diff mupdf-source/thirdparty/leptonica/src/bilinear.c @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/leptonica/src/bilinear.c	Mon Sep 15 11:43:07 2025 +0200
@@ -0,0 +1,888 @@
+/*====================================================================*
+ -  Copyright (C) 2001 Leptonica.  All rights reserved.
+ -
+ -  Redistribution and use in source and binary forms, with or without
+ -  modification, are permitted provided that the following conditions
+ -  are met:
+ -  1. Redistributions of source code must retain the above copyright
+ -     notice, this list of conditions and the following disclaimer.
+ -  2. Redistributions in binary form must reproduce the above
+ -     copyright notice, this list of conditions and the following
+ -     disclaimer in the documentation and/or other materials
+ -     provided with the distribution.
+ -
+ -  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ -  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ -  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ -  A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ANY
+ -  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ -  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ -  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ -  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
+ -  OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ -  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ -  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *====================================================================*/
+
+/*!
+ * \file bilinear.c
+ * <pre>
+ *
+ *      Bilinear (4 pt) image transformation using a sampled
+ *      (to nearest integer) transform on each dest point
+ *           PIX      *pixBilinearSampledPta()
+ *           PIX      *pixBilinearSampled()
+ *
+ *      Bilinear (4 pt) image transformation using interpolation
+ *      (or area mapping) for anti-aliasing images that are
+ *      2, 4, or 8 bpp gray, or colormapped, or 32 bpp RGB
+ *           PIX      *pixBilinearPta()
+ *           PIX      *pixBilinear()
+ *           PIX      *pixBilinearPtaColor()
+ *           PIX      *pixBilinearColor()
+ *           PIX      *pixBilinearPtaGray()
+ *           PIX      *pixBilinearGray()
+ *
+ *      Bilinear transform including alpha (blend) component
+ *           PIX      *pixBilinearPtaWithAlpha()
+ *
+ *      Bilinear coordinate transformation
+ *           l_int32   getBilinearXformCoeffs()
+ *           l_int32   bilinearXformSampledPt()
+ *           l_int32   bilinearXformPt()
+ *
+ *      A bilinear transform can be specified as a specific functional
+ *      mapping between 4 points in the source and 4 points in the dest.
+ *      It can be used as an approximation to a (nonlinear) projective
+ *      transform, because for small warps it is very similar and
+ *      it is more stable.  (Projective transforms have a division
+ *      by a quantity that can get arbitrarily small.)
+ *
+ *      We give both a bilinear coordinate transformation and
+ *      a bilinear image transformation.
+ *
+ *      For the former, we ask for the coordinate value (x',y')
+ *      in the transformed space for any point (x,y) in the original
+ *      space.  The coefficients of the transformation are found by
+ *      solving 8 simultaneous equations for the 8 coordinates of
+ *      the 4 points in src and dest.  The transformation can then
+ *      be used to compute the associated image transform, by
+ *      computing, for each dest pixel, the relevant pixel(s) in
+ *      the source.  This can be done either by taking the closest
+ *      src pixel to each transformed dest pixel ("sampling") or
+ *      by doing an interpolation and averaging over 4 source
+ *      pixels with appropriate weightings ("interpolated").
+ *
+ *      A typical application would be to remove some of the
+ *      keystoning due to a projective transform in the imaging system.
+ *
+ *      The bilinear transform is given by specifying two equations:
+ *
+ *          x' = ax + by + cxy + d
+ *          y' = ex + fy + gxy + h
+ *
+ *      where the eight coefficients have been computed from four
+ *      sets of these equations, each for two corresponding data pts.
+ *      In practice, once the coefficients are known, we use the
+ *      equations "backwards": for each point (x,y) in the dest image,
+ *      these two equations are used to compute the corresponding point
+ *      (x',y') in the src.  That computed point in the src is then used
+ *      to determine the corresponding dest pixel value in one of two ways:
+ *
+ *       ~ sampling: simply take the value of the src pixel in which this
+ *                   point falls
+ *       ~ interpolation: take appropriate linear combinations of the
+ *                        four src pixels that this dest pixel would
+ *                        overlap, with the coefficients proportional
+ *                        to the amount of overlap
+ *
+ *      For small warp, like rotation, area mapping in the
+ *      interpolation is equivalent to linear interpolation.
