Mercurial > hgrepos > Python2 > PyMuPDF
diff mupdf-source/thirdparty/openjpeg/src/lib/openjp2/ht_dec.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mupdf-source/thirdparty/openjpeg/src/lib/openjp2/ht_dec.c Mon Sep 15 11:43:07 2025 +0200 @@ -0,0 +1,2689 @@ +//***************************************************************************/ +// This software is released under the 2-Clause BSD license, included +// below. +// +// Copyright (c) 2021, Aous Naman +// Copyright (c) 2021, Kakadu Software Pty Ltd, Australia +// Copyright (c) 2021, The University of New South Wales, Australia +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// 1. Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// +// 2. Redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED +// TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +//***************************************************************************/ +// This file is part of the OpenJpeg software implementation. +// File: ht_dec.c +// Author: Aous Naman +// Date: 01 September 2021 +//***************************************************************************/ + +//***************************************************************************/ +/** @file ht_dec.c + * @brief implements HTJ2K block decoder + */ + +#include <assert.h> +#include <string.h> +#include "opj_includes.h" + +#include "t1_ht_luts.h" + +///////////////////////////////////////////////////////////////////////////// +// compiler detection +///////////////////////////////////////////////////////////////////////////// +#ifdef _MSC_VER +#define OPJ_COMPILER_MSVC +#elif (defined __GNUC__) +#define OPJ_COMPILER_GNUC +#endif + +#if defined(OPJ_COMPILER_MSVC) && defined(_M_ARM64) \ + && !defined(_M_ARM64EC) && !defined(_M_CEE_PURE) && !defined(__CUDACC__) \ + && !defined(__INTEL_COMPILER) && !defined(__clang__) +#define MSVC_NEON_INTRINSICS +#endif + +#ifdef MSVC_NEON_INTRINSICS +#include <arm64_neon.h> +#endif + +//************************************************************************/ +/** @brief Displays the error message for disabling the decoding of SPP and + * MRP passes + */ +static OPJ_BOOL only_cleanup_pass_is_decoded = OPJ_FALSE; + +//************************************************************************/ +/** @brief Generates population count (i.e., the number of set bits) + * + * @param [in] val is the value for which population count is sought + */ +static INLINE +OPJ_UINT32 population_count(OPJ_UINT32 val) +{ +#if defined(OPJ_COMPILER_MSVC) && (defined(_M_IX86) || defined(_M_AMD64)) + return (OPJ_UINT32)__popcnt(val); +#elif defined(OPJ_COMPILER_MSVC) && defined(MSVC_NEON_INTRINSICS) + const __n64 temp = neon_cnt(__uint64ToN64_v(val)); + return neon_addv8(temp).n8_i8[0]; +#elif (defined OPJ_COMPILER_GNUC) + return (OPJ_UINT32)__builtin_popcount(val); +#else + val -= ((val >> 1) & 0x55555555); + val = (((val >> 2) & 0x33333333) + (val & 0x33333333)); + val = (((val >> 4) + val) & 0x0f0f0f0f); + val += (val >> 8); + val += (val >> 16); + return (OPJ_UINT32)(val & 0x0000003f); +#endif +} + +//************************************************************************/ +/** @brief Counts the number of leading zeros + * + * @param [in] val is the value for which leading zero count is sought + */ +#ifdef OPJ_COMPILER_MSVC +#pragma intrinsic(_BitScanReverse) +#endif +static INLINE +OPJ_UINT32 count_leading_zeros(OPJ_UINT32 val) +{ +#ifdef OPJ_COMPILER_MSVC + unsigned long result = 0; + _BitScanReverse(&result, val); + return 31U ^ (OPJ_UINT32)result; +#elif (defined OPJ_COMPILER_GNUC) + return (OPJ_UINT32)__builtin_clz(val); +#else + val |= (val >> 1); + val |= (val >> 2); + val |= (val >> 4); + val |= (val >> 8); + val |= (val >> 16); + return 32U - population_count(val); +#endif +} + +//************************************************************************/ +/** @brief Read a little-endian serialized UINT32. + * + * @param [in] dataIn pointer to byte stream to read from + */ +static INLINE OPJ_UINT32 read_le_uint32(const void* dataIn) +{ +#if defined(OPJ_BIG_ENDIAN) + const OPJ_UINT8* data = (const OPJ_UINT8*)dataIn; + return ((OPJ_UINT32)data[0]) | (OPJ_UINT32)(data[1] << 8) | (OPJ_UINT32)( + data[2] << 16) | ((( + OPJ_UINT32)data[3]) << + 24U); +#else + return *(OPJ_UINT32*)dataIn; +#endif +} + +//************************************************************************/ +/** @brief MEL state structure for reading and decoding the MEL bitstream + * + * A number of events is decoded from the MEL bitstream ahead of time + * and stored in run/num_runs. + * Each run represents the number of zero events before a one event. + */ +typedef struct dec_mel { + // data decoding machinery + OPJ_UINT8* data; //!<the address of data (or bitstream) + OPJ_UINT64 tmp; //!<temporary buffer for read data + int bits; //!<number of bits stored in tmp + int size; //!<number of bytes in MEL code + OPJ_BOOL unstuff; //!<true if the next bit needs to be unstuffed + int k; //!<state of MEL decoder + + // queue of decoded runs + int num_runs; //!<number of decoded runs left in runs (maximum 8) + OPJ_UINT64 runs; //!<runs of decoded MEL codewords (7 bits/run) +} dec_mel_t; + +//************************************************************************/ +/** @brief Reads and unstuffs the MEL bitstream + * + * This design needs more bytes in the codeblock buffer than the length + * of the cleanup pass by up to 2 bytes. + * + * Unstuffing removes the MSB of the byte following a byte whose + * value is 0xFF; this prevents sequences larger than 0xFF7F in value + * from appearing the bitstream. + * + * @param [in] melp is a pointer to dec_mel_t structure + */ +static INLINE +void mel_read(dec_mel_t *melp) +{ + OPJ_UINT32 val; + int bits; + OPJ_UINT32 t; + OPJ_BOOL unstuff; + + if (melp->bits > 32) { //there are enough bits in the tmp variable + return; // return without reading new data + } + + val = 0xFFFFFFFF; // feed in 0xFF if buffer is exhausted + if (melp->size > 4) { // if there is more than 4 bytes the MEL segment + val = read_le_uint32(melp->data); // read 32 bits from MEL data + melp->data += 4; // advance pointer + melp->size -= 4; // reduce counter + } else if (melp->size > 0) { // 4 or less + OPJ_UINT32 m, v; + int i = 0; + while (melp->size > 1) { + OPJ_UINT32 v = *melp->data++; // read one byte at a time + OPJ_UINT32 m = ~(0xFFu << i); // mask of location + val = (val & m) | (v << i); // put byte in its correct location + --melp->size; + i += 8; + } + // size equal to 1 + v = *melp->data++; // the one before the last is different + v |= 0xF; // MEL and VLC segments can overlap + m = ~(0xFFu << i); + val = (val & m) | (v << i); + --melp->size; + } + + // next we unstuff them before adding them to the buffer + bits = 32 - melp->unstuff; // number of bits in val, subtract 1 if + // the previously read byte requires + // unstuffing + + // data is unstuffed and accumulated in t + // bits has the number of bits in t + t = val & 0xFF; + unstuff = ((val & 0xFF) == 0xFF); // true if the byte needs unstuffing + bits -= unstuff; // there is one less bit in t if unstuffing is needed + t = t << (8 - unstuff); // move up to make room for the next byte + + //this is a repeat of the above + t |= (val >> 8) & 0xFF; + unstuff = (((val >> 8) & 0xFF) == 0xFF); + bits -= unstuff; + t = t << (8 - unstuff); + + t |= (val >> 16) & 0xFF; + unstuff = (((val >> 16) & 0xFF) == 0xFF); + bits -= unstuff; + t = t << (8 - unstuff); + + t |= (val >> 24) & 0xFF; + melp->unstuff = (((val >> 24) & 0xFF) == 0xFF); + + // move t to tmp, and push the result all the way up, so we read from + // the MSB + melp->tmp |= ((OPJ_UINT64)t) << (64 - bits - melp->bits); + melp->bits += bits; //increment the number of bits in tmp +} + +//************************************************************************/ +/** @brief Decodes unstuffed MEL segment bits stored in tmp to runs + * + * Runs are stored in "runs" and the number of runs in "num_runs". + * Each run represents a number of zero events that may or may not + * terminate in a 1 event. + * Each run is stored in 7 bits. The LSB is 1 if the run terminates in + * a 1 event, 0 otherwise. The next 6 bits, for the case terminating + * with 1, contain the number of consecutive 0 zero events * 2; for the + * case terminating with 0, they store (number of consecutive 0 zero + * events - 1) * 2. + * A total of 6 bits (made up of 1 + 5) should have been enough. + * + * @param [in] melp is a pointer to dec_mel_t structure + */ +static INLINE +void mel_decode(dec_mel_t *melp) +{ + static const int mel_exp[13] = { //MEL exponents + 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5 + }; + + if (melp->bits < 6) { // if there are less than 6 bits in tmp + mel_read(melp); // then read from the MEL bitstream + } + // 6 bits is the largest decodable MEL cwd + + //repeat so long that there is enough decodable bits in tmp, + // and the runs store is not full (num_runs < 8) + while (melp->bits >= 6 && melp->num_runs < 8) { + int eval = mel_exp[melp->k]; // number of bits associated with state + int run = 0; + if (melp->tmp & (1ull << 63)) { //The next bit to decode (stored in MSB) + //one is found + run = 1 << eval; + run--; // consecutive runs of 0 events - 1 + melp->k = melp->k + 1 < 12 ? melp->k + 1 : 12;//increment, max is 12 + melp->tmp <<= 1; // consume one bit from tmp + melp->bits -= 1; + run = run << 1; // a stretch of zeros not terminating in one + } else { + //0 is found + run = (int)(melp->tmp >> (63 - eval)) & ((1 << eval) - 1); + melp->k = melp->k - 1 > 0 ? melp->k - 1 : 0; //decrement, min is 0 + melp->tmp <<= eval + 1; //consume eval + 1 bits (max is 6) + melp->bits -= eval + 1; + run = (run << 1) + 1; // a stretch of zeros terminating with one + } + eval = melp->num_runs * 7; // 7 bits per run + melp->runs &= ~((OPJ_UINT64)0x3F << eval); // 6 bits are sufficient + melp->runs |= ((OPJ_UINT64)run) << eval; // store the value in runs + melp->num_runs++; // increment count + } +} + +//************************************************************************/ +/** @brief Initiates a dec_mel_t structure for MEL decoding and reads + * some bytes in order to get the read address to a multiple + * of 4 + * + * @param [in] melp is a pointer to dec_mel_t structure + * @param [in] bbuf is a pointer to byte buffer + * @param [in] lcup is the length of MagSgn+MEL+VLC segments + * @param [in] scup is the length of MEL+VLC segments + */ +static INLINE +OPJ_BOOL mel_init(dec_mel_t *melp, OPJ_UINT8* bbuf, int lcup, int scup) +{ + int num; + int i; + + melp->data = bbuf + lcup - scup; // move the pointer to the start of MEL + melp->bits = 0; // 0 bits in tmp + melp->tmp = 0; // + melp->unstuff = OPJ_FALSE; // no unstuffing + melp->size = scup - 1; // size is the length of MEL+VLC-1 + melp->k = 0; // 0 for state + melp->num_runs = 0; // num_runs is 0 + melp->runs = 0; // + + //This code is borrowed; original is for a different architecture + //These few lines take care of the case where data is not at a multiple + // of 4 boundary. It reads 1,2,3 up to 4 bytes from the MEL segment + num = 4 - (int)((intptr_t)(melp->data) & 0x3); + for (i = 0; i < num; ++i) { // this code is similar to mel_read + OPJ_UINT64 d; + int d_bits; + + if (melp->unstuff == OPJ_TRUE && melp->data[0] > 0x8F) { + return OPJ_FALSE; + } + d = (melp->size > 0) ? *melp->data : 0xFF; // if buffer is consumed + // set data to 0xFF + if (melp->size == 1) { + d |= 0xF; //if this is MEL+VLC-1, set LSBs to 0xF + } + // see the standard + melp->data += melp->size-- > 0; //increment if the end is not reached + d_bits = 8 - melp->unstuff; //if unstuffing is needed, reduce by 1 + melp->tmp = (melp->tmp << d_bits) | d; //store bits in tmp + melp->bits += d_bits; //increment tmp by number of bits + melp->unstuff = ((d & 0xFF) == 0xFF); //true of next byte needs + //unstuffing + } + melp->tmp <<= (64 - melp->bits); //push all the way up so the first bit + // is the MSB + return OPJ_TRUE; +} + +//************************************************************************/ +/** @brief Retrieves one run from dec_mel_t; if there are no runs stored + * MEL segment is decoded + * + * @param [in] melp is a pointer to dec_mel_t structure + */ +static INLINE +int mel_get_run(dec_mel_t *melp) +{ + int t; + if (melp->num_runs == 0) { //if no runs, decode more bit from MEL segment + mel_decode(melp); + } + + t = melp->runs & 0x7F; //retrieve one run + melp->runs >>= 7; // remove the retrieved run + melp->num_runs--; + return t; // return run +} + +//************************************************************************/ +/** @brief A structure for reading and unstuffing a segment that grows + * backward, such as VLC and MRP + */ +typedef struct rev_struct { + //storage + OPJ_UINT8* data; //!<pointer to where to read data + OPJ_UINT64 tmp; //!<temporary buffer of read data + OPJ_UINT32 bits; //!<number of bits stored in tmp + int size; //!<number of bytes left + OPJ_BOOL unstuff; //!<true if the last byte is more than 0x8F + //!<then the current byte is unstuffed if it is 0x7F +} rev_struct_t; + +//************************************************************************/ +/** @brief Read and unstuff data from a backwardly-growing segment + * + * This reader can read up to 8 bytes from before the VLC segment. + * Care must be taken not read from unreadable memory, causing a + * segmentation fault. + * + * Note that there is another subroutine rev_read_mrp that is slightly + * different. The other one fills zeros when the buffer is exhausted. + * This one basically does not care if the bytes are consumed, because + * any extra data should not be used in the actual decoding. + * + * Unstuffing is needed to prevent sequences more than 0xFF8F from + * appearing in the bits stream; since we are reading backward, we keep + * watch when a value larger than 0x8F appears in the bitstream. + * If the byte following this is 0x7F, we unstuff this byte (ignore the + * MSB of that byte, which should be 0). + * + * @param [in] vlcp is a pointer to rev_struct_t structure + */ +static INLINE +void rev_read(rev_struct_t *vlcp) +{ + OPJ_UINT32 val; + OPJ_UINT32 tmp; + OPJ_UINT32 bits; + OPJ_BOOL unstuff; + + //process 4 bytes at a time + if (vlcp->bits > 32) { // if there are more than 32 bits in tmp, then + return; // reading 32 bits can overflow vlcp->tmp + } + val = 0; + //the next line (the if statement) needs to be tested first + if (vlcp->size > 3) { // if there are more than 3 bytes left in VLC + // (vlcp->data - 3) move pointer back to read 32 bits at once + val = read_le_uint32(vlcp->data - 3); // then read 32 bits + vlcp->data -= 4; // move data pointer back by 4 + vlcp->size -= 4; // reduce available byte by 4 + } else if (vlcp->size > 0) { // 4 or less + int i = 24; + while (vlcp->size > 0) { + OPJ_UINT32 v = *vlcp->data--; // read one byte at a time + val |= (v << i); // put byte in its correct location + --vlcp->size; + i -= 8; + } + } + + //accumulate in tmp, number of bits in tmp are stored in bits + tmp = val >> 24; //start with the MSB byte + + // test unstuff (previous byte is >0x8F), and this byte is 0x7F + bits = 8u - ((vlcp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = (val >> 24) > 0x8F; //this is for the next byte + + tmp |= ((val >> 16) & 0xFF) << bits; //process the next byte + bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = ((val >> 16) & 0xFF) > 0x8F; + + tmp |= ((val >> 8) & 0xFF) << bits; + bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = ((val >> 8) & 0xFF) > 0x8F; + + tmp |= (val & 0xFF) << bits; + bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = (val & 0xFF) > 0x8F; + + // now move the read and unstuffed bits into vlcp->tmp + vlcp->tmp |= (OPJ_UINT64)tmp << vlcp->bits; + vlcp->bits += bits; + vlcp->unstuff = unstuff; // this for the next read +} + +//************************************************************************/ +/** @brief Initiates the rev_struct_t structure and reads a few bytes to + * move the read address to multiple of 4 + * + * There is another similar rev_init_mrp subroutine. The difference is + * that this one, rev_init, discards the first 12 bits (they have the + * sum of the lengths of VLC and MEL segments), and first unstuff depends + * on first 4 bits. + * + * @param [in] vlcp is a pointer to rev_struct_t structure + * @param [in] data is a pointer to byte at the start of the cleanup pass + * @param [in] lcup is the length of MagSgn+MEL+VLC segments + * @param [in] scup is the length of MEL+VLC segments + */ +static INLINE +void rev_init(rev_struct_t *vlcp, OPJ_UINT8* data, int lcup, int scup) +{ + OPJ_UINT32 d; + int num, tnum, i; + + //first byte has only the upper 4 bits + vlcp->data = data + lcup - 2; + + //size can not be larger than this, in fact it should be smaller + vlcp->size = scup - 2; + + d = *vlcp->data--; // read one byte (this is a half byte) + vlcp->tmp = d >> 4; // both initialize and set + vlcp->bits = 4 - ((vlcp->tmp & 7) == 7); //check standard + vlcp->unstuff = (d | 0xF) > 0x8F; //this is useful for the next byte + + //This code is designed for an architecture that read address should + // align to the read size (address multiple of 4 if read size is 4) + //These few lines take care of the case where data is not at a multiple + // of 4 boundary. It reads 1,2,3 up to 4 bytes from the VLC bitstream. + // To read 32 bits, read from (vlcp->data - 3) + num = 1 + (int)((intptr_t)(vlcp->data) & 0x3); + tnum = num < vlcp->size ? num : vlcp->size; + for (i = 0; i < tnum; ++i) { + OPJ_UINT64 d; + OPJ_UINT32 d_bits; + d = *vlcp->data--; // read one byte and move read pointer + //check if the last byte was >0x8F (unstuff == true) and this is 0x7F + d_bits = 8u - ((vlcp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); + vlcp->tmp |= d << vlcp->bits; // move data to vlcp->tmp + vlcp->bits += d_bits; + vlcp->unstuff = d > 0x8F; // for next byte + } + vlcp->size -= tnum; + rev_read(vlcp); // read another 32 buts +} + +//************************************************************************/ +/** @brief Retrieves 32 bits from the head of a rev_struct structure + * + * By the end of this call, vlcp->tmp must have no less than 33 bits + * + * @param [in] vlcp is a pointer to rev_struct structure + */ +static INLINE +OPJ_UINT32 rev_fetch(rev_struct_t *vlcp) +{ + if (vlcp->bits < 32) { // if there are less then 32 bits, read more + rev_read(vlcp); // read 32 bits, but unstuffing might reduce this + if (vlcp->bits < 32) { // if there is still space in vlcp->tmp for 32 bits + rev_read(vlcp); // read another 32 + } + } + return (OPJ_UINT32)vlcp->tmp; // return the head (bottom-most) of vlcp->tmp +} + +//************************************************************************/ +/** @brief Consumes num_bits from a rev_struct structure + * + * @param [in] vlcp is a pointer to rev_struct structure + * @param [in] num_bits is the number of bits to be removed + */ +static INLINE +OPJ_UINT32 rev_advance(rev_struct_t *vlcp, OPJ_UINT32 num_bits) +{ + assert(num_bits <= vlcp->bits); // vlcp->tmp must have more than num_bits + vlcp->tmp >>= num_bits; // remove bits + vlcp->bits -= num_bits; // decrement the number of bits + return (OPJ_UINT32)vlcp->tmp; +} + +//************************************************************************/ +/** @brief Reads and unstuffs from rev_struct + * + * This is different than rev_read in that this fills in zeros when the + * the available data is consumed. The other does not care about the + * values when all data is consumed. + * + * See rev_read for more information about unstuffing + * + * @param [in] mrp is a pointer to rev_struct structure + */ +static INLINE +void rev_read_mrp(rev_struct_t *mrp) +{ + OPJ_UINT32 val; + OPJ_UINT32 tmp; + OPJ_UINT32 bits; + OPJ_BOOL unstuff; + + //process 4 bytes at a time + if (mrp->bits > 32) { + return; + } + val = 0; + if (mrp->size > 3) { // If there are 3 byte or more + // (mrp->data - 3) move pointer back to read 32 bits at once + val = read_le_uint32(mrp->data - 3); // read 32 bits + mrp->data -= 4; // move back pointer + mrp->size -= 4; // reduce count + } else if (mrp->size > 0) { + int i = 24; + while (mrp->size > 0) { + OPJ_UINT32 v = *mrp->data--; // read one byte at a time + val |= (v << i); // put byte in its correct location + --mrp->size; + i -= 8; + } + } + + + //accumulate in tmp, and keep count in bits + tmp = val >> 24; + + //test if the last byte > 0x8F (unstuff must be true) and this is 0x7F + bits = 8u - ((mrp->unstuff && (((val >> 24) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = (val >> 24) > 0x8F; + + //process the next byte + tmp |= ((val >> 16) & 0xFF) << bits; + bits += 8u - ((unstuff && (((val >> 16) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = ((val >> 16) & 0xFF) > 0x8F; + + tmp |= ((val >> 8) & 0xFF) << bits; + bits += 8u - ((unstuff && (((val >> 8) & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = ((val >> 8) & 0xFF) > 0x8F; + + tmp |= (val & 0xFF) << bits; + bits += 8u - ((unstuff && ((val & 0x7F) == 0x7F)) ? 