line -> #m u l t i w o r d l i n e
+ * @endverbatim
+ * The recognizable units must be space-delimited in order to allow multiple
+ * unicodes to be used for a single recognizable unit, eg Hindi.
+ *
+ * In this mode, the classifier must have been pre-trained with the desired
+ * character set, or it will not be able to find the character segmentations.
+ */
+
+namespace tesseract {
+
+#ifndef DISABLED_LEGACY_ENGINE
+static void clear_any_old_text(BLOCK_LIST *block_list) {
+  BLOCK_IT block_it(block_list);
+  for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) {
+    ROW_IT row_it(block_it.data()->row_list());
+    for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
+      WERD_IT word_it(row_it.data()->word_list());
+      for (word_it.mark_cycle_pt(); !word_it.cycled_list(); word_it.forward()) {
+        word_it.data()->set_text("");
+      }
+    }
+  }
+}
+
+// Applies the box file based on the image name filename, and resegments
+// the words in the block_list (page), with:
+// blob-mode: one blob per line in the box file, words as input.
+// word/line-mode: one blob per space-delimited unit after the #, and one word
+// per line in the box file. (See comment above for box file format.)
+// If find_segmentation is true, (word/line mode) then the classifier is used
+// to re-segment words/lines to match the space-delimited truth string for
+// each box. In this case, the input box may be for a word or even a whole
+// text line, and the output words will contain multiple blobs corresponding
+// to the space-delimited input string.
+// With find_segmentation false, no classifier is needed, but the chopper
+// can still be used to correctly segment touching characters with the help
+// of the input boxes.
+// In the returned PAGE_RES, the WERD_RES are setup as they would be returned
+// from normal classification, ie. with a word, chopped_word, rebuild_word,
+// seam_array, denorm, box_word, and best_state, but NO best_choice or
+// raw_choice, as they would require a UNICHARSET, which we aim to avoid.
+// Instead, the correct_text member of WERD_RES is set, and this may be later
+// converted to a best_choice using CorrectClassifyWords. CorrectClassifyWords
+// is not required before calling ApplyBoxTraining.
+PAGE_RES *Tesseract::ApplyBoxes(const char *filename, bool find_segmentation,
+                                BLOCK_LIST *block_list) {
+  std::vector<TBOX> boxes;
+  std::vector<std::string> texts, full_texts;
+  if (!ReadAllBoxes(applybox_page, true, filename, &boxes, &texts, &full_texts, nullptr)) {
+    return nullptr; // Can't do it.
+  }
+
+  const int box_count = boxes.size();
+  int box_failures = 0;
+
+  // In word mode, we use the boxes to make a word for each box, but
+  // in blob mode we use the existing words and maximally chop them first.
+  PAGE_RES *page_res = find_segmentation ? nullptr : SetupApplyBoxes(boxes, block_list);
+  clear_any_old_text(block_list);
+
+  for (int i = 0; i < box_count; i++) {
+    bool foundit = false;
+    if (page_res != nullptr) {
+      foundit =
+          ResegmentCharBox(page_res, (i == 0) ? nullptr : &boxes[i - 1], boxes[i],
+                           (i == box_count - 1) ? nullptr : &boxes[i + 1], full_texts[i].c_str());
+    } else {
+      foundit = ResegmentWordBox(block_list, boxes[i],
+                                 (i == box_count - 1) ? nullptr : &boxes[i + 1], texts[i].c_str());
+    }
+    if (!foundit) {
+      box_failures++;
+      ReportFailedBox(i, boxes[i], texts[i].c_str(), "FAILURE! Couldn't find a matching blob");
+    }
+  }
+
+  if (page_res == nullptr) {
+    // In word/line mode, we now maximally chop all the words and resegment
+    // them with the classifier.
+    page_res = SetupApplyBoxes(boxes, block_list);
+    ReSegmentByClassification(page_res);
+  }
+  if (applybox_debug > 0) {
+    tprintf("APPLY_BOXES:\n");
+    tprintf("   Boxes read from boxfile:  %6d\n", box_count);
+    if (box_failures > 0) {
+      tprintf("   Boxes failed resegmentation:  %6d\n", box_failures);
+    }
+  }
+  TidyUp(page_res);
+  return page_res;
+}
+
+// Helper computes median xheight in the image.