+ *
+ *      Typical relative timing of transforms (sampled = 1.0):
+ *      8 bpp:   sampled        1.0
+ *               interpolated   1.6
+ *      32 bpp:  sampled        1.0
+ *               interpolated   1.8
+ *      Additionally, the computation time/pixel is nearly the same
+ *      for 8 bpp and 32 bpp, for both sampled and interpolated.
+ * </pre>
+ */
+
+#ifdef HAVE_CONFIG_H
+#include <config_auto.h>
+#endif  /* HAVE_CONFIG_H */
+
+#include <string.h>
+#include <math.h>
+#include "allheaders.h"
+
+extern l_float32  AlphaMaskBorderVals[2];
+
+/*-------------------------------------------------------------*
+ *             Sampled bilinear image transformation           *
+ *-------------------------------------------------------------*/
+/*!
+ * \brief   pixBilinearSampledPta()
+ *
+ * \param[in]    pixs      all depths
+ * \param[in]    ptad      4 pts of final coordinate space
+ * \param[in]    ptas      4 pts of initial coordinate space
+ * \param[in]    incolor   L_BRING_IN_WHITE, L_BRING_IN_BLACK
+ * \return  pixd, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) Brings in either black or white pixels from the boundary.
+ *      (2) Retains colormap, which you can do for a sampled transform..
+ *      (3) No 3 of the 4 points may be collinear.
+ *      (4) For 8 and 32 bpp pix, better quality is obtained by the
+ *          somewhat slower pixBilinearPta().  See that
+ *          function for relative timings between sampled and interpolated.
+ * </pre>
+ */
+PIX *
+pixBilinearSampledPta(PIX     *pixs,
+                      PTA     *ptad,
+                      PTA     *ptas,
+                      l_int32  incolor)
+{
+l_float32  *vc;
+PIX        *pixd;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    if (!ptas)
+        return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL);
+    if (!ptad)
+        return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL);
+    if (incolor != L_BRING_IN_WHITE && incolor != L_BRING_IN_BLACK)
+        return (PIX *)ERROR_PTR("invalid incolor", __func__, NULL);
+    if (ptaGetCount(ptas) != 4)
+        return (PIX *)ERROR_PTR("ptas count not 4", __func__, NULL);
+    if (ptaGetCount(ptad) != 4)
+        return (PIX *)ERROR_PTR("ptad count not 4", __func__, NULL);
+
+        /* Get backwards transform from dest to src, and apply it */
+    getBilinearXformCoeffs(ptad, ptas, &vc);
+    pixd = pixBilinearSampled(pixs, vc, incolor);
+    LEPT_FREE(vc);
+
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixBilinearSampled()
+ *
+ * \param[in]    pixs      all depths
+ * \param[in]    vc        vector of 8 coefficients for bilinear transformation
+ * \param[in]    incolor   L_BRING_IN_WHITE, L_BRING_IN_BLACK
+ * \return  pixd, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) Brings in either black or white pixels from the boundary.
+ *      (2) Retains colormap, which you can do for a sampled transform..
+ *      (3) For 8 or 32 bpp, much better quality is obtained by the
+ *          somewhat slower pixBilinear().  See that function
+ *          for relative timings between sampled and interpolated.
