diff mupdf-source/thirdparty/lcms2/src/cmsopt.c @ 3:2c135c81b16c

MERGE: upstream PyMuPDF 1.26.4 with MuPDF 1.26.7
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:44:09 +0200
parents b50eed0cc0ef
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/mupdf-source/thirdparty/lcms2/src/cmsopt.c	Mon Sep 15 11:44:09 2025 +0200
@@ -0,0 +1,1991 @@
+//---------------------------------------------------------------------------------
+//
+//  Little Color Management System
+//  Copyright (c) 1998-2023 Marti Maria Saguer
+//
+// Permission is hereby granted, free of charge, to any person obtaining
+// a copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the Software
+// is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
+// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+//
+//---------------------------------------------------------------------------------
+//
+
+#include "lcms2_internal.h"
+
+
+//----------------------------------------------------------------------------------
+
+// Optimization for 8 bits, Shaper-CLUT (3 inputs only)
+typedef struct {
+
+    cmsContext ContextID;
+
+    const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
+
+    cmsUInt16Number rx[256], ry[256], rz[256];
+    cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
+
+
+} Prelin8Data;
+
+
+// Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
+typedef struct {
+
+    cmsContext ContextID;
+
+    // Number of channels
+    cmsUInt32Number nInputs;
+    cmsUInt32Number nOutputs;
+
+    _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
+    cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
+
+    _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
+    const cmsInterpParams* CLUTparams;  // (not-owned pointer)
+
+
+    _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
+    cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
+
+
+} Prelin16Data;
+
+
+// Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
+
+typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
+
+#define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
+
+typedef struct {
+
+    cmsContext ContextID;
+
+    cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
+    cmsS1Fixed14Number Shaper1G[256];
+    cmsS1Fixed14Number Shaper1B[256];
+
+    cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
+    cmsS1Fixed14Number Off[3];
+
+    cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
+    cmsUInt16Number Shaper2G[16385];
+    cmsUInt16Number Shaper2B[16385];
+
+} MatShaper8Data;
+
+// Curves, optimization is shared between 8 and 16 bits
+typedef struct {
+    cmsUInt32Number nCurves;      // Number of curves
+    cmsUInt32Number nElements;    // Elements in curves
+    cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
+
+} Curves16Data;
+
+
+// Simple optimizations ----------------------------------------------------------------------------------------------------------
+
+
+// Remove an element in linked chain
+static
+void _RemoveElement(cmsContext ContextID, cmsStage** head)
+{
+    cmsStage* mpe = *head;
+    cmsStage* next = mpe ->Next;
+    *head = next;
+    cmsStageFree(ContextID, mpe);
+}
+
+// Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
+static
+cmsBool _Remove1Op(cmsContext ContextID, cmsPipeline* Lut, cmsStageSignature UnaryOp)
+{
+    cmsStage** pt = &Lut ->Elements;
+    cmsBool AnyOpt = FALSE;
+
+    while (*pt != NULL) {
+
+        if ((*pt) ->Implements == UnaryOp) {
+            _RemoveElement(ContextID, pt);
+            AnyOpt = TRUE;
+        }
+        else
+            pt = &((*pt) -> Next);
+    }
+
+    return AnyOpt;
+}
+
+// Same, but only if two adjacent elements are found
+static
+cmsBool _Remove2Op(cmsContext ContextID, cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
+{
+    cmsStage** pt1;
+    cmsStage** pt2;
+    cmsBool AnyOpt = FALSE;
+
+    pt1 = &Lut ->Elements;
+    if (*pt1 == NULL) return AnyOpt;
+
+    while (*pt1 != NULL) {
+
+        pt2 = &((*pt1) -> Next);
+        if (*pt2 == NULL) return AnyOpt;
+
+        if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
+            _RemoveElement(ContextID, pt2);
+            _RemoveElement(ContextID, pt1);
+            AnyOpt = TRUE;
+        }
+        else
+            pt1 = &((*pt1) -> Next);
+    }
+
+    return AnyOpt;
+}
+
+
+static
+cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
+{
+       return fabs(b - a) < 0.00001f;
+}
+
+static
+cmsBool  isFloatMatrixIdentity(cmsContext ContextID, const cmsMAT3* a)
+{
+       cmsMAT3 Identity;
+       int i, j;
+
+       _cmsMAT3identity(ContextID, &Identity);
+
+       for (i = 0; i < 3; i++)
+              for (j = 0; j < 3; j++)
+                     if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
+
+       return TRUE;
+}
+
+// if two adjacent matrices are found, multiply them.