+static double MedianXHeight(BLOCK_LIST *block_list) {
+  BLOCK_IT block_it(block_list);
+  STATS xheights(0, block_it.data()->pdblk.bounding_box().height() - 1);
+  for (block_it.mark_cycle_pt(); !block_it.cycled_list(); block_it.forward()) {
+    ROW_IT row_it(block_it.data()->row_list());
+    for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
+      xheights.add(IntCastRounded(row_it.data()->x_height()), 1);
+    }
+  }
+  return xheights.median();
+}
+
+/// Any row xheight that is significantly different from the median is set
+/// to the median.
+void Tesseract::PreenXHeights(BLOCK_LIST *block_list) {
+  const double median_xheight = MedianXHeight(block_list);
+  const double max_deviation = kMaxXHeightDeviationFraction * median_xheight;
+  // Strip all fuzzy space markers to simplify the PAGE_RES.
+  BLOCK_IT b_it(block_list);
+  for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
+    BLOCK *block = b_it.data();
+    ROW_IT r_it(block->row_list());
+    for (r_it.mark_cycle_pt(); !r_it.cycled_list(); r_it.forward()) {
+      ROW *row = r_it.data();
+      const double diff = fabs(row->x_height() - median_xheight);
+      if (diff > max_deviation) {
+        if (applybox_debug) {
+          tprintf("row xheight=%g, but median xheight = %g\n", row->x_height(), median_xheight);
+        }
+        row->set_x_height(static_cast<float>(median_xheight));
+      }
+    }
+  }
+}
+
+/// Builds a PAGE_RES from the block_list in the way required for ApplyBoxes:
+/// All fuzzy spaces are removed, and all the words are maximally chopped.
+PAGE_RES *Tesseract::SetupApplyBoxes(const std::vector<TBOX> &boxes, BLOCK_LIST *block_list) {
+  PreenXHeights(block_list);
+  // Strip all fuzzy space markers to simplify the PAGE_RES.
+  BLOCK_IT b_it(block_list);
+  for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
+    BLOCK *block = b_it.data();
+    ROW_IT r_it(block->row_list());
+    for (r_it.mark_cycle_pt(); !r_it.cycled_list(); r_it.forward()) {
+      ROW *row = r_it.data();
+      WERD_IT w_it(row->word_list());
+      for (w_it.mark_cycle_pt(); !w_it.cycled_list(); w_it.forward()) {
+        WERD *word = w_it.data();
+        if (word->cblob_list()->empty()) {
+          delete w_it.extract();
+        } else {
+          word->set_flag(W_FUZZY_SP, false);
+          word->set_flag(W_FUZZY_NON, false);
+        }
+      }
+    }
+  }
+  auto *page_res = new PAGE_RES(false, block_list, nullptr);
+  PAGE_RES_IT pr_it(page_res);
+  WERD_RES *word_res;
+  while ((word_res = pr_it.word()) != nullptr) {
+    MaximallyChopWord(boxes, pr_it.block()->block, pr_it.row()->row, word_res);
+    pr_it.forward();
+  }
+  return page_res;
+}
+
+/// Tests the chopper by exhaustively running chop_one_blob.
+/// The word_res will contain filled chopped_word, seam_array, denorm,
+/// box_word and best_state for the maximally chopped word.
+void Tesseract::MaximallyChopWord(const std::vector<TBOX> &boxes, BLOCK *block, ROW *row,
+                                  WERD_RES *word_res) {
+  if (!word_res->SetupForRecognition(unicharset, this, BestPix(), tessedit_ocr_engine_mode, nullptr,
+                                     classify_bln_numeric_mode, textord_use_cjk_fp_model,
+                                     poly_allow_detailed_fx, row, block)) {
+    word_res->CloneChoppedToRebuild();
+    return;
+  }
+  if (chop_debug) {
+    tprintf("Maximally chopping word at:");
+    word_res->word->bounding_box().print();
+  }
+  std::vector<BLOB_CHOICE *> blob_choices;
+  ASSERT_HOST(!word_res->chopped_word->blobs.empty());
+  auto rating = static_cast<float>(INT8_MAX);
+  for (unsigned i = 0; i < word_res->chopped_word->NumBlobs(); ++i) {
+    // The rating and certainty are not quite arbitrary. Since
+    // select_blob_to_chop uses the worst certainty to choose, they all have
+    // to be different, so starting with INT8_MAX, subtract 1/8 for each blob
+    // in here, and then divide by e each time they are chopped, which
+    // should guarantee a set of unequal values for the whole tree of blobs
+    // produced, however much chopping is required. The chops are thus only
+    // limited by the ability of the chopper to find suitable chop points,
+    // and not by the value of the certainties.