+ * </pre>
+ */
+PIX *
+pixBilinearSampled(PIX        *pixs,
+                   l_float32  *vc,
+                   l_int32     incolor)
+{
+l_int32     i, j, w, h, d, x, y, wpls, wpld, color, cmapindex;
+l_uint32    val;
+l_uint32   *datas, *datad, *lines, *lined;
+PIX        *pixd;
+PIXCMAP    *cmap;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    if (!vc)
+        return (PIX *)ERROR_PTR("vc not defined", __func__, NULL);
+    if (incolor != L_BRING_IN_WHITE && incolor != L_BRING_IN_BLACK)
+        return (PIX *)ERROR_PTR("invalid incolor", __func__, NULL);
+    pixGetDimensions(pixs, &w, &h, &d);
+    if (d != 1 && d != 2 && d != 4 && d != 8 && d != 32)
+        return (PIX *)ERROR_PTR("depth not 1, 2, 4, 8 or 16", __func__, NULL);
+
+        /* Init all dest pixels to color to be brought in from outside */
+    pixd = pixCreateTemplate(pixs);
+    if ((cmap = pixGetColormap(pixs)) != NULL) {
+        if (incolor == L_BRING_IN_WHITE)
+            color = 1;
+        else
+            color = 0;
+        pixcmapAddBlackOrWhite(cmap, color, &cmapindex);
+        pixSetAllArbitrary(pixd, cmapindex);
+    } else {
+        if ((d == 1 && incolor == L_BRING_IN_WHITE) ||
+            (d > 1 && incolor == L_BRING_IN_BLACK)) {
+            pixClearAll(pixd);
+        } else {
+            pixSetAll(pixd);
+        }
+    }
+
+        /* Scan over the dest pixels */
+    datas = pixGetData(pixs);
+    wpls = pixGetWpl(pixs);
+    datad = pixGetData(pixd);
+    wpld = pixGetWpl(pixd);
+    for (i = 0; i < h; i++) {
+        lined = datad + i * wpld;
+        for (j = 0; j < w; j++) {
+            bilinearXformSampledPt(vc, j, i, &x, &y);
+            if (x < 0 || y < 0 || x >=w || y >= h)
+                continue;
+            lines = datas + y * wpls;
+            if (d == 1) {
+                val = GET_DATA_BIT(lines, x);
+                SET_DATA_BIT_VAL(lined, j, val);
+            } else if (d == 8) {
+                val = GET_DATA_BYTE(lines, x);
+                SET_DATA_BYTE(lined, j, val);
+            } else if (d == 32) {
+                lined[j] = lines[x];
+            } else if (d == 2) {
+                val = GET_DATA_DIBIT(lines, x);
+                SET_DATA_DIBIT(lined, j, val);
+            } else if (d == 4) {
+                val = GET_DATA_QBIT(lines, x);
+                SET_DATA_QBIT(lined, j, val);
+            }
+        }
+    }
+
+    return pixd;
+}
+
+
+/*---------------------------------------------------------------------*
+ *            Interpolated bilinear image transformation             *
+ *---------------------------------------------------------------------*/
+/*!
+ * \brief   pixBilinearPta()
+ *
+ * \param[in]    pixs      all depths; colormap ok
+ * \param[in]    ptad      4 pts of final coordinate space
+ * \param[in]    ptas      4 pts of initial coordinate space
+ * \param[in]    incolor   L_BRING_IN_WHITE, L_BRING_IN_BLACK
+ * \return  pixd, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) Brings in either black or white pixels from the boundary
+ *      (2) Removes any existing colormap, if necessary, before transforming
+ * </pre>
+ */
+PIX *
+pixBilinearPta(PIX     *pixs,
+               PTA     *ptad,
+               PTA     *ptas,
+               l_int32  incolor)
+{
+l_int32   d;
+l_uint32  colorval;
+PIX      *pixt1, *pixt2, *pixd;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    if (!ptas)
+        return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL);
+    if (!ptad)
+        return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL);
+    if (incolor != L_BRING_IN_WHITE && incolor != L_BRING_IN_BLACK)
+        return (PIX *)ERROR_PTR("invalid incolor", __func__, NULL);
+    if (ptaGetCount(ptas) != 4)
+        return (PIX *)ERROR_PTR("ptas count not 4", __func__, NULL);
+    if (ptaGetCount(ptad) != 4)
+        return (PIX *)ERROR_PTR("ptad count not 4", __func__, NULL);
+
+    if (pixGetDepth(pixs) == 1)
+        return pixBilinearSampledPta(pixs, ptad, ptas, incolor);
+
+        /* Remove cmap if it exists, and unpack to 8 bpp if necessary */
+    pixt1 = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC);