1u : 0u); + unstuff = (val & 0xFF) > 0x8F; + + mrp->tmp |= (OPJ_UINT64)tmp << mrp->bits; // move data to mrp pointer + mrp->bits += bits; + mrp->unstuff = unstuff; // next byte +} + +//************************************************************************/ +/** @brief Initialized rev_struct structure for MRP segment, and reads + * a number of bytes such that the next 32 bits read are from + * an address that is a multiple of 4. Note this is designed for + * an architecture that read size must be compatible with the + * alignment of the read address + * + * There is another similar subroutine rev_init. This subroutine does + * NOT skip the first 12 bits, and starts with unstuff set to true. + * + * @param [in] mrp is a pointer to rev_struct structure + * @param [in] data is a pointer to byte at the start of the cleanup pass + * @param [in] lcup is the length of MagSgn+MEL+VLC segments + * @param [in] len2 is the length of SPP+MRP segments + */ +static INLINE +void rev_init_mrp(rev_struct_t *mrp, OPJ_UINT8* data, int lcup, int len2) +{ + int num, i; + + mrp->data = data + lcup + len2 - 1; + mrp->size = len2; + mrp->unstuff = OPJ_TRUE; + mrp->bits = 0; + mrp->tmp = 0; + + //This code is designed for an architecture that read address should + // align to the read size (address multiple of 4 if read size is 4) + //These few lines take care of the case where data is not at a multiple + // of 4 boundary. It reads 1,2,3 up to 4 bytes from the MRP stream + num = 1 + (int)((intptr_t)(mrp->data) & 0x3); + for (i = 0; i < num; ++i) { + OPJ_UINT64 d; + OPJ_UINT32 d_bits; + + //read a byte, 0 if no more data + d = (mrp->size-- > 0) ? *mrp->data-- : 0; + //check if unstuffing is needed + d_bits = 8u - ((mrp->unstuff && ((d & 0x7F) == 0x7F)) ? 1u : 0u); + mrp->tmp |= d << mrp->bits; // move data to vlcp->tmp + mrp->bits += d_bits; + mrp->unstuff = d > 0x8F; // for next byte + } + rev_read_mrp(mrp); +} + +//************************************************************************/ +/** @brief Retrieves 32 bits from the head of a rev_struct structure + * + * By the end of this call, mrp->tmp must have no less than 33 bits + * + * @param [in] mrp is a pointer to rev_struct structure + */ +static INLINE +OPJ_UINT32 rev_fetch_mrp(rev_struct_t *mrp) +{ + if (mrp->bits < 32) { // if there are less than 32 bits in mrp->tmp + rev_read_mrp(mrp); // read 30-32 bits from mrp + if (mrp->bits < 32) { // if there is a space of 32 bits + rev_read_mrp(mrp); // read more + } + } + return (OPJ_UINT32)mrp->tmp; // return the head of mrp->tmp +} + +//************************************************************************/ +/** @brief Consumes num_bits from a rev_struct structure + * + * @param [in] mrp is a pointer to rev_struct structure + * @param [in] num_bits is the number of bits to be removed + */ +static INLINE +OPJ_UINT32 rev_advance_mrp(rev_struct_t *mrp, OPJ_UINT32 num_bits) +{ + assert(num_bits <= mrp->bits); // we must not consume more than mrp->bits + mrp->tmp >>= num_bits; // discard the lowest num_bits bits + mrp->bits -= num_bits; + return (OPJ_UINT32)mrp->tmp; // return data after consumption +} + +//************************************************************************/ +/** @brief Decode initial UVLC to get the u value (or u_q) + * + * @param [in] vlc is the head of the VLC bitstream + * @param [in] mode is 0, 1, 2, 3, or 4. Values in 0 to 3 are composed of + * u_off of 1st quad and 2nd quad of a quad pair. The value + * 4 occurs when both bits are 1, and the event decoded + * from MEL bitstream is also 1. + * @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1; + * this value is a partial calculation of u + kappa. + */ +static INLINE +OPJ_UINT32 decode_init_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u) +{ + //table stores possible decoding three bits from vlc + // there are 8 entries for xx1, x10, 100, 000, where x means do not care + // table value is made up of + // 2 bits in the LSB for prefix length + // 3 bits for suffix length + // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) + static const OPJ_UINT8 dec[8] = { // the index is the prefix codeword + 3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" + 1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" + 2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" + 1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" + 3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" + 1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" + 2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" + 1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" + }; + + OPJ_UINT32 consumed_bits = 0; + if (mode == 0) { // both u_off are 0 + u[0] = u[1] = 1; //Kappa is 1 for initial line + } else if (mode <= 2) { // u_off are either 01 or 10 + OPJ_UINT32 d; + OPJ_UINT32 suffix_len; + + d = dec[vlc & 0x7]; //look at the least significant 3 bits + vlc >>= d & 0x3; //prefix length + consumed_bits += d & 0x3; + + suffix_len = ((d >> 2) & 0x7); + consumed_bits += suffix_len; + + d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = (mode == 1) ? d + 1 : 1; // kappa is 1 for initial line + u[1] = (mode == 1) ? 1 : d + 1; // kappa is 1 for initial line + } else if (mode == 3) { // both u_off are 1, and MEL event is 0 + OPJ_UINT32 d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d1 & 0x3; // Consume bits + consumed_bits += d1 & 0x3; + + if ((d1 & 0x3) > 2) { + OPJ_UINT32 suffix_len; + + //u_{q_2} prefix + u[1] = (vlc & 1) + 1 + 1; //Kappa is 1 for initial line + ++consumed_bits; + vlc >>= 1; + + suffix_len = ((d1 >> 2) & 0x7); + consumed_bits += suffix_len; + d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = d1 + 1; //Kappa is 1 for initial line + } else { + OPJ_UINT32 d2; + OPJ_UINT32 suffix_len; + + d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d2 & 0x3; // Consume bits + consumed_bits += d2 & 0x3; + + suffix_len = ((d1 >> 2) & 0x7); + consumed_bits += suffix_len; + + d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = d1 + 1; //Kappa is 1 for initial line + vlc >>= suffix_len; + + suffix_len = ((d2 >> 2) & 0x7); + consumed_bits += suffix_len; + + d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[1] = d2 + 1; //Kappa is 1 for initial line + } + } else if (mode == 4) { // both u_off are 1, and MEL event is 1 + OPJ_UINT32 d1; + OPJ_UINT32 d2; + OPJ_UINT32 suffix_len; + + d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d1 & 0x3; // Consume bits + consumed_bits += d1 & 0x3; + + d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d2 & 0x3; // Consume bits + consumed_bits += d2 & 0x3; + + suffix_len = ((d1 >> 2) & 0x7); + consumed_bits += suffix_len; + + d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = d1 + 3; // add 2+kappa + vlc >>= suffix_len; + + suffix_len = ((d2 >> 2) & 0x7); + consumed_bits += suffix_len; + + d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[1] = d2 + 3; // add 2+kappa + } + return consumed_bits; +} + +//************************************************************************/ +/** @brief Decode non-initial UVLC to get the u value (or u_q) + * + * @param [in] vlc is the head of the VLC bitstream + * @param [in] mode is 0, 1, 2, or 3. The 1st bit is u_off of 1st quad + * and 2nd for 2nd quad of a quad pair + * @param [out] u is the u value (or u_q) + 1. Note: we produce u + 1; + * this value is a partial calculation of u + kappa. + */ +static INLINE +OPJ_UINT32 decode_noninit_uvlc(OPJ_UINT32 vlc, OPJ_UINT32 mode, OPJ_UINT32 *u) +{ + //table stores possible decoding three bits from vlc + // there are 8 entries for xx1, x10, 100, 000, where x means do not care + // table value is made up of + // 2 bits in the LSB for prefix length + // 3 bits for suffix length + // 3 bits in the MSB for prefix value (u_pfx in Table 3 of ITU T.814) + static const OPJ_UINT8 dec[8] = { + 3 | (5 << 2) | (5 << 5), //000 == 000, prefix codeword "000" + 1 | (0 << 2) | (1 << 5), //001 == xx1, prefix codeword "1" + 2 | (0 << 2) | (2 << 5), //010 == x10, prefix codeword "01" + 1 | (0 << 2) | (1 << 5), //011 == xx1, prefix codeword "1" + 3 | (1 << 2) | (3 << 5), //100 == 100, prefix codeword "001" + 1 | (0 << 2) | (1 << 5), //101 == xx1, prefix codeword "1" + 2 | (0 << 2) | (2 << 5), //110 == x10, prefix codeword "01" + 1 | (0 << 2) | (1 << 5) //111 == xx1, prefix codeword "1" + }; + + OPJ_UINT32 consumed_bits = 0; + if (mode == 0) { + u[0] = u[1] = 1; //for kappa + } else if (mode <= 2) { //u_off are either 01 or 10 + OPJ_UINT32 d; + OPJ_UINT32 suffix_len; + + d = dec[vlc & 0x7]; //look at the least significant 3 bits + vlc >>= d & 0x3; //prefix length + consumed_bits += d & 0x3; + + suffix_len = ((d >> 2) & 0x7); + consumed_bits += suffix_len; + + d = (d >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = (mode == 1) ? d + 1 : 1; //for kappa + u[1] = (mode == 1) ? 