+    auto *choice = new BLOB_CHOICE(0, rating, -rating, -1, 0.0f, 0.0f, 0.0f, BCC_FAKE);
+    blob_choices.push_back(choice);
+    rating -= 0.125f;
+  }
+  const double e = exp(1.0); // The base of natural logs.
+  unsigned blob_number;
+  if (!assume_fixed_pitch_char_segment) {
+    // We only chop if the language is not fixed pitch like CJK.
+    SEAM *seam = nullptr;
+    int right_chop_index = 0;
+    while ((seam = chop_one_blob(boxes, blob_choices, word_res, &blob_number)) != nullptr) {
+      word_res->InsertSeam(blob_number, seam);
+      BLOB_CHOICE *left_choice = blob_choices[blob_number];
+      rating = left_choice->rating() / e;
+      left_choice->set_rating(rating);
+      left_choice->set_certainty(-rating);
+      // combine confidence w/ serial #
+      auto *right_choice = new BLOB_CHOICE(++right_chop_index, rating - 0.125f, -rating, -1, 0.0f,
+                                           0.0f, 0.0f, BCC_FAKE);
+      blob_choices.insert(blob_choices.begin() + blob_number + 1, right_choice);
+    }
+  }
+  word_res->CloneChoppedToRebuild();
+  word_res->FakeClassifyWord(blob_choices.size(), &blob_choices[0]);
+}
+
+/// Helper to compute the dispute resolution metric.
+/// Disputed blob resolution. The aim is to give the blob to the most
+/// appropriate boxfile box. Most of the time it is obvious, but if
+/// two boxfile boxes overlap significantly it is not. If a small boxfile
+/// box takes most of the blob, and a large boxfile box does too, then
+/// we want the small boxfile box to get it, but if the small box
+/// is much smaller than the blob, we don't want it to get it.
+/// Details of the disputed blob resolution:
+/// Given a box with area A, and a blob with area B, with overlap area C,
+/// then the miss metric is (A-C)(B-C)/(AB) and the box with minimum
+/// miss metric gets the blob.
+static double BoxMissMetric(const TBOX &box1, const TBOX &box2) {
+  const int overlap_area = box1.intersection(box2).area();
+  const int a = box1.area();
+  const int b = box2.area();
+  ASSERT_HOST(a != 0 && b != 0);
+  return 1.0 * (a - overlap_area) * (b - overlap_area) / a / b;
+}
+
+/// Gather consecutive blobs that match the given box into the best_state
+/// and corresponding correct_text.
+///
+/// Fights over which box owns which blobs are settled by pre-chopping and
+/// applying the blobs to box or next_box with the least non-overlap.
+/// @return false if the box was in error, which can only be caused by
+/// failing to find an appropriate blob for a box.
+///
+/// This means that occasionally, blobs may be incorrectly segmented if the
+/// chopper fails to find a suitable chop point.