+    d = pixGetDepth(pixt1);
+    if (d < 8)
+        pixt2 = pixConvertTo8(pixt1, FALSE);
+    else
+        pixt2 = pixClone(pixt1);
+    d = pixGetDepth(pixt2);
+
+        /* Compute actual color to bring in from edges */
+    colorval = 0;
+    if (incolor == L_BRING_IN_WHITE) {
+        if (d == 8)
+            colorval = 255;
+        else  /* d == 32 */
+            colorval = 0xffffff00;
+    }
+
+    if (d == 8)
+        pixd = pixBilinearPtaGray(pixt2, ptad, ptas, colorval);
+    else  /* d == 32 */
+        pixd = pixBilinearPtaColor(pixt2, ptad, ptas, colorval);
+    pixDestroy(&pixt1);
+    pixDestroy(&pixt2);
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixBilinear()
+ *
+ * \param[in]    pixs       all depths; colormap ok
+ * \param[in]    vc         vector of 8 coefficients for bilinear transformation
+ * \param[in]    incolor    L_BRING_IN_WHITE, L_BRING_IN_BLACK
+ * \return  pixd, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) Brings in either black or white pixels from the boundary
+ *      (2) Removes any existing colormap, if necessary, before transforming
+ * </pre>
+ */
+PIX *
+pixBilinear(PIX        *pixs,
+            l_float32  *vc,
+            l_int32     incolor)
+{
+l_int32   d;
+l_uint32  colorval;
+PIX      *pixt1, *pixt2, *pixd;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    if (!vc)
+        return (PIX *)ERROR_PTR("vc not defined", __func__, NULL);
+
+    if (pixGetDepth(pixs) == 1)
+        return pixBilinearSampled(pixs, vc, incolor);
+
+        /* Remove cmap if it exists, and unpack to 8 bpp if necessary */
+    pixt1 = pixRemoveColormap(pixs, REMOVE_CMAP_BASED_ON_SRC);
+    d = pixGetDepth(pixt1);
+    if (d < 8)
+        pixt2 = pixConvertTo8(pixt1, FALSE);
+    else
+        pixt2 = pixClone(pixt1);
+    d = pixGetDepth(pixt2);
+
+        /* Compute actual color to bring in from edges */
+    colorval = 0;
+    if (incolor == L_BRING_IN_WHITE) {
+        if (d == 8)
+            colorval = 255;
+        else  /* d == 32 */
+            colorval = 0xffffff00;
+    }
+
+    if (d == 8)
+        pixd = pixBilinearGray(pixt2, vc, colorval);
+    else  /* d == 32 */
+        pixd = pixBilinearColor(pixt2, vc, colorval);
+    pixDestroy(&pixt1);
+    pixDestroy(&pixt2);
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixBilinearPtaColor()
+ *
+ * \param[in]    pixs        32 bpp
+ * \param[in]    ptad        4 pts of final coordinate space
+ * \param[in]    ptas        4 pts of initial coordinate space
+ * \param[in]    colorval    e.g., 0 to bring in BLACK, 0xffffff00 for WHITE
+ * \return  pixd, or NULL on error
+ */
+PIX *
+pixBilinearPtaColor(PIX      *pixs,
+                    PTA      *ptad,
+                    PTA      *ptas,
+                    l_uint32  colorval)
+{
+l_float32  *vc;
+PIX        *pixd;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    if (!ptas)
+        return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL);
+    if (!ptad)
+        return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL);
+    if (pixGetDepth(pixs) != 32)
+        return (PIX *)ERROR_PTR("pixs must be 32 bpp", __func__, NULL);
+    if (ptaGetCount(ptas) != 4)
+        return (PIX *)ERROR_PTR("ptas count not 4", __func__, NULL);
+    if (ptaGetCount(ptad) != 4)
+        return (PIX *)ERROR_PTR("ptad count not 4", __func__, NULL);
+
+        /* Get backwards transform from dest to src, and apply it */
+    getBilinearXformCoeffs(ptad, ptas, &vc);
+    pixd = pixBilinearColor(pixs, vc, colorval);
+    LEPT_FREE(vc);
+
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixBilinearColor()
+ *
+ * \param[in]    pixs       32 bpp
+ * \param[in]    vc         vector of 8 coefficients for bilinear transformation
+ * \param[in]    colorval   e.g., 0 to bring in BLACK, 0xffffff00 for WHITE
+ * \return  pixd, or NULL on error
+ */
+PIX *
+pixBilinearColor(PIX        *pixs,
+                 l_float32  *vc,
+                 l_uint32    colorval)
+{
+l_int32    i, j, w, h, d, wpls, wpld;
+l_uint32   val;
+l_uint32  *datas, *datad, *lined;
+l_float32  x, y;
+PIX       *pix1, *pix2, *pixd;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    pixGetDimensions(pixs, &w, &h, &d);