1 : d + 1; //for kappa + } else if (mode == 3) { // both u_off are 1 + OPJ_UINT32 d1; + OPJ_UINT32 d2; + OPJ_UINT32 suffix_len; + + d1 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d1 & 0x3; // Consume bits + consumed_bits += d1 & 0x3; + + d2 = dec[vlc & 0x7]; // LSBs of VLC are prefix codeword + vlc >>= d2 & 0x3; // Consume bits + consumed_bits += d2 & 0x3; + + suffix_len = ((d1 >> 2) & 0x7); + consumed_bits += suffix_len; + + d1 = (d1 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[0] = d1 + 1; //1 for kappa + vlc >>= suffix_len; + + suffix_len = ((d2 >> 2) & 0x7); + consumed_bits += suffix_len; + + d2 = (d2 >> 5) + (vlc & ((1U << suffix_len) - 1)); // u value + u[1] = d2 + 1; //1 for kappa + } + return consumed_bits; +} + +//************************************************************************/ +/** @brief State structure for reading and unstuffing of forward-growing + * bitstreams; these are: MagSgn and SPP bitstreams + */ +typedef struct frwd_struct { + const OPJ_UINT8* data; //!<pointer to bitstream + OPJ_UINT64 tmp; //!<temporary buffer of read data + OPJ_UINT32 bits; //!<number of bits stored in tmp + OPJ_BOOL unstuff; //!<true if a bit needs to be unstuffed from next byte + int size; //!<size of data + OPJ_UINT32 X; //!<0 or 0xFF, X's are inserted at end of bitstream +} frwd_struct_t; + +//************************************************************************/ +/** @brief Read and unstuffs 32 bits from forward-growing bitstream + * + * A subroutine to read from both the MagSgn or SPP bitstreams; + * in particular, when MagSgn bitstream is consumed, 0xFF's are fed, + * while when SPP is exhausted 0's are fed in. + * X controls this value. + * + * Unstuffing prevent sequences that are more than 0xFF7F from appearing + * in the compressed sequence. So whenever a value of 0xFF is coded, the + * MSB of the next byte is set 0 and must be ignored during decoding. + * + * Reading can go beyond the end of buffer by up to 3 bytes. + * + * @param [in] msp is a pointer to frwd_struct_t structure + * + */ +static INLINE +void frwd_read(frwd_struct_t *msp) +{ + OPJ_UINT32 val; + OPJ_UINT32 bits; + OPJ_UINT32 t; + OPJ_BOOL unstuff; + + assert(msp->bits <= 32); // assert that there is a space for 32 bits + + val = 0u; + if (msp->size > 3) { + val = read_le_uint32(msp->data); // read 32 bits + msp->data += 4; // increment pointer + msp->size -= 4; // reduce size + } else if (msp->size > 0) { + int i = 0; + val = msp->X != 0 ? 0xFFFFFFFFu : 0; + while (msp->size > 0) { + OPJ_UINT32 v = *msp->data++; // read one byte at a time + OPJ_UINT32 m = ~(0xFFu << i); // mask of location + val = (val & m) | (v << i); // put one byte in its correct location + --msp->size; + i += 8; + } + } else { + val = msp->X != 0 ? 0xFFFFFFFFu : 0; + } + + // we accumulate in t and keep a count of the number of bits in bits + bits = 8u - (msp->unstuff ? 1u : 0u); + t = val & 0xFF; + unstuff = ((val & 0xFF) == 0xFF); // Do we need unstuffing next? + + t |= ((val >> 8) & 0xFF) << bits; + bits += 8u - (unstuff ? 1u : 0u); + unstuff = (((val >> 8) & 0xFF) == 0xFF); + + t |= ((val >> 16) & 0xFF) << bits; + bits += 8u - (unstuff ? 1u : 0u); + unstuff = (((val >> 16) & 0xFF) == 0xFF); + + t |= ((val >> 24) & 0xFF) << bits; + bits += 8u - (unstuff ? 1u : 0u); + msp->unstuff = (((val >> 24) & 0xFF) == 0xFF); // for next byte + + msp->tmp |= ((OPJ_UINT64)t) << msp->bits; // move data to msp->tmp + msp->bits += bits; +} + +//************************************************************************/ +/** @brief Initialize frwd_struct_t struct and reads some bytes + * + * @param [in] msp is a pointer to frwd_struct_t + * @param [in] data is a pointer to the start of data + * @param [in] size is the number of byte in the bitstream + * @param [in] X is the value fed in when the bitstream is exhausted. + * See frwd_read. + */ +static INLINE +void frwd_init(frwd_struct_t *msp, const OPJ_UINT8* data, int size, + OPJ_UINT32 X) +{ + int num, i; + + msp->data = data; + msp->tmp = 0; + msp->bits = 0; + msp->unstuff = OPJ_FALSE; + msp->size = size; + msp->X = X; + assert(msp->X == 0 || msp->X == 0xFF); + + //This code is designed for an architecture that read address should + // align to the read size (address multiple of 4 if read size is 4) + //These few lines take care of the case where data is not at a multiple + // of 4 boundary. It reads 1,2,3 up to 4 bytes from the bitstream + num = 4 - (int)((intptr_t)(msp->data) & 0x3); + for (i = 0; i < num; ++i) { + OPJ_UINT64 d; + //read a byte if the buffer is not exhausted, otherwise set it to X + d = msp->size-- > 0 ? *msp->data++ : msp->X; + msp->tmp |= (d << msp->bits); // store data in msp->tmp + msp->bits += 8u - (msp->unstuff ? 1u : 0u); // number of bits added to msp->tmp + msp->unstuff = ((d & 0xFF) == 0xFF); // unstuffing for next byte + } + frwd_read(msp); // read 32 bits more +} + +//************************************************************************/ +/** @brief Consume num_bits bits from the bitstream of frwd_struct_t + * + * @param [in] msp is a pointer to frwd_struct_t + * @param [in] num_bits is the number of bit to consume + */ +static INLINE +void frwd_advance(frwd_struct_t *msp, OPJ_UINT32 num_bits) +{ + assert(num_bits <= msp->bits); + msp->tmp >>= num_bits; // consume num_bits + msp->bits -= num_bits; +} + +//************************************************************************/ +/** @brief Fetches 32 bits from the frwd_struct_t bitstream + * + * @param [in] msp is a pointer to frwd_struct_t + */ +static INLINE +OPJ_UINT32 frwd_fetch(frwd_struct_t *msp) +{ + if (msp->bits < 32) { + frwd_read(msp); + if (msp->bits < 32) { //need to test + frwd_read(msp); + } + } + return (OPJ_UINT32)msp->tmp; +} + +//************************************************************************/ +/** @brief Allocates T1 buffers + * + * @param [in, out] t1 is codeblock coefficients storage + * @param [in] w is codeblock width + * @param [in] h is codeblock height + */ +static OPJ_BOOL opj_t1_allocate_buffers( + opj_t1_t *t1, + OPJ_UINT32 w, + OPJ_UINT32 h) +{ + OPJ_UINT32 flagssize; + + /* No risk of overflow. Prior checks ensure those assert are met */ + /* They are per the specification */ + assert(w <= 1024); + assert(h <= 1024); + assert(w * h <= 4096); + + /* encoder uses tile buffer, so no need to allocate */ + { + OPJ_UINT32 datasize = w * h; + + if (datasize > t1->datasize) { + opj_aligned_free(t1->data); + t1->data = (OPJ_INT32*) + opj_aligned_malloc(datasize * sizeof(OPJ_INT32)); + if (!t1->data) { + /* FIXME event manager error callback */ + return OPJ_FALSE; + } + t1->datasize = datasize; + } + /* memset first arg is declared to never be null by gcc */ + if (t1->data != NULL) { + memset(t1->data, 0, datasize * sizeof(OPJ_INT32)); + } + } + + // We expand these buffers to multiples of 16 bytes. + // We need 4 buffers of 129 integers each, expanded to 132 integers each + // We also need 514 bytes of buffer, expanded to 528 bytes + flagssize = 132U * sizeof(OPJ_UINT32) * 4U; // expanded to multiple of 16 + flagssize += 528U; // 514 expanded to multiples of 16 + + { + if (flagssize > t1->flagssize) { + + opj_aligned_free(t1->flags); + t1->flags = (opj_flag_t*) opj_aligned_malloc(flagssize * sizeof(opj_flag_t)); + if (!t1->flags) { + /* FIXME event manager error callback */ + return OPJ_FALSE; + } + } + t1->flagssize = flagssize; + + memset(t1->flags, 0, flagssize * sizeof(opj_flag_t)); + } + + t1->w = w; + t1->h = h; + + return OPJ_TRUE; +} + +/** +Decode 1 HT code-block +@param t1 T1 handle +@param cblk Code-block coding parameters +@param orient +@param roishift Region of interest shifting value +@param cblksty Code-block style +@param p_manager the event manager +@param p_manager_mutex mutex for the event manager +@param check_pterm whether PTERM correct termination should be checked +*/ +OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1, + opj_tcd_cblk_dec_t* cblk, + OPJ_UINT32 orient, + OPJ_UINT32 roishift, + OPJ_UINT32 cblksty, + opj_event_mgr_t *p_manager, + opj_mutex_t* p_manager_mutex, + OPJ_BOOL check_pterm); + +//************************************************************************/ +/** @brief Decodes one codeblock, processing the cleanup, siginificance + * propagation, and magnitude refinement pass + * + * @param [in, out] t1 is codeblock coefficients storage + * @param [in] cblk is codeblock properties + * @param [in] orient is the subband to which the codeblock belongs (not needed) + * @param [in] roishift is region of interest shift + * @param [in] cblksty is codeblock style + * @param [in] p_manager is events print manager + * @param [in] p_manager_mutex a mutex to control access to p_manager + * @param [in] check_pterm: check termination (not used) + */ +OPJ_BOOL opj_t1_ht_decode_cblk(opj_t1_t *t1, + opj_tcd_cblk_dec_t* cblk, + OPJ_UINT32 orient, + OPJ_UINT32 roishift, + OPJ_UINT32 cblksty, + opj_event_mgr_t *p_manager, + opj_mutex_t* p_manager_mutex, + OPJ_BOOL check_pterm) +{ + OPJ_BYTE* cblkdata = NULL; + OPJ_UINT8* coded_data; + OPJ_UINT32* decoded_data; + OPJ_UINT32 zero_bplanes; + OPJ_UINT32 num_passes; + OPJ_UINT32 lengths1; + OPJ_UINT32 lengths2; + OPJ_INT32 width; + OPJ_INT32 height; + OPJ_INT32 stride; + OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; + OPJ_UINT32 p; + OPJ_UINT32 zero_bplanes_p1; + int lcup, scup; + dec_mel_t mel; + rev_struct_t vlc; + frwd_struct_t magsgn; + frwd_struct_t sigprop; + rev_struct_t magref; + OPJ_UINT8 *lsp, *line_state; + int run; + OPJ_UINT32 vlc_val; // fetched data from VLC bitstream + OPJ_UINT32 