+bool Tesseract::ResegmentCharBox(PAGE_RES *page_res, const TBOX *prev_box, const TBOX &box,
+                                 const TBOX *next_box, const char *correct_text) {
+  if (applybox_debug > 1) {
+    tprintf("\nAPPLY_BOX: in ResegmentCharBox() for %s\n", correct_text);
+  }
+  PAGE_RES_IT page_res_it(page_res);
+  WERD_RES *word_res;
+  for (word_res = page_res_it.word(); word_res != nullptr; word_res = page_res_it.forward()) {
+    if (!word_res->box_word->bounding_box().major_overlap(box)) {
+      continue;
+    }
+    if (applybox_debug > 1) {
+      tprintf("Checking word box:");
+      word_res->box_word->bounding_box().print();
+    }
+    int word_len = word_res->box_word->length();
+    for (int i = 0; i < word_len; ++i) {
+      TBOX char_box = TBOX();
+      int blob_count = 0;
+      for (blob_count = 0; i + blob_count < word_len; ++blob_count) {
+        TBOX blob_box = word_res->box_word->BlobBox(i + blob_count);
+        if (!blob_box.major_overlap(box)) {
+          break;
+        }
+        if (word_res->correct_text[i + blob_count].length() > 0) {
+          break; // Blob is claimed already.
+        }
+        if (next_box != nullptr) {
+          const double current_box_miss_metric = BoxMissMetric(blob_box, box);
+          const double next_box_miss_metric = BoxMissMetric(blob_box, *next_box);
+          if (applybox_debug > 2) {
+            tprintf("Checking blob:");
+            blob_box.print();
+            tprintf("Current miss metric = %g, next = %g\n", current_box_miss_metric,
+                    next_box_miss_metric);
+          }
+          if (current_box_miss_metric > next_box_miss_metric) {
+            break; // Blob is a better match for next box.
+          }
+        }
+        char_box += blob_box;
+      }
+      if (blob_count > 0) {
+        if (applybox_debug > 1) {
+          tprintf("Index [%d, %d) seem good.\n", i, i + blob_count);
+        }
+        if (!char_box.almost_equal(box, 3) &&
+            ((next_box != nullptr && box.x_gap(*next_box) < -3) ||
+             (prev_box != nullptr && prev_box->x_gap(box) < -3))) {
+          return false;
+        }
+        // We refine just the box_word, best_state and correct_text here.
+        // The rebuild_word is made in TidyUp.
+        // blob_count blobs are put together to match the box. Merge the
+        // box_word boxes, save the blob_count in the state and the text.
+        word_res->box_word->MergeBoxes(i, i + blob_count);
+        word_res->best_state[i] = blob_count;
+        word_res->correct_text[i] = correct_text;
+        if (applybox_debug > 2) {
+          tprintf("%d Blobs match: blob box:", blob_count);
+          word_res->box_word->BlobBox(i).print();
+          tprintf("Matches box:");
+          box.print();
+          if (next_box != nullptr) {
+            tprintf("With next box:");
+            next_box->print();
+          }
+        }
+        // Eliminated best_state and correct_text entries for the consumed
+        // blobs.
+        for (int j = 1; j < blob_count; ++j) {
+          word_res->best_state.erase(word_res->best_state.begin() + i + 1);
+          word_res->correct_text.erase(word_res->correct_text.begin() + i + 1);
+        }
+        // Assume that no box spans multiple source words, so we are done with
+        // this box.
+        if (applybox_debug > 1) {
+          tprintf("Best state = ");
+          for (auto best_state : word_res->best_state) {
+            tprintf("%d ", best_state);
+          }
+          tprintf("\n");
+          tprintf("Correct text = [[ ");
+          for (auto &it : word_res->correct_text) {
+            tprintf("%s ", it.c_str());
+          }
+          tprintf("]]\n");
+        }
+        return true;
+      }
+    }
+  }
+  if (applybox_debug > 0) {
+    tprintf("FAIL!\n");
+  }
+  return false; // Failure.
+}
+
+/// Consume all source blobs that strongly overlap the given box,
+/// putting them into a new word, with the correct_text label.
+/// Fights over which box owns which blobs are settled by
+/// applying the blobs to box or next_box with the least non-overlap.
+/// @return false if the box was in error, which can only be caused by
+/// failing to find an overlapping blob for a box.