+    if (d != 32)
+        return (PIX *)ERROR_PTR("pixs must be 32 bpp", __func__, NULL);
+    if (!vc)
+        return (PIX *)ERROR_PTR("vc not defined", __func__, NULL);
+
+    datas = pixGetData(pixs);
+    wpls = pixGetWpl(pixs);
+    pixd = pixCreateTemplate(pixs);
+    pixSetAllArbitrary(pixd, colorval);
+    datad = pixGetData(pixd);
+    wpld = pixGetWpl(pixd);
+
+        /* Iterate over destination pixels */
+    for (i = 0; i < h; i++) {
+        lined = datad + i * wpld;
+        for (j = 0; j < w; j++) {
+                /* Compute float src pixel location corresponding to (i,j) */
+            bilinearXformPt(vc, j, i, &x, &y);
+            linearInterpolatePixelColor(datas, wpls, w, h, x, y, colorval,
+                                        &val);
+            *(lined + j) = val;
+        }
+    }
+
+        /* If rgba, transform the pixs alpha channel and insert in pixd */
+    if (pixGetSpp(pixs) == 4) {
+        pix1 = pixGetRGBComponent(pixs, L_ALPHA_CHANNEL);
+        pix2 = pixBilinearGray(pix1, vc, 255);  /* bring in opaque */
+        pixSetRGBComponent(pixd, pix2, L_ALPHA_CHANNEL);
+        pixDestroy(&pix1);
+        pixDestroy(&pix2);
+    }
+
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixBilinearPtaGray()
+ *
+ * \param[in]    pixs       8 bpp
+ * \param[in]    ptad       4 pts of final coordinate space
+ * \param[in]    ptas       4 pts of initial coordinate space
+ * \param[in]    grayval    e.g., 0 to bring in BLACK, 255 for WHITE
+ * \return  pixd, or NULL on error
+ */
+PIX *
+pixBilinearPtaGray(PIX     *pixs,
+                   PTA     *ptad,
+                   PTA     *ptas,
+                   l_uint8  grayval)
+{
+l_float32  *vc;
+PIX        *pixd;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    if (!ptas)
+        return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL);
+    if (!ptad)
+        return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL);
+    if (pixGetDepth(pixs) != 8)
+        return (PIX *)ERROR_PTR("pixs must be 8 bpp", __func__, NULL);
+    if (ptaGetCount(ptas) != 4)
+        return (PIX *)ERROR_PTR("ptas count not 4", __func__, NULL);
+    if (ptaGetCount(ptad) != 4)
+        return (PIX *)ERROR_PTR("ptad count not 4", __func__, NULL);
+
+        /* Get backwards transform from dest to src, and apply it */
+    getBilinearXformCoeffs(ptad, ptas, &vc);
+    pixd = pixBilinearGray(pixs, vc, grayval);
+    LEPT_FREE(vc);
+
+    return pixd;
+}
+
+
+/*!
+ * \brief   pixBilinearGray()
+ *
+ * \param[in]    pixs      8 bpp
+ * \param[in]    vc        vector of 8 coefficients for bilinear transformation
+ * \param[in]    grayval   e.g., 0 to bring in BLACK, 255 for WHITE
+ * \return  pixd, or NULL on error
+ */
+PIX *
+pixBilinearGray(PIX        *pixs,
+                l_float32  *vc,
+                l_uint8     grayval)
+{
+l_int32    i, j, w, h, wpls, wpld, val;
+l_uint32  *datas, *datad, *lined;
+l_float32  x, y;
+PIX       *pixd;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    pixGetDimensions(pixs, &w, &h, NULL);
+    if (pixGetDepth(pixs) != 8)
+        return (PIX *)ERROR_PTR("pixs must be 8 bpp", __func__, NULL);
+    if (!vc)
+        return (PIX *)ERROR_PTR("vc not defined", __func__, NULL);
+
+    datas = pixGetData(pixs);
+    wpls = pixGetWpl(pixs);
+    pixd = pixCreateTemplate(pixs);
+    pixSetAllArbitrary(pixd, grayval);
+    datad = pixGetData(pixd);
+    wpld = pixGetWpl(pixd);
+
+        /* Iterate over destination pixels */
+    for (i = 0; i < h; i++) {
+        lined = datad + i * wpld;
+        for (j = 0; j < w; j++) {
+                /* Compute float src pixel location corresponding to (i,j) */
+            bilinearXformPt(vc, j, i, &x, &y);
+            linearInterpolatePixelGray(datas, wpls, w, h, x, y, grayval, &val);
+            SET_DATA_BYTE(lined, j, val);
+        }
+    }
+
+    return pixd;
+}
+
+
+/*-------------------------------------------------------------------------*
+ *           Bilinear transform including alpha (blend) component          *
+ *-------------------------------------------------------------------------*/
+/*!