qinf[2]; + OPJ_UINT32 c_q; + OPJ_UINT32* sp; + OPJ_INT32 x, y; // loop indices + OPJ_BOOL stripe_causal = (cblksty & J2K_CCP_CBLKSTY_VSC) != 0; + OPJ_UINT32 cblk_len = 0; + + (void)(orient); // stops unused parameter message + (void)(check_pterm); // stops unused parameter message + + // We ignor orient, because the same decoder is used for all subbands + // We also ignore check_pterm, because I am not sure how it applies + if (roishift != 0) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "We do not support ROI in decoding " + "HT codeblocks\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + if (!opj_t1_allocate_buffers( + t1, + (OPJ_UINT32)(cblk->x1 - cblk->x0), + (OPJ_UINT32)(cblk->y1 - cblk->y0))) { + return OPJ_FALSE; + } + + if (cblk->Mb == 0) { + return OPJ_TRUE; + } + + /* numbps = Mb + 1 - zero_bplanes, Mb = Kmax, zero_bplanes = missing_msbs */ + zero_bplanes = (cblk->Mb + 1) - cblk->numbps; + + /* Compute whole codeblock length from chunk lengths */ + cblk_len = 0; + { + OPJ_UINT32 i; + for (i = 0; i < cblk->numchunks; i++) { + cblk_len += cblk->chunks[i].len; + } + } + + if (cblk->numchunks > 1 || t1->mustuse_cblkdatabuffer) { + OPJ_UINT32 i; + + /* Allocate temporary memory if needed */ + if (cblk_len > t1->cblkdatabuffersize) { + cblkdata = (OPJ_BYTE*)opj_realloc( + t1->cblkdatabuffer, cblk_len); + if (cblkdata == NULL) { + return OPJ_FALSE; + } + t1->cblkdatabuffer = cblkdata; + t1->cblkdatabuffersize = cblk_len; + } + + /* Concatenate all chunks */ + cblkdata = t1->cblkdatabuffer; + if (cblkdata == NULL) { + return OPJ_FALSE; + } + cblk_len = 0; + for (i = 0; i < cblk->numchunks; i++) { + memcpy(cblkdata + cblk_len, cblk->chunks[i].data, cblk->chunks[i].len); + cblk_len += cblk->chunks[i].len; + } + } else if (cblk->numchunks == 1) { + cblkdata = cblk->chunks[0].data; + } else { + /* Not sure if that can happen in practice, but avoid Coverity to */ + /* think we will dereference a null cblkdta pointer */ + return OPJ_TRUE; + } + + // OPJ_BYTE* coded_data is a pointer to bitstream + coded_data = cblkdata; + // OPJ_UINT32* decoded_data is a pointer to decoded codeblock data buf. + decoded_data = (OPJ_UINT32*)t1->data; + // OPJ_UINT32 num_passes is the number of passes: 1 if CUP only, 2 for + // CUP+SPP, and 3 for CUP+SPP+MRP + num_passes = cblk->numsegs > 0 ? cblk->segs[0].real_num_passes : 0; + num_passes += cblk->numsegs > 1 ? cblk->segs[1].real_num_passes : 0; + // OPJ_UINT32 lengths1 is the length of cleanup pass + lengths1 = num_passes > 0 ? cblk->segs[0].len : 0; + // OPJ_UINT32 lengths2 is the length of refinement passes (either SPP only or SPP+MRP) + lengths2 = num_passes > 1 ? cblk->segs[1].len : 0; + // OPJ_INT32 width is the decoded codeblock width + width = cblk->x1 - cblk->x0; + // OPJ_INT32 height is the decoded codeblock height + height = cblk->y1 - cblk->y0; + // OPJ_INT32 stride is the decoded codeblock buffer stride + stride = width; + + /* sigma1 and sigma2 contains significant (i.e., non-zero) pixel + * locations. The buffers are used interchangeably, because we need + * more than 4 rows of significance information at a given time. + * Each 32 bits contain significance information for 4 rows of 8 + * columns each. If we denote 32 bits by 0xaaaaaaaa, the each "a" is + * called a nibble and has significance information for 4 rows. + * The least significant nibble has information for the first column, + * and so on. The nibble's LSB is for the first row, and so on. + * Since, at most, we can have 1024 columns in a quad, we need 128 + * entries; we added 1 for convenience when propagation of signifcance + * goes outside the structure + * To work in OpenJPEG these buffers has been expanded to 132. + */ + // OPJ_UINT32 *pflags, *sigma1, *sigma2, *mbr1, *mbr2, *sip, sip_shift; + pflags = (OPJ_UINT32 *)t1->flags; + sigma1 = pflags; + sigma2 = sigma1 + 132; + // mbr arrangement is similar to sigma; mbr contains locations + // that become significant during significance propagation pass + mbr1 = sigma2 + 132; + mbr2 = mbr1 + 132; + //a pointer to sigma + sip = sigma1; //pointers to arrays to be used interchangeably + sip_shift = 0; //the amount of shift needed for sigma + + if (num_passes > 1 && lengths2 == 0) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_WARNING, "A malformed codeblock that has " + "more than one coding pass, but zero length for " + "2nd and potentially the 3rd pass in an HT codeblock.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + num_passes = 1; + } + if (num_passes > 3) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "We do not support more than 3 " + "coding passes in an HT codeblock; This codeblocks has " + "%d passes.\n", num_passes); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + if (cblk->Mb > 30) { + /* This check is better moved to opj_t2_read_packet_header() in t2.c + We do not have enough precision to decode any passes + The design of openjpeg assumes that the bits of a 32-bit integer are + assigned as follows: + bit 31 is for sign + bits 30-1 are for magnitude + bit 0 is for the center of the quantization bin + Therefore we can only do values of cblk->Mb <= 30 + */ + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "32 bits are not enough to " + "decode this codeblock, since the number of " + "bitplane, %d, is larger than 30.\n", cblk->Mb); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + if (zero_bplanes > cblk->Mb) { + /* This check is better moved to opj_t2_read_packet_header() in t2.c, + in the line "l_cblk->numbps = (OPJ_UINT32)l_band->numbps + 1 - i;" + where i is the zero bitplanes, and should be no larger than cblk->Mb + We cannot have more zero bitplanes than there are planes. */ + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " + "Decoding this codeblock is stopped. There are " + "%d zero bitplanes in %d bitplanes.\n", + zero_bplanes, cblk->Mb); + + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } else if (zero_bplanes == cblk->Mb && num_passes > 1) { + /* When the number of zero bitplanes is equal to the number of bitplanes, + only the cleanup pass makes sense*/ + if (only_cleanup_pass_is_decoded == OPJ_FALSE) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + /* We have a second check to prevent the possibility of an overrun condition, + in the very unlikely event of a second thread discovering that + only_cleanup_pass_is_decoded is false before the first thread changing + the condition. */ + if (only_cleanup_pass_is_decoded == OPJ_FALSE) { + only_cleanup_pass_is_decoded = OPJ_TRUE; + opj_event_msg(p_manager, EVT_WARNING, "Malformed HT codeblock. " + "When the number of zero planes bitplanes is " + "equal to the number of bitplanes, only the cleanup " + "pass makes sense, but we have %d passes in this " + "codeblock. Therefore, only the cleanup pass will be " + "decoded. This message will not be displayed again.\n", + num_passes); + } + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + } + num_passes = 1; + } + + /* OPJ_UINT32 */ + p = cblk->numbps; + + // OPJ_UINT32 zero planes plus 1 + zero_bplanes_p1 = zero_bplanes + 1; + + if (lengths1 < 2 || (OPJ_UINT32)lengths1 > cblk_len || + (OPJ_UINT32)(lengths1 + lengths2) > cblk_len) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " + "Invalid codeblock length values.\n"); + + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + // read scup and fix the bytes there + lcup = (int)lengths1; // length of CUP + //scup is the length of MEL + VLC + scup = (((int)coded_data[lcup - 1]) << 4) + (coded_data[lcup - 2] & 0xF); + if (scup < 2 || scup > lcup || scup > 4079) { //something is wrong + /* The standard stipulates 2 <= Scup <= min(Lcup, 4079) */ + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " + "One of the following condition is not met: " + "2 <= Scup <= min(Lcup, 4079)\n"); + + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + // init structures + if (mel_init(&mel, coded_data, lcup, scup) == OPJ_FALSE) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " + "Incorrect MEL segment sequence.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + rev_init(&vlc, coded_data, lcup, scup); + frwd_init(&magsgn, coded_data, lcup - scup, 0xFF); + if (num_passes > 1) { // needs to be tested + frwd_init(&sigprop, coded_data + lengths1, (int)lengths2, 0); + } + if (num_passes > 2) { + rev_init_mrp(&magref, coded_data, (int)lengths1, (int)lengths2); + } + + /** State storage + * One byte per quad; for 1024 columns, or 512 quads, we need + * 512 bytes. We are using 2 extra bytes one on the left and one on + * the right for convenience. + * + * The MSB bit in each byte is (\sigma^nw | \sigma^n), and the 7 LSBs + * contain max(E^nw | E^n) + */ + + // 514 is enough for a block width of 1024, +2 extra + // here expanded to 528 + line_state = (OPJ_UINT8 *)(mbr2 + 132); + + //initial 2 lines + ///////////////// + lsp = line_state; // point to line state + lsp[0] = 0; // for initial row of quad, we set to 0 + run = mel_get_run(&mel); // decode runs of events from MEL bitstrm + // data represented as runs of 0 events + // See mel_decode description + qinf[0] = qinf[1] = 0; // quad info decoded from VLC bitstream + c_q = 0; // context for quad q + sp = decoded_data; // decoded codeblock samples + // vlc_val; // fetched data from VLC bitstream + + for (x = 0; x < width; x += 4) { // one iteration per quad pair + OPJ_UINT32 U_q[2]; // u values for the quad pair + OPJ_UINT32 uvlc_mode; + OPJ_UINT32 consumed_bits; + OPJ_UINT32 m_n, v_n; + OPJ_UINT32 ms_val; + OPJ_UINT32 locs; + + // decode VLC + ///////////// + + //first quad + // Get the head of the VLC bitstream. One fetch is enough for two + // quads, since the largest VLC code is 7 bits, and maximum number of + // bits used for u is 8. Therefore for two quads we need 30 bits + // (if we include unstuffing, then 32 bits are enough, since we have + // a maximum of