+bool Tesseract::ResegmentWordBox(BLOCK_LIST *block_list, const TBOX &box, const TBOX *next_box,
+                                 const char *correct_text) {
+  if (applybox_debug > 1) {
+    tprintf("\nAPPLY_BOX: in ResegmentWordBox() for %s\n", correct_text);
+  }
+  WERD *new_word = nullptr;
+  BLOCK_IT b_it(block_list);
+  for (b_it.mark_cycle_pt(); !b_it.cycled_list(); b_it.forward()) {
+    BLOCK *block = b_it.data();
+    if (!box.major_overlap(block->pdblk.bounding_box())) {
+      continue;
+    }
+    ROW_IT r_it(block->row_list());
+    for (r_it.mark_cycle_pt(); !r_it.cycled_list(); r_it.forward()) {
+      ROW *row = r_it.data();
+      if (!box.major_overlap(row->bounding_box())) {
+        continue;
+      }
+      WERD_IT w_it(row->word_list());
+      for (w_it.mark_cycle_pt(); !w_it.cycled_list(); w_it.forward()) {
+        WERD *word = w_it.data();
+        if (applybox_debug > 2) {
+          tprintf("Checking word:");
+          word->bounding_box().print();
+        }
+        if (word->text() != nullptr && word->text()[0] != '\0') {
+          continue; // Ignore words that are already done.
+        }
+        if (!box.major_overlap(word->bounding_box())) {
+          continue;
+        }
+        C_BLOB_IT blob_it(word->cblob_list());
+        for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
+          C_BLOB *blob = blob_it.data();
+          TBOX blob_box = blob->bounding_box();
+          if (!blob_box.major_overlap(box)) {
+            continue;
+          }
+          if (next_box != nullptr) {
+            const double current_box_miss_metric = BoxMissMetric(blob_box, box);
+            const double next_box_miss_metric = BoxMissMetric(blob_box, *next_box);
+            if (applybox_debug > 2) {
+              tprintf("Checking blob:");
+              blob_box.print();
+              tprintf("Current miss metric = %g, next = %g\n", current_box_miss_metric,
+                      next_box_miss_metric);
+            }
+            if (current_box_miss_metric > next_box_miss_metric) {
+              continue; // Blob is a better match for next box.
+            }
+          }
+          if (applybox_debug > 2) {
+            tprintf("Blob match: blob:");
+            blob_box.print();
+            tprintf("Matches box:");
+            box.print();
+            if (next_box != nullptr) {
+              tprintf("With next box:");
+              next_box->print();
+            }
+          }
+          if (new_word == nullptr) {
+            // Make a new word with a single blob.
+            new_word = word->shallow_copy();
+            new_word->set_text(correct_text);
+            w_it.add_to_end(new_word);
+          }
+          C_BLOB_IT new_blob_it(new_word->cblob_list());
+          new_blob_it.add_to_end(blob_it.extract());
+        }
+      }
+    }
+  }
+  if (new_word == nullptr && applybox_debug > 0) {
+    tprintf("FAIL!\n");
+  }
+  return new_word != nullptr;
+}
+
+/// Resegments the words by running the classifier in an attempt to find the
+/// correct segmentation that produces the required string.
+void Tesseract::ReSegmentByClassification(PAGE_RES *page_res) {
+  PAGE_RES_IT pr_it(page_res);
+  WERD_RES *word_res;
+  for (; (word_res = pr_it.word()) != nullptr; pr_it.forward()) {
+    const WERD *word = word_res->word;
+    if (word->text() == nullptr || word->text()[0] == '\0') {
+      continue; // Ignore words that have no text.
+    }
+    // Convert the correct text to a vector of UNICHAR_ID
+    std::vector<UNICHAR_ID> target_text;
+    if (!ConvertStringToUnichars(word->text(), &target_text)) {
+      tprintf("APPLY_BOX: FAILURE: can't find class_id for '%s'\n", word->text());
+      pr_it.DeleteCurrentWord();
+      continue;
+    }
+    if (!FindSegmentation(target_text, word_res)) {
+      tprintf("APPLY_BOX: FAILURE: can't find segmentation for '%s'\n", word->text());
+      pr_it.DeleteCurrentWord();
+      continue;
+    }
+  }
+}
+
+/// Converts the space-delimited string of utf8 text to a vector of UNICHAR_ID.
+/// @return false if an invalid UNICHAR_ID is encountered.