+ * \brief   pixBilinearPtaWithAlpha()
+ *
+ * \param[in]    pixs     32 bpp rgb
+ * \param[in]    ptad     4 pts of final coordinate space
+ * \param[in]    ptas     4 pts of initial coordinate space
+ * \param[in]    pixg     [optional] 8 bpp, can be null
+ * \param[in]    fract    between 0.0 and 1.0, with 0.0 fully transparent
+ *                        and 1.0 fully opaque
+ * \param[in]    border   of pixels added to capture transformed source pixels
+ * \return  pixd, or NULL on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) The alpha channel is transformed separately from pixs,
+ *          and aligns with it, being fully transparent outside the
+ *          boundary of the transformed pixs.  For pixels that are fully
+ *          transparent, a blending function like pixBlendWithGrayMask()
+ *          will give zero weight to corresponding pixels in pixs.
+ *      (2) If %pixg is NULL, it is generated as an alpha layer that is
+ *          partially opaque, using %fract.  Otherwise, it is cropped
+ *          to %pixs if required and %fract is ignored.  The alpha channel
+ *          in %pixs is never used.
+ *      (3) Colormaps are removed.
+ *      (4) When pixs is transformed, it doesn't matter what color is brought
+ *          in because the alpha channel will be transparent (0) there.
+ *      (5) To avoid losing source pixels in the destination, it may be
+ *          necessary to add a border to the source pix before doing
+ *          the bilinear transformation.  This can be any non-negative number.
+ *      (6) The input %ptad and %ptas are in a coordinate space before
+ *          the border is added.  Internally, we compensate for this
+ *          before doing the bilinear transform on the image after
+ *          the border is added.
+ *      (7) The default setting for the border values in the alpha channel
+ *          is 0 (transparent) for the outermost ring of pixels and
+ *          (0.5 * fract * 255) for the second ring.  When blended over
+ *          a second image, this
+ *          (a) shrinks the visible image to make a clean overlap edge
+ *              with an image below, and
+ *          (b) softens the edges by weakening the aliasing there.
+ *          Use l_setAlphaMaskBorder() to change these values.
+ * </pre>
+ */
+PIX *
+pixBilinearPtaWithAlpha(PIX       *pixs,
+                        PTA       *ptad,
+                        PTA       *ptas,
+                        PIX       *pixg,
+                        l_float32  fract,
+                        l_int32    border)
+{
+l_int32  ws, hs, d;
+PIX     *pixd, *pixb1, *pixb2, *pixg2, *pixga;
+PTA     *ptad2, *ptas2;
+
+    if (!pixs)
+        return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL);
+    pixGetDimensions(pixs, &ws, &hs, &d);
+    if (d != 32 && pixGetColormap(pixs) == NULL)
+        return (PIX *)ERROR_PTR("pixs not cmapped or 32 bpp", __func__, NULL);
+    if (pixg && pixGetDepth(pixg) != 8) {
+        L_WARNING("pixg not 8 bpp; using 'fract' transparent alpha\n",
+                  __func__);
+        pixg = NULL;
+    }
+    if (!pixg && (fract < 0.0 || fract > 1.0)) {
+        L_WARNING("invalid fract; using 1.0 (fully transparent)\n", __func__);
+        fract = 1.0;
+    }
+    if (!pixg && fract == 0.0)
+        L_WARNING("fully opaque alpha; image cannot be blended\n", __func__);
+    if (!ptad)
+        return (PIX *)ERROR_PTR("ptad not defined", __func__, NULL);
+    if (!ptas)
+        return (PIX *)ERROR_PTR("ptas not defined", __func__, NULL);
+
+        /* Add border; the color doesn't matter */
+    pixb1 = pixAddBorder(pixs, border, 0);
+
+        /* Transform the ptr arrays to work on the bordered image */
+    ptad2 = ptaTransform(ptad, border, border, 1.0, 1.0);
+    ptas2 = ptaTransform(ptas, border, border, 1.0, 1.0);
+
+        /* Do separate bilinear transform of rgb channels of pixs and of pixg */
+    pixd = pixBilinearPtaColor(pixb1, ptad2, ptas2, 0);
+    if (!pixg) {
+        pixg2 = pixCreate(ws, hs, 8);
+        if (fract == 1.0)
+            pixSetAll(pixg2);
+        else
+            pixSetAllArbitrary(pixg2, (l_int32)(255.0 * fract));
+    } else {
+        pixg2 = pixResizeToMatch(pixg, NULL, ws, hs);
+    }
+    if (ws > 10 && hs > 10) {  /* see note 7 */
+        pixSetBorderRingVal(pixg2, 1,
+                            (l_int32)(255.0 * fract * AlphaMaskBorderVals[0]));
+        pixSetBorderRingVal(pixg2, 2,
+                            (l_int32)(255.0 * fract * AlphaMaskBorderVals[1]));
+
+    }
+    pixb2 = pixAddBorder(pixg2, border, 0);  /* must be black border */
+    pixga = pixBilinearPtaGray(pixb2, ptad2, ptas2, 0);
+    pixSetRGBComponent(pixd, pixga, L_ALPHA_CHANNEL);
+    pixSetSpp(pixd, 4);
+
+    pixDestroy(&pixg2);
+    pixDestroy(&pixb1);
+    pixDestroy(&pixb2);
+    pixDestroy(&pixga);
+    ptaDestroy(&ptad2);
+    ptaDestroy(&ptas2);
+    return pixd;
+}
+
+
+/*-------------------------------------------------------------*
+ *                Bilinear coordinate transformation           *
+ *-------------------------------------------------------------*/
+/*!