one stuffing per two bytes) + vlc_val = rev_fetch(&vlc); + + //decode VLC using the context c_q and the head of the VLC bitstream + qinf[0] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F) ]; + + if (c_q == 0) { // if zero context, we need to use one MEL event + run -= 2; //the number of 0 events is multiplied by 2, so subtract 2 + + // Is the run terminated in 1? if so, use decoded VLC code, + // otherwise, discard decoded data, since we will decoded again + // using a different context + qinf[0] = (run == -1) ? qinf[0] : 0; + + // is run -1 or -2? this means a run has been consumed + if (run < 0) { + run = mel_get_run(&mel); // get another run + } + } + + // prepare context for the next quad; eqn. 1 in ITU T.814 + c_q = ((qinf[0] & 0x10) >> 4) | ((qinf[0] & 0xE0) >> 5); + + //remove data from vlc stream (0 bits are removed if qinf is not used) + vlc_val = rev_advance(&vlc, qinf[0] & 0x7); + + //update sigma + // The update depends on the value of x; consider one OPJ_UINT32 + // if x is 0, 8, 16 and so on, then this line update c locations + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB c c 0 0 0 0 0 0 + // c c 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // if x is 4, 12, 20, then this line update locations c + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB 0 0 0 0 c c 0 0 + // 0 0 0 0 c c 0 0 + // 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + *sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift; + + //second quad + qinf[1] = 0; + if (x + 2 < width) { // do not run if codeblock is narrower + //decode VLC using the context c_q and the head of the VLC bitstream + qinf[1] = vlc_tbl0[(c_q << 7) | (vlc_val & 0x7F)]; + + // if context is zero, use one MEL event + if (c_q == 0) { //zero context + run -= 2; //subtract 2, since events number if multiplied by 2 + + // if event is 0, discard decoded qinf + qinf[1] = (run == -1) ? qinf[1] : 0; + + if (run < 0) { // have we consumed all events in a run + run = mel_get_run(&mel); // if yes, then get another run + } + } + + //prepare context for the next quad, eqn. 1 in ITU T.814 + c_q = ((qinf[1] & 0x10) >> 4) | ((qinf[1] & 0xE0) >> 5); + + //remove data from vlc stream, if qinf is not used, cwdlen is 0 + vlc_val = rev_advance(&vlc, qinf[1] & 0x7); + } + + //update sigma + // The update depends on the value of x; consider one OPJ_UINT32 + // if x is 0, 8, 16 and so on, then this line update c locations + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB 0 0 c c 0 0 0 0 + // 0 0 c c 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // if x is 4, 12, 20, then this line update locations c + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB 0 0 0 0 0 0 c c + // 0 0 0 0 0 0 c c + // 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift); + + sip += x & 0x7 ? 1 : 0; // move sigma pointer to next entry + sip_shift ^= 0x10; // increment/decrement sip_shift by 16 + + // retrieve u + ///////////// + + // uvlc_mode is made up of u_offset bits from the quad pair + uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); + if (uvlc_mode == 3) { // if both u_offset are set, get an event from + // the MEL run of events + run -= 2; //subtract 2, since events number if multiplied by 2 + uvlc_mode += (run == -1) ? 1 : 0; //increment uvlc_mode if event is 1 + if (run < 0) { // if run is consumed (run is -1 or -2), get another run + run = mel_get_run(&mel); + } + } + //decode uvlc_mode to get u for both quads + consumed_bits = decode_init_uvlc(vlc_val, uvlc_mode, U_q); + if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. Decoding " + "this codeblock is stopped. U_q is larger than zero " + "bitplanes + 1 \n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + //consume u bits in the VLC code + vlc_val = rev_advance(&vlc, consumed_bits); + + //decode magsgn and update line_state + ///////////////////////////////////// + + //We obtain a mask for the samples locations that needs evaluation + locs = 0xFF; + if (x + 4 > width) { + locs >>= (x + 4 - width) << 1; // limits width + } + locs = height > 1 ? locs : (locs & 0x55); // limits height + + if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " + "VLC code produces significant samples outside " + "the codeblock area.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + //first quad, starting at first sample in quad and moving on + if (qinf[0] & 0x10) { //is it significant? (sigma_n) + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); //get 32 bits of magsgn data + m_n = U_q[0] - ((qinf[0] >> 12) & 1); //evaluate m_n (number of bits + // to read from bitstream), using EMB e_k + frwd_advance(&magsgn, m_n); //consume m_n + val = ms_val << 31; //get sign bit + v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits + v_n |= ((qinf[0] & 0x100) >> 8) << m_n; //add EMB e_1 as MSB + v_n |= 1; //add center of bin + //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit + //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x1) { // if this is inside the codeblock, set the + sp[0] = 0; // sample to zero + } + + if (qinf[0] & 0x20) { //sigma_n + OPJ_UINT32 val, t; + + ms_val = frwd_fetch(&magsgn); //get 32 bits + m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n, uses EMB e_k + frwd_advance(&magsgn, m_n); //consume m_n + val = ms_val << 31; //get sign bit + v_n = ms_val & ((1U << m_n) - 1); //keep only m_n bits + v_n |= ((qinf[0] & 0x200) >> 9) << m_n; //add EMB e_1 + v_n |= 1; //bin center + //v_n now has 2 * (\mu - 1) + 0.5 with correct sign bit + //add 2 to make it 2*\mu+0.5, shift it up to missing MSBs + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^N), and E^N + t = lsp[0] & 0x7F; // keep E^NW + v_n = 32 - count_leading_zeros(v_n); + lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s + } else if (locs & 0x2) { // if this is inside the codeblock, set the + sp[stride] = 0; // sample to zero + } + + ++lsp; // move to next quad information + ++sp; // move to next column of samples + + //this is similar to the above two samples + if (qinf[0] & 0x40) { + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 14) & 1); + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[0] & 0x400) >> 10) << m_n); + v_n |= 1; + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x4) { + sp[0] = 0; + } + + lsp[0] = 0; + if (qinf[0] & 0x80) { + OPJ_UINT32 val; + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= ((qinf[0] & 0x800) >> 11) << m_n; + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //line_state: bit 7 (\sigma^NW), and E^NW for next quad + lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); + } else if (locs & 0x8) { //if outside set to 0 + sp[stride] = 0; + } + + ++sp; //move to next column + + //second quad + if (qinf[1] & 0x10) { + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x100) >> 8) << m_n); + v_n |= 1; + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x10) { + sp[0] = 0; + } + + if (qinf[1] & 0x20) { + OPJ_UINT32 val, t; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x200) >> 9) << m_n); + v_n |= 1; + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^N), and E^N + t = lsp[0] & 0x7F; //E^NW + v_n = 32 - count_leading_zeros(v_n); //E^N + lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); //max(E^NW, E^N) | s + } else if (locs & 0x20) { + sp[stride] = 0; //no need to update line_state + } + + ++lsp; //move line state to next quad + ++sp; //move to next sample + + if (qinf[1] & 0x40) { + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x400) >> 10) << m_n); + v_n |= 1; + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x40) { + sp[0] = 0; + } + + lsp[0] = 0; + if (qinf[1] & 0x80) { + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x800) >> 11) << m_n); + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //line_state: bit 7 (\sigma^NW), and E^NW for next quad + lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); + } else if (locs & 0x80) { + sp[stride] = 0; + } + + ++sp; + } + + //non-initial lines + ////////////////////////// + for (y = 2; y < height; /*done at the end of loop*/) { + OPJ_UINT32 *sip; + OPJ_UINT8 ls0; + OPJ_INT32 x; + + sip_shift ^= 0x2; // shift sigma to the upper half od the nibble + sip_shift &= 0xFFFFFFEFU; //move back to 0 (it might have been at 0x10) + sip = y & 0x4 ? sigma2 : sigma1; //choose sigma array + + lsp = line_state; + ls0 = lsp[0]; // read the line state value + lsp[0] = 0; // and set it to zero + sp = decoded_data + y * stride; // generated samples + c_q = 0; // context + for (x = 0; x < width; x += 4) { + OPJ_UINT32 U_q[2]; + OPJ_UINT32 uvlc_mode, consumed_bits; + OPJ_UINT32 m_n, v_n; + OPJ_UINT32 ms_val; + OPJ_UINT32 locs; + + // decode vlc + ///////////// + + //first quad + // get context, eqn. 2 ITU T.814 + // c_q has \sigma^W | \sigma^SW + c_q |= (ls0 >> 7); //\sigma^NW | \sigma^N + c_q |= (lsp[1] >> 5) & 0x4; //\sigma^NE | \sigma^NF + + //the following is very similar to previous code, so please refer to + // that + vlc_val = rev_fetch(&vlc); + qinf[0] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; + if (c_q == 0) { //zero context + run -= 2; + qinf[0] = (run == -1) ? qinf[0] : 0; + if (run < 0) { + run = mel_get_run(&mel); + } + } + //prepare context for the next quad, \sigma^W | \sigma^SW + c_q = ((qinf[0] & 0x40) >> 5) | ((qinf[0] & 0x80) >> 6); + + //remove data from vlc stream + vlc_val = rev_advance(&vlc, qinf[0] & 0x7); + + //update sigma + // The update depends on the value of x and y; consider one OPJ_UINT32 + // if x is 0, 8, 16 and so on, and y is 2, 6, etc., then this + // line update c locations + // nibble (4 bits) number 0 1 2 3 4 5 6 7 + // LSB 0 0 0 0 0 0 0 0 + // 0 0 0 0 0 0 0 0 + // c c 0 0 0 0 0 0 + // c c 0 0 0 0 0 0 + *sip |= (((qinf[0] & 0x30) >> 4) | ((qinf[0] & 0xC0) >> 2)) << sip_shift; + + //second quad + qinf[1] = 0; + if (x + 2 < width) { + c_q |= (lsp[1] >> 7); + c_q |= (lsp[2] >> 5) & 0x4; + qinf[1] = vlc_tbl1[(c_q << 7) | (vlc_val & 0x7F)]; + if (c_q == 0) { //zero context + run -= 2; + qinf[1] = (run == -1) ? qinf[1] : 0; + if (run < 0) { + run = mel_get_run(&mel); + } + } + //prepare context for the next quad + c_q = ((qinf[1] & 0x40) >> 5) | ((qinf[1] & 0x80) >> 6); + //remove data from vlc stream + vlc_val = rev_advance(&vlc, qinf[1] & 0x7); + } + + //update sigma + *sip |= (((qinf[1] & 0x30) | ((qinf[1] & 0xC0) << 2))) << (4 + sip_shift); + + sip += x & 0x7 ? 