+bool Tesseract::ConvertStringToUnichars(const char *utf8, std::vector<UNICHAR_ID> *class_ids) {
+  for (int step = 0; *utf8 != '\0'; utf8 += step) {
+    const char *next_space = strchr(utf8, ' ');
+    if (next_space == nullptr) {
+      next_space = utf8 + strlen(utf8);
+    }
+    step = next_space - utf8;
+    UNICHAR_ID class_id = unicharset.unichar_to_id(utf8, step);
+    if (class_id == INVALID_UNICHAR_ID) {
+      return false;
+    }
+    while (utf8[step] == ' ') {
+      ++step;
+    }
+    class_ids->push_back(class_id);
+  }
+  return true;
+}
+
+/// Resegments the word to achieve the target_text from the classifier.
+/// Returns false if the re-segmentation fails.
+/// Uses brute-force combination of up to #kMaxGroupSize adjacent blobs, and
+/// applies a full search on the classifier results to find the best classified
+/// segmentation. As a compromise to obtain better recall, 1-1 ambiguity
+/// substitutions ARE used.
+bool Tesseract::FindSegmentation(const std::vector<UNICHAR_ID> &target_text, WERD_RES *word_res) {
+  // Classify all required combinations of blobs and save results in choices.
+  const int word_length = word_res->box_word->length();
+  auto *choices = new std::vector<BLOB_CHOICE_LIST *>[word_length];
+  for (int i = 0; i < word_length; ++i) {
+    for (int j = 1; j <= kMaxGroupSize && i + j <= word_length; ++j) {
+      BLOB_CHOICE_LIST *match_result =
+          classify_piece(word_res->seam_array, i, i + j - 1, "Applybox", word_res->chopped_word,
+                         word_res->blamer_bundle);
+      if (applybox_debug > 2) {
+        tprintf("%d+%d:", i, j);
+        print_ratings_list("Segment:", match_result, unicharset);
+      }
+      choices[i].push_back(match_result);
+    }
+  }
+  // Search the segmentation graph for the target text. Must be an exact
+  // match. Using wildcards makes it difficult to find the correct
+  // segmentation even when it is there.
+  word_res->best_state.clear();
+  std::vector<int> search_segmentation;
+  float best_rating = 0.0f;
+  SearchForText(choices, 0, word_length, target_text, 0, 0.0f, &search_segmentation, &best_rating,
+                &word_res->best_state);
+  for (int i = 0; i < word_length; ++i) {
+    for (auto choice : choices[i]) {
+      delete choice;
+    }
+  }
+  delete[] choices;
+  if (word_res->best_state.empty()) {
+    // Build the original segmentation and if it is the same length as the
+    // truth, assume it will do.
+    int blob_count = 1;
+    for (auto s : word_res->seam_array) {
+      SEAM *seam = s;
+      if (!seam->HasAnySplits()) {
+        word_res->best_state.push_back(blob_count);
+        blob_count = 1;
+      } else {
+        ++blob_count;
+      }
+    }
+    word_res->best_state.push_back(blob_count);
+    if (word_res->best_state.size() != target_text.size()) {
+      word_res->best_state.clear(); // No good. Original segmentation bad size.
+      return false;
+    }
+  }
+  word_res->correct_text.clear();
+  for (auto &text : target_text) {
+    word_res->correct_text.emplace_back(unicharset.id_to_unichar(text));
+  }
+  return true;
+}
+
+/// Recursive helper to find a match to the target_text (from text_index
+/// position) in the choices (from choices_pos position).
+/// @param choices is an array of vectors of length choices_length,
+/// with each element representing a starting position in the word, and the
+/// #vector holding classification results for a sequence of consecutive
+/// blobs, with index 0 being a single blob, index 1 being 2 blobs etc.
+/// @param choices_pos
+/// @param choices_length
+/// @param target_text
+/// @param text_index
+/// @param rating
+/// @param segmentation
+/// @param best_rating
+/// @param best_segmentation
+void Tesseract::SearchForText(const std::vector<BLOB_CHOICE_LIST *> *choices, int choices_pos,
+                              unsigned choices_length, const std::vector<UNICHAR_ID> &target_text,
+                              unsigned text_index, float rating, std::vector<int> *segmentation,
+                              float *best_rating, std::vector<int> *best_segmentation) {
+  const UnicharAmbigsVector &table = getDict().getUnicharAmbigs().dang_ambigs();
+  for (unsigned length = 1; length <= choices[choices_pos].size(); ++length) {
+    // Rating of matching choice or worst choice if no match.