+ * \brief   getBilinearXformCoeffs()
+ *
+ * \param[in]    ptas    source 4 points; unprimed
+ * \param[in]    ptad    transformed 4 points; primed
+ * \param[out]   pvc     vector of coefficients of transform
+ * \return  0 if OK; 1 on error
+ *
+ * <pre>
+ * We have a set of 8 equations, describing the bilinear
+ * transformation that takes 4 points ptas into 4 other
+ * points ptad.  These equations are:
+ *
+ *          x1' = c[0]*x1 + c[1]*y1 + c[2]*x1*y1 + c[3]
+ *          y1' = c[4]*x1 + c[5]*y1 + c[6]*x1*y1 + c[7]
+ *          x2' = c[0]*x2 + c[1]*y2 + c[2]*x2*y2 + c[3]
+ *          y2' = c[4]*x2 + c[5]*y2 + c[6]*x2*y2 + c[7]
+ *          x3' = c[0]*x3 + c[1]*y3 + c[2]*x3*y3 + c[3]
+ *          y3' = c[4]*x3 + c[5]*y3 + c[6]*x3*y3 + c[7]
+ *          x4' = c[0]*x4 + c[1]*y4 + c[2]*x4*y4 + c[3]
+ *          y4' = c[4]*x4 + c[5]*y4 + c[6]*x4*y4 + c[7]
+ *
+ * This can be represented as
+ *
+ *           AC = B
+ *
+ * where B and C are column vectors
+ *
+ *         B = [ x1' y1' x2' y2' x3' y3' x4' y4' ]
+ *         C = [ c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] ]
+ *
+ * and A is the 8x8 matrix
+ *
+ *             x1   y1   x1*y1   1   0    0      0     0
+ *              0    0     0     0   x1   y1   x1*y1   1
+ *             x2   y2   x2*y2   1   0    0      0     0
+ *              0    0     0     0   x2   y2   x2*y2   1
+ *             x3   y3   x3*y3   1   0    0      0     0
+ *              0    0     0     0   x3   y3   x3*y3   1
+ *             x4   y4   x4*y4   1   0    0      0     0
+ *              0    0     0     0   x4   y4   x4*y4   1
+ *
+ * These eight equations are solved here for the coefficients C.
+ *
+ * These eight coefficients can then be used to find the mapping
+ * x,y) --> (x',y':
+ *
+ *           x' = c[0]x + c[1]y + c[2]xy + c[3]
+ *           y' = c[4]x + c[5]y + c[6]xy + c[7]
+ *
+ * that are implemented in bilinearXformSampledPt and
+ * bilinearXFormPt.