1 : 0; + sip_shift ^= 0x10; + + //retrieve u + //////////// + uvlc_mode = ((qinf[0] & 0x8) >> 3) | ((qinf[1] & 0x8) >> 2); + consumed_bits = decode_noninit_uvlc(vlc_val, uvlc_mode, U_q); + vlc_val = rev_advance(&vlc, consumed_bits); + + //calculate E^max and add it to U_q, eqns 5 and 6 in ITU T.814 + if ((qinf[0] & 0xF0) & ((qinf[0] & 0xF0) - 1)) { // is \gamma_q 1? + OPJ_UINT32 E = (ls0 & 0x7Fu); + E = E > (lsp[1] & 0x7Fu) ? E : (lsp[1] & 0x7Fu); //max(E, E^NE, E^NF) + //since U_q already has u_q + 1, we subtract 2 instead of 1 + U_q[0] += E > 2 ? E - 2 : 0; + } + + if ((qinf[1] & 0xF0) & ((qinf[1] & 0xF0) - 1)) { //is \gamma_q 1? + OPJ_UINT32 E = (lsp[1] & 0x7Fu); + E = E > (lsp[2] & 0x7Fu) ? E : (lsp[2] & 0x7Fu); //max(E, E^NE, E^NF) + //since U_q already has u_q + 1, we subtract 2 instead of 1 + U_q[1] += E > 2 ? E - 2 : 0; + } + + if (U_q[0] > zero_bplanes_p1 || U_q[1] > zero_bplanes_p1) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " + "Decoding this codeblock is stopped. U_q is" + "larger than bitplanes + 1 \n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + ls0 = lsp[2]; //for next double quad + lsp[1] = lsp[2] = 0; + + //decode magsgn and update line_state + ///////////////////////////////////// + + //locations where samples need update + locs = 0xFF; + if (x + 4 > width) { + locs >>= (x + 4 - width) << 1; + } + locs = y + 2 <= height ? locs : (locs & 0x55); + + if ((((qinf[0] & 0xF0) >> 4) | (qinf[1] & 0xF0)) & ~locs) { + if (p_manager_mutex) { + opj_mutex_lock(p_manager_mutex); + } + opj_event_msg(p_manager, EVT_ERROR, "Malformed HT codeblock. " + "VLC code produces significant samples outside " + "the codeblock area.\n"); + if (p_manager_mutex) { + opj_mutex_unlock(p_manager_mutex); + } + return OPJ_FALSE; + } + + + + if (qinf[0] & 0x10) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 12) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= ((qinf[0] & 0x100) >> 8) << m_n; + v_n |= 1; //center of bin + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x1) { + sp[0] = 0; + } + + if (qinf[0] & 0x20) { //sigma_n + OPJ_UINT32 val, t; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 13) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= ((qinf[0] & 0x200) >> 9) << m_n; + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^N), and E^N + t = lsp[0] & 0x7F; //E^NW + v_n = 32 - count_leading_zeros(v_n); + lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); + } else if (locs & 0x2) { + sp[stride] = 0; //no need to update line_state + } + + ++lsp; + ++sp; + + if (qinf[0] & 0x40) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 14) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[0] & 0x400) >> 10) << m_n); + v_n |= 1; //center of bin + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x4) { + sp[0] = 0; + } + + if (qinf[0] & 0x80) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[0] - ((qinf[0] >> 15) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= ((qinf[0] & 0x800) >> 11) << m_n; + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^NW), and E^NW for next quad + lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); + } else if (locs & 0x8) { + sp[stride] = 0; + } + + ++sp; + + if (qinf[1] & 0x10) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 12) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x100) >> 8) << m_n); + v_n |= 1; //center of bin + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x10) { + sp[0] = 0; + } + + if (qinf[1] & 0x20) { //sigma_n + OPJ_UINT32 val, t; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 13) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x200) >> 9) << m_n); + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^N), and E^N + t = lsp[0] & 0x7F; //E^NW + v_n = 32 - count_leading_zeros(v_n); + lsp[0] = (OPJ_UINT8)(0x80 | (t > v_n ? t : v_n)); + } else if (locs & 0x20) { + sp[stride] = 0; //no need to update line_state + } + + ++lsp; + ++sp; + + if (qinf[1] & 0x40) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 14) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x400) >> 10) << m_n); + v_n |= 1; //center of bin + sp[0] = val | ((v_n + 2) << (p - 1)); + } else if (locs & 0x40) { + sp[0] = 0; + } + + if (qinf[1] & 0x80) { //sigma_n + OPJ_UINT32 val; + + ms_val = frwd_fetch(&magsgn); + m_n = U_q[1] - ((qinf[1] >> 15) & 1); //m_n + frwd_advance(&magsgn, m_n); + val = ms_val << 31; + v_n = ms_val & ((1U << m_n) - 1); + v_n |= (((qinf[1] & 0x800) >> 11) << m_n); + v_n |= 1; //center of bin + sp[stride] = val | ((v_n + 2) << (p - 1)); + + //update line_state: bit 7 (\sigma^NW), and E^NW for next quad + lsp[0] = (OPJ_UINT8)(0x80 | (32 - count_leading_zeros(v_n))); + } else if (locs & 0x80) { + sp[stride] = 0; + } + + ++sp; + } + + y += 2; + if (num_passes > 1 && (y & 3) == 0) { //executed at multiples of 4 + // This is for SPP and potentially MRP + + if (num_passes > 2) { //do MRP + // select the current stripe + OPJ_UINT32 *cur_sig = y & 0x4 ? sigma1 : sigma2; + // the address of the data that needs updating + OPJ_UINT32 *dpp = decoded_data + (y - 4) * stride; + OPJ_UINT32 half = 1u << (p - 2); // half the center of the bin + OPJ_INT32 i; + for (i = 0; i < width; i += 8) { + //Process one entry from sigma array at a time + // Each nibble (4 bits) in the sigma array represents 4 rows, + // and the 32 bits contain 8 columns + OPJ_UINT32 cwd = rev_fetch_mrp(&magref); // get 32 bit data + OPJ_UINT32 sig = *cur_sig++; // 32 bit that will be processed now + OPJ_UINT32 col_mask = 0xFu; // a mask for a column in sig + OPJ_UINT32 *dp = dpp + i; // next column in decode samples + if (sig) { // if any of the 32 bits are set + int j; + for (j = 0; j < 8; ++j, dp++) { //one column at a time + if (sig & col_mask) { // lowest nibble + OPJ_UINT32 sample_mask = 0x11111111u & col_mask; //LSB + + if (sig & sample_mask) { //if LSB is set + OPJ_UINT32 sym; + + assert(dp[0] != 0); // decoded value cannot be zero + sym = cwd & 1; // get it value + // remove center of bin if sym is 0 + dp[0] ^= (1 - sym) << (p - 1); + dp[0] |= half; // put half the center of bin + cwd >>= 1; //consume word + } + sample_mask += sample_mask; //next row + + if (sig & sample_mask) { + OPJ_UINT32 sym; + + assert(dp[stride] != 0); + sym = cwd & 1; + dp[stride] ^= (1 - sym) << (p - 1); + dp[stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + + assert(dp[2 * stride] != 0); + sym = cwd & 1; + dp[2 * stride] ^= (1 - sym) << (p - 1); + dp[2 * stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + + assert(dp[3 * stride] != 0); + sym = cwd & 1; + dp[3 * stride] ^= (1 - sym) << (p - 1); + dp[3 * stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + } + col_mask <<= 4; //next column + } + } + // consume data according to the number of bits set + rev_advance_mrp(&magref, population_count(sig)); + } + } + + if (y >= 4) { // update mbr array at the end of each stripe + //generate mbr corresponding to a stripe + OPJ_UINT32 *sig = y & 0x4 ? sigma1 : sigma2; + OPJ_UINT32 *mbr = y & 0x4 ? mbr1 : mbr2; + + //data is processed in patches of 8 columns, each + // each 32 bits in sigma1 or mbr1 represent 4 rows + + //integrate horizontally + OPJ_UINT32 prev = 0; // previous columns + OPJ_INT32 i; + for (i = 0; i < width; i += 8, mbr++, sig++) { + OPJ_UINT32 t, z; + + mbr[0] = sig[0]; //start with significant samples + mbr[0] |= prev >> 28; //for first column, left neighbors + mbr[0] |= sig[0] << 4; //left neighbors + mbr[0] |= sig[0] >> 4; //right neighbors + mbr[0] |= sig[1] << 28; //for last column, right neighbors + prev = sig[0]; // for next group of columns + + //integrate vertically + t = mbr[0], z = mbr[0]; + z |= (t & 0x77777777) << 1; //above neighbors + z |= (t & 0xEEEEEEEE) >> 1; //below neighbors + mbr[0] = z & ~sig[0]; //remove already significance samples + } + } + + if (y >= 8) { //wait until 8 rows has been processed + OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; + OPJ_UINT32 prev; + OPJ_UINT32 val; + OPJ_INT32 i; + + // add membership from the next stripe, obtained above + cur_sig = y & 0x4 ? sigma2 : sigma1; + cur_mbr = y & 0x4 ? mbr2 : mbr1; + nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples + prev = 0; // the columns before these group of 8 columns + for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) { + OPJ_UINT32 t = nxt_sig[0]; + t |= prev >> 28; //for first column, left neighbors + t |= nxt_sig[0] << 4; //left neighbors + t |= nxt_sig[0] >> 4; //right neighbors + t |= nxt_sig[1] << 28; //for last column, right neighbors + prev = nxt_sig[0]; // for next group of columns + + if (!stripe_causal) { + cur_mbr[0] |= (t & 0x11111111u) << 3; //propagate up to cur_mbr + } + cur_mbr[0] &= ~cur_sig[0]; //remove already significance samples + } + + //find new locations and get signs + cur_sig = y & 0x4 ? sigma2 : sigma1; + cur_mbr = y & 0x4 ? mbr2 : mbr1; + nxt_sig = y & 0x4 ? sigma1 : sigma2; //future samples + nxt_mbr = y & 0x4 ? mbr1 : mbr2; //future samples + val = 3u << (p - 2); // sample values for newly discovered + // significant samples including the bin center + for (i = 0; i < width; + i += 8, cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) { + OPJ_UINT32 ux, tx; + OPJ_UINT32 mbr = *cur_mbr; + OPJ_UINT32 new_sig = 0; + if (mbr) { //are there any samples that might be significant + OPJ_INT32 n; + for (n = 0; n < 8; n += 4) { + OPJ_UINT32 col_mask; + OPJ_UINT32 inv_sig; + OPJ_INT32 