+    float choice_rating = 0.0f;
+    // Find the corresponding best BLOB_CHOICE.
+    BLOB_CHOICE_IT choice_it(choices[choices_pos][length - 1]);
+    for (choice_it.mark_cycle_pt(); !choice_it.cycled_list(); choice_it.forward()) {
+      const BLOB_CHOICE *choice = choice_it.data();
+      choice_rating = choice->rating();
+      auto class_id = choice->unichar_id();
+      if (class_id == target_text[text_index]) {
+        break;
+      }
+      // Search ambigs table.
+      if (static_cast<size_t>(class_id) < table.size() && table[class_id] != nullptr) {
+        AmbigSpec_IT spec_it(table[class_id]);
+        for (spec_it.mark_cycle_pt(); !spec_it.cycled_list(); spec_it.forward()) {
+          const AmbigSpec *ambig_spec = spec_it.data();
+          // We'll only do 1-1.
+          if (ambig_spec->wrong_ngram[1] == INVALID_UNICHAR_ID &&
+              ambig_spec->correct_ngram_id == target_text[text_index]) {
+            break;
+          }
+        }
+        if (!spec_it.cycled_list()) {
+          break; // Found an ambig.
+        }
+      }
+    }
+    if (choice_it.cycled_list()) {
+      continue; // No match.
+    }
+    segmentation->push_back(length);
+    if (choices_pos + length == choices_length && text_index + 1 == target_text.size()) {
+      // This is a complete match. If the rating is good record a new best.
+      if (applybox_debug > 2) {
+        tesserr << "Complete match, rating = " << rating + choice_rating
+                << ", best=" << *best_rating
+                << ", seglength=" << segmentation->size()
+                << ", best=" << best_segmentation->size() << '\n';
+      }
+      if (best_segmentation->empty() || rating + choice_rating < *best_rating) {
+        *best_segmentation = *segmentation;
+        *best_rating = rating + choice_rating;
+      }
+    } else if (choices_pos + length < choices_length && text_index + 1 < target_text.size()) {
+      if (applybox_debug > 3) {
+        tprintf("Match found for %d=%s:%s, at %d+%d, recursing...\n", target_text[text_index],
+                unicharset.id_to_unichar(target_text[text_index]),
+                choice_it.data()->unichar_id() == target_text[text_index] ? "Match" : "Ambig",
+                choices_pos, length);
+      }
+      SearchForText(choices, choices_pos + length, choices_length, target_text, text_index + 1,
+                    rating + choice_rating, segmentation, best_rating, best_segmentation);
+      if (applybox_debug > 3) {
+        tprintf("End recursion for %d=%s\n", target_text[text_index],
+                unicharset.id_to_unichar(target_text[text_index]));
+      }
+    }
+    segmentation->resize(segmentation->size() - 1);
+  }
+}
+
+/// - Counts up the labelled words and the blobs within.
+/// - Deletes all unused or emptied words, counting the unused ones.
+/// - Resets W_BOL and W_EOL flags correctly.
+/// - Builds the rebuild_word and rebuilds the box_word and the best_choice.
+void Tesseract::TidyUp(PAGE_RES *page_res) {
+  int ok_blob_count = 0;
+  int bad_blob_count = 0;
+  // TODO: check usage of ok_word_count.
+  int ok_word_count = 0;
+  int unlabelled_words = 0;
+  PAGE_RES_IT pr_it(page_res);
+  WERD_RES *word_res;
+  for (; (word_res = pr_it.word()) != nullptr; pr_it.forward()) {
+    int ok_in_word = 0;
+    int blob_count = word_res->correct_text.size();
+    auto *word_choice = new WERD_CHOICE(word_res->uch_set, blob_count);
+    word_choice->set_permuter(TOP_CHOICE_PERM);
+    for (int c = 0; c < blob_count; ++c) {
+      if (word_res->correct_text[c].length() > 0) {
+        ++ok_in_word;
+      }
+      // Since we only need a fake word_res->best_choice, the actual
+      // unichar_ids do not matter. Which is fortunate, since TidyUp()
+      // can be called while training Tesseract, at the stage where
+      // unicharset is not meaningful yet.