+ * </pre>
+ */
+l_ok
+getBilinearXformCoeffs(PTA         *ptas,
+                       PTA         *ptad,
+                       l_float32  **pvc)
+{
+l_int32     i;
+l_float32   x1, y1, x2, y2, x3, y3, x4, y4;
+l_float32  *b;   /* rhs vector of primed coords X'; coeffs returned in *pvc */
+l_float32  *a[8];  /* 8x8 matrix A  */
+
+    if (!ptas)
+        return ERROR_INT("ptas not defined", __func__, 1);
+    if (!ptad)
+        return ERROR_INT("ptad not defined", __func__, 1);
+    if (!pvc)
+        return ERROR_INT("&vc not defined", __func__, 1);
+
+    b = (l_float32 *)LEPT_CALLOC(8, sizeof(l_float32));
+    *pvc = b;
+    ptaGetPt(ptas, 0, &x1, &y1);
+    ptaGetPt(ptas, 1, &x2, &y2);
+    ptaGetPt(ptas, 2, &x3, &y3);
+    ptaGetPt(ptas, 3, &x4, &y4);
+    ptaGetPt(ptad, 0, &b[0], &b[1]);
+    ptaGetPt(ptad, 1, &b[2], &b[3]);
+    ptaGetPt(ptad, 2, &b[4], &b[5]);
+    ptaGetPt(ptad, 3, &b[6], &b[7]);
+
+    for (i = 0; i < 8; i++)
+        a[i] = (l_float32 *)LEPT_CALLOC(8, sizeof(l_float32));
+    a[0][0] = x1;
+    a[0][1] = y1;
+    a[0][2] = x1 * y1;
+    a[0][3] = 1.;
+    a[1][4] = x1;
+    a[1][5] = y1;
+    a[1][6] = x1 * y1;
+    a[1][7] = 1.;
+    a[2][0] = x2;
+    a[2][1] = y2;
+    a[2][2] = x2 * y2;
+    a[2][3] = 1.;
+    a[3][4] = x2;
+    a[3][5] = y2;
+    a[3][6] = x2 * y2;
+    a[3][7] = 1.;
+    a[4][0] = x3;
+    a[4][1] = y3;
+    a[4][2] = x3 * y3;
+    a[4][3] = 1.;
+    a[5][4] = x3;
+    a[5][5] = y3;
+    a[5][6] = x3 * y3;
+    a[5][7] = 1.;
+    a[6][0] = x4;
+    a[6][1] = y4;
+    a[6][2] = x4 * y4;
+    a[6][3] = 1.;
+    a[7][4] = x4;
+    a[7][5] = y4;
+    a[7][6] = x4 * y4;
+    a[7][7] = 1.;
+
+    gaussjordan(a, b, 8);
+
+    for (i = 0; i < 8; i++)
+        LEPT_FREE(a[i]);
+    return 0;
+}
+
+
+/*!
+ * \brief   bilinearXformSampledPt()
+ *
+ * \param[in]    vc         vector of 8 coefficients
+ * \param[in]    x, y       initial point
+ * \param[out]   pxp, pyp   transformed point
+ * \return  0 if OK; 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This finds the nearest pixel coordinates of the transformed point.
+ *      (2) It does not check ptrs for returned data!
+ * </pre>
+ */
+l_ok
+bilinearXformSampledPt(l_float32  *vc,
+                       l_int32     x,
+                       l_int32     y,
+                       l_int32    *pxp,
+                       l_int32    *pyp)
+{
+
+    if (!vc)
+        return ERROR_INT("vc not defined", __func__, 1);
+
+    *pxp = (l_int32)(vc[0] * x + vc[1] * y + vc[2] * x * y + vc[3] + 0.5);
+    *pyp = (l_int32)(vc[4] * x + vc[5] * y + vc[6] * x * y + vc[7] + 0.5);
+    return 0;
+}
+
+
+/*!
+ * \brief   bilinearXformPt()
+ *
+ * \param[in]    vc           vector of 8 coefficients
+ * \param[in]    x, y         initial point
+ * \param[out]   pxp, pyp     transformed point
+ * \return  0 if OK; 1 on error
+ *
+ * <pre>
+ * Notes:
+ *      (1) This computes the floating point location of the transformed point.
+ *      (2) It does not check ptrs for returned data!
+ * </pre>
+ */
+l_ok
+bilinearXformPt(l_float32  *vc,
+                l_int32     x,
+                l_int32     y,
+                l_float32  *pxp,
+                l_float32  *pyp)
+{
+    if (!vc)
+        return ERROR_INT("vc not defined", __func__, 1);
+
+    *pxp = vc[0] * x + vc[1] * y + vc[2] * x * y + vc[3];
+    *pyp = vc[4] * x + vc[5] * y + vc[6] * x * y + vc[7];
+    return 0;
+}