end; + OPJ_INT32 j; + + OPJ_UINT32 cwd = frwd_fetch(&sigprop); //get 32 bits + OPJ_UINT32 cnt = 0; + + OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; + dp += i + n; //address for decoded samples + + col_mask = 0xFu << (4 * n); //a mask to select a column + + inv_sig = ~cur_sig[0]; // insignificant samples + + //find the last sample we operate on + end = n + 4 + i < width ? n + 4 : width - i; + + for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { + OPJ_UINT32 sample_mask; + + if ((col_mask & mbr) == 0) { //no samples need checking + continue; + } + + //scan mbr to find a new significant sample + sample_mask = 0x11111111u & col_mask; // LSB + if (mbr & sample_mask) { + assert(dp[0] == 0); // the sample must have been 0 + if (cwd & 1) { //if this sample has become significant + // must propagate it to nearby samples + OPJ_UINT32 t; + new_sig |= sample_mask; // new significant samples + t = 0x32u << (j * 4);// propagation to neighbors + mbr |= t & inv_sig; //remove already significant samples + } + cwd >>= 1; + ++cnt; //consume bit and increment number of + //consumed bits + } + + sample_mask += sample_mask; // next row + if (mbr & sample_mask) { + assert(dp[stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0x74u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[2 * stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0xE8u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[3 * stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0xC0u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + } + + //obtain signs here + if (new_sig & (0xFFFFu << (4 * n))) { //if any + OPJ_UINT32 col_mask; + OPJ_INT32 j; + OPJ_UINT32 *dp = decoded_data + (y - 8) * stride; + dp += i + n; // decoded samples address + col_mask = 0xFu << (4 * n); //mask to select a column + + for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { + OPJ_UINT32 sample_mask; + + if ((col_mask & new_sig) == 0) { //if non is significant + continue; + } + + //scan 4 signs + sample_mask = 0x11111111u & col_mask; + if (new_sig & sample_mask) { + assert(dp[0] == 0); + dp[0] |= ((cwd & 1) << 31) | val; //put value and sign + cwd >>= 1; + ++cnt; //consume bit and increment number + //of consumed bits + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[stride] == 0); + dp[stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[2 * stride] == 0); + dp[2 * stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[3 * stride] == 0); + dp[3 * stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + } + + } + frwd_advance(&sigprop, cnt); //consume the bits from bitstrm + cnt = 0; + + //update the next 8 columns + if (n == 4) { + //horizontally + OPJ_UINT32 t = new_sig >> 28; + t |= ((t & 0xE) >> 1) | ((t & 7) << 1); + cur_mbr[1] |= t & ~cur_sig[1]; + } + } + } + //update the next stripe (vertically propagation) + new_sig |= cur_sig[0]; + ux = (new_sig & 0x88888888) >> 3; + tx = ux | (ux << 4) | (ux >> 4); //left and right neighbors + if (i > 0) { + nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; + } + nxt_mbr[0] |= tx & ~nxt_sig[0]; + nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; + } + + //clear current sigma + //mbr need not be cleared because it is overwritten + cur_sig = y & 0x4 ? sigma2 : sigma1; + memset(cur_sig, 0, ((((OPJ_UINT32)width + 7u) >> 3) + 1u) << 2); + } + } + } + + //terminating + if (num_passes > 1) { + OPJ_INT32 st, y; + + if (num_passes > 2 && ((height & 3) == 1 || (height & 3) == 2)) { + //do magref + OPJ_UINT32 *cur_sig = height & 0x4 ? sigma2 : sigma1; //reversed + OPJ_UINT32 *dpp = decoded_data + (height & 0xFFFFFC) * stride; + OPJ_UINT32 half = 1u << (p - 2); + OPJ_INT32 i; + for (i = 0; i < width; i += 8) { + OPJ_UINT32 cwd = rev_fetch_mrp(&magref); + OPJ_UINT32 sig = *cur_sig++; + OPJ_UINT32 col_mask = 0xF; + OPJ_UINT32 *dp = dpp + i; + if (sig) { + int j; + for (j = 0; j < 8; ++j, dp++) { + if (sig & col_mask) { + OPJ_UINT32 sample_mask = 0x11111111 & col_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + assert(dp[0] != 0); + sym = cwd & 1; + dp[0] ^= (1 - sym) << (p - 1); + dp[0] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + assert(dp[stride] != 0); + sym = cwd & 1; + dp[stride] ^= (1 - sym) << (p - 1); + dp[stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + assert(dp[2 * stride] != 0); + sym = cwd & 1; + dp[2 * stride] ^= (1 - sym) << (p - 1); + dp[2 * stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + + if (sig & sample_mask) { + OPJ_UINT32 sym; + assert(dp[3 * stride] != 0); + sym = cwd & 1; + dp[3 * stride] ^= (1 - sym) << (p - 1); + dp[3 * stride] |= half; + cwd >>= 1; + } + sample_mask += sample_mask; + } + col_mask <<= 4; + } + } + rev_advance_mrp(&magref, population_count(sig)); + } + } + + //do the last incomplete stripe + // for cases of (height & 3) == 0 and 3 + // the should have been processed previously + if ((height & 3) == 1 || (height & 3) == 2) { + //generate mbr of first stripe + OPJ_UINT32 *sig = height & 0x4 ? sigma2 : sigma1; + OPJ_UINT32 *mbr = height & 0x4 ? mbr2 : mbr1; + //integrate horizontally + OPJ_UINT32 prev = 0; + OPJ_INT32 i; + for (i = 0; i < width; i += 8, mbr++, sig++) { + OPJ_UINT32 t, z; + + mbr[0] = sig[0]; + mbr[0] |= prev >> 28; //for first column, left neighbors + mbr[0] |= sig[0] << 4; //left neighbors + mbr[0] |= sig[0] >> 4; //left neighbors + mbr[0] |= sig[1] << 28; //for last column, right neighbors + prev = sig[0]; + + //integrate vertically + t = mbr[0], z = mbr[0]; + z |= (t & 0x77777777) << 1; //above neighbors + z |= (t & 0xEEEEEEEE) >> 1; //below neighbors + mbr[0] = z & ~sig[0]; //remove already significance samples + } + } + + st = height; + st -= height > 6 ? (((height + 1) & 3) + 3) : height; + for (y = st; y < height; y += 4) { + OPJ_UINT32 *cur_sig, *cur_mbr, *nxt_sig, *nxt_mbr; + OPJ_UINT32 val; + OPJ_INT32 i; + + OPJ_UINT32 pattern = 0xFFFFFFFFu; // a pattern needed samples + if (height - y == 3) { + pattern = 0x77777777u; + } else if (height - y == 2) { + pattern = 0x33333333u; + } else if (height - y == 1) { + pattern = 0x11111111u; + } + + //add membership from the next stripe, obtained above + if (height - y > 4) { + OPJ_UINT32 prev = 0; + OPJ_INT32 i; + cur_sig = y & 0x4 ? sigma2 : sigma1; + cur_mbr = y & 0x4 ? mbr2 : mbr1; + nxt_sig = y & 0x4 ? sigma1 : sigma2; + for (i = 0; i < width; i += 8, cur_mbr++, cur_sig++, nxt_sig++) { + OPJ_UINT32 t = nxt_sig[0]; + t |= prev >> 28; //for first column, left neighbors + t |= nxt_sig[0] << 4; //left neighbors + t |= nxt_sig[0] >> 4; //left neighbors + t |= nxt_sig[1] << 28; //for last column, right neighbors + prev = nxt_sig[0]; + + if (!stripe_causal) { + cur_mbr[0] |= (t & 0x11111111u) << 3; + } + //remove already significance samples + cur_mbr[0] &= ~cur_sig[0]; + } + } + + //find new locations and get signs + cur_sig = y & 0x4 ? sigma2 : sigma1; + cur_mbr = y & 0x4 ? mbr2 : mbr1; + nxt_sig = y & 0x4 ? sigma1 : sigma2; + nxt_mbr = y & 0x4 ? mbr1 : mbr2; + val = 3u << (p - 2); + for (i = 0; i < width; i += 8, + cur_sig++, cur_mbr++, nxt_sig++, nxt_mbr++) { + OPJ_UINT32 mbr = *cur_mbr & pattern; //skip unneeded samples + OPJ_UINT32 new_sig = 0; + OPJ_UINT32 ux, tx; + if (mbr) { + OPJ_INT32 n; + for (n = 0; n < 8; n += 4) { + OPJ_UINT32 col_mask; + OPJ_UINT32 inv_sig; + OPJ_INT32 end; + OPJ_INT32 j; + + OPJ_UINT32 cwd = frwd_fetch(&sigprop); + OPJ_UINT32 cnt = 0; + + OPJ_UINT32 *dp = decoded_data + y * stride; + dp += i + n; + + col_mask = 0xFu << (4 * n); + + inv_sig = ~cur_sig[0] & pattern; + + end = n + 4 + i < width ? n + 4 : width - i; + for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { + OPJ_UINT32 sample_mask; + + if ((col_mask & mbr) == 0) { + continue; + } + + //scan 4 mbr + sample_mask = 0x11111111u & col_mask; + if (mbr & sample_mask) { + assert(dp[0] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0x32u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0x74u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[2 * stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0xE8u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (mbr & sample_mask) { + assert(dp[3 * stride] == 0); + if (cwd & 1) { + OPJ_UINT32 t; + new_sig |= sample_mask; + t = 0xC0u << (j * 4); + mbr |= t & inv_sig; + } + cwd >>= 1; + ++cnt; + } + } + + //signs here + if (new_sig & (0xFFFFu << (4 * n))) { + OPJ_UINT32 col_mask; + OPJ_INT32 j; + OPJ_UINT32 *dp = decoded_data + y * stride; + dp += i + n; + col_mask = 0xFu << (4 * n); + + for (j = n; j < end; ++j, ++dp, col_mask <<= 4) { + OPJ_UINT32 sample_mask; + if ((col_mask & new_sig) == 0) { + continue; + } + + //scan 4 signs + sample_mask = 0x11111111u & col_mask; + if (new_sig & sample_mask) { + assert(dp[0] == 0); + dp[0] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[stride] == 0); + dp[stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[2 * stride] == 0); + dp[2 * stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + + sample_mask += sample_mask; + if (new_sig & sample_mask) { + assert(dp[3 * stride] == 0); + dp[3 * stride] |= ((cwd & 1) << 31) | val; + cwd >>= 1; + ++cnt; + } + } + + } + frwd_advance(&sigprop, cnt); + cnt = 0; + + //update next columns + if (n == 4) { + //horizontally + OPJ_UINT32 t = new_sig >> 28; + t |= ((t & 0xE) >> 1) | ((t & 7) << 1); + cur_mbr[1] |= t & ~cur_sig[1]; + } + } + } + //propagate down (vertically propagation) + new_sig |= cur_sig[0]; + ux = (new_sig & 0x88888888) >> 3; + tx = ux | (ux << 4) | (ux >> 4); + if (i > 0) { + nxt_mbr[-1] |= (ux << 28) & ~nxt_sig[-1]; + } + nxt_mbr[0] |= tx & ~nxt_sig[0]; + nxt_mbr[1] |= (ux >> 28) & ~nxt_sig[1]; + } + } + } + + { + OPJ_INT32 x, y; + for (y = 0; y < height; ++y) { + OPJ_INT32* sp = (OPJ_INT32*)decoded_data + y * stride; + for (x = 0; x < width; ++x, ++sp) { + OPJ_INT32 val = (*sp & 0x7FFFFFFF); + *sp = ((OPJ_UINT32) * sp & 0x80000000) ? -val : val; + } + } + } + + return OPJ_TRUE; +}