+      word_choice->append_unichar_id_space_allocated(INVALID_UNICHAR_ID, word_res->best_state[c],
+                                                     1.0f, -1.0f);
+    }
+    if (ok_in_word > 0) {
+      ok_blob_count += ok_in_word;
+      bad_blob_count += word_res->correct_text.size() - ok_in_word;
+      word_res->LogNewRawChoice(word_choice);
+      word_res->LogNewCookedChoice(1, false, word_choice);
+    } else {
+      ++unlabelled_words;
+      if (applybox_debug > 0) {
+        tprintf("APPLY_BOXES: Unlabelled word at :");
+        word_res->word->bounding_box().print();
+      }
+      pr_it.DeleteCurrentWord();
+      delete word_choice;
+    }
+  }
+  pr_it.restart_page();
+  for (; (word_res = pr_it.word()) != nullptr; pr_it.forward()) {
+    // Denormalize back to a BoxWord.
+    word_res->RebuildBestState();
+    word_res->SetupBoxWord();
+    word_res->word->set_flag(W_BOL, pr_it.prev_row() != pr_it.row());
+    word_res->word->set_flag(W_EOL, pr_it.next_row() != pr_it.row());
+  }
+  if (applybox_debug > 0) {
+    tprintf("   Found %d good blobs.\n", ok_blob_count);
+    if (bad_blob_count > 0) {
+      tprintf("   Leaving %d unlabelled blobs in %d words.\n", bad_blob_count, ok_word_count);
+    }
+    if (unlabelled_words > 0) {
+      tprintf("   %d remaining unlabelled words deleted.\n", unlabelled_words);
+    }
+  }
+}
+
+/** Logs a bad box by line in the box file and box coords.*/
+void Tesseract::ReportFailedBox(int boxfile_lineno, TBOX box, const char *box_ch,
+                                const char *err_msg) {
+  tprintf("APPLY_BOXES: boxfile line %d/%s ((%d,%d),(%d,%d)): %s\n", boxfile_lineno + 1, box_ch,
+          box.left(), box.bottom(), box.right(), box.top(), err_msg);
+}
+
+/// Calls #LearnWord to extract features for labelled blobs within each word.
+/// Features are stored in an internal buffer.
+void Tesseract::ApplyBoxTraining(const std::string &fontname, PAGE_RES *page_res) {
+  PAGE_RES_IT pr_it(page_res);
+  int word_count = 0;
+  for (WERD_RES *word_res = pr_it.word(); word_res != nullptr; word_res = pr_it.forward()) {
+    LearnWord(fontname.c_str(), word_res);
+    ++word_count;
+  }
+  tprintf("Generated training data for %d words\n", word_count);
+}
+
+#endif // ndef DISABLED_LEGACY_ENGINE
+
+/** Creates a fake best_choice entry in each WERD_RES with the correct text.*/
+void Tesseract::CorrectClassifyWords(PAGE_RES *page_res) {
+  PAGE_RES_IT pr_it(page_res);
+  for (WERD_RES *word_res = pr_it.word(); word_res != nullptr; word_res = pr_it.forward()) {
+    auto *choice = new WERD_CHOICE(word_res->uch_set, word_res->correct_text.size());
+    for (auto &correct_text : word_res->correct_text) {
+      // The part before the first space is the real ground truth, and the
+      // rest is the bounding box location and page number.
+      std::vector<std::string> tokens = split(correct_text, ' ');
+      UNICHAR_ID char_id = unicharset.unichar_to_id(tokens[0].c_str());
+      choice->append_unichar_id_space_allocated(char_id, word_res->best_state[&correct_text - &word_res->correct_text[0]], 0.0f, 0.0f);
+    }
+    word_res->ClearWordChoices();
+    word_res->LogNewRawChoice(choice);
+    word_res->LogNewCookedChoice(1, false, choice);
+  }
+}
+
+} // namespace tesseract