+static
+cmsBool _MultiplyMatrix(cmsContext ContextID, cmsPipeline* Lut)
+{
+       cmsStage** pt1;
+       cmsStage** pt2;
+       cmsStage*  chain;
+       cmsBool AnyOpt = FALSE;
+
+       pt1 = &Lut->Elements;
+       if (*pt1 == NULL) return AnyOpt;
+
+       while (*pt1 != NULL) {
+
+              pt2 = &((*pt1)->Next);
+              if (*pt2 == NULL) return AnyOpt;
+
+              if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
+
+                     // Get both matrices
+                     _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(ContextID, *pt1);
+                     _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(ContextID, *pt2);
+                     cmsMAT3 res;
+
+                     // Input offset and output offset should be zero to use this optimization
+                     if (m1->Offset != NULL || m2 ->Offset != NULL ||
+                            cmsStageInputChannels(ContextID, *pt1) != 3 || cmsStageOutputChannels(ContextID, *pt1) != 3 ||
+                            cmsStageInputChannels(ContextID, *pt2) != 3 || cmsStageOutputChannels(ContextID, *pt2) != 3)
+                            return FALSE;
+
+                     // Multiply both matrices to get the result
+                     _cmsMAT3per(ContextID, &res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
+
+                     // Get the next in chain after the matrices
+                     chain = (*pt2)->Next;
+
+                     // Remove both matrices
+                     _RemoveElement(ContextID, pt2);
+                     _RemoveElement(ContextID, pt1);
+
+                     // Now what if the result is a plain identity?
+                     if (!isFloatMatrixIdentity(ContextID, &res)) {
+
+                            // We can not get rid of full matrix
+                            cmsStage* Multmat = cmsStageAllocMatrix(ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
+                            if (Multmat == NULL) return FALSE;  // Should never happen
+
+                            // Recover the chain
+                            Multmat->Next = chain;
+                            *pt1 = Multmat;
+                     }
+
+                     AnyOpt = TRUE;
+              }
+              else
+                     pt1 = &((*pt1)->Next);
+       }
+
+       return AnyOpt;
+}
+
+
+// Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
+// by a v4 to v2 and vice-versa. The elements are then discarded.
+static
+cmsBool PreOptimize(cmsContext ContextID, cmsPipeline* Lut)
+{
+    cmsBool AnyOpt = FALSE, Opt;
+
+    do {
+
+        Opt = FALSE;
+
+        // Remove all identities
+        Opt |= _Remove1Op(ContextID, Lut, cmsSigIdentityElemType);
+
+        // Remove XYZ2Lab followed by Lab2XYZ
+        Opt |= _Remove2Op(ContextID, Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
+
+        // Remove Lab2XYZ followed by XYZ2Lab
+        Opt |= _Remove2Op(ContextID, Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
+
+        // Remove V4 to V2 followed by V2 to V4
+        Opt |= _Remove2Op(ContextID, Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
+
+        // Remove V2 to V4 followed by V4 to V2
+        Opt |= _Remove2Op(ContextID, Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
+
+        // Remove float pcs Lab conversions
+        Opt |= _Remove2Op(ContextID, Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
+
+        // Remove float pcs Lab conversions
+        Opt |= _Remove2Op(ContextID, Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
+
+        // Simplify matrix.
+        Opt |= _MultiplyMatrix(ContextID, Lut);
+
+        if (Opt) AnyOpt = TRUE;
+
+    } while (Opt);
+
+    return AnyOpt;
+}
+
+static
+void Eval16nop1D(cmsContext ContextID,
+                 CMSREGISTER const cmsUInt16Number Input[],
+                 CMSREGISTER cmsUInt16Number Output[],
+                 CMSREGISTER const struct _cms_interp_struc* p)
+{
+    cmsUNUSED_PARAMETER(ContextID);
+    Output[0] = Input[0];
+
+    cmsUNUSED_PARAMETER(p);
+}
+
+static
+void PrelinEval16(cmsContext ContextID,
+                  CMSREGISTER const cmsUInt16Number Input[],
+                  CMSREGISTER cmsUInt16Number Output[],
+                  CMSREGISTER const void* D)
+{
+    Prelin16Data* p16 = (Prelin16Data*) D;
+    cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
+    cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
+    cmsUInt32Number i;
+
+    for (i=0; i < p16 ->nInputs; i++) {
+
+        p16 ->EvalCurveIn16[i](ContextID, &Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
+    }
+
+    p16 ->EvalCLUT(ContextID, StageABC, StageDEF, p16 ->CLUTparams);
+
+    for (i=0; i < p16 ->nOutputs; i++) {
+
+        p16 ->EvalCurveOut16[i](ContextID, &StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
+    }
+}
+
+
+static
+void PrelinOpt16free(cmsContext ContextID, void* ptr)
+{
+    Prelin16Data* p16 = (Prelin16Data*) ptr;
+
+    _cmsFree(ContextID, p16 ->EvalCurveOut16);
+    _cmsFree(ContextID, p16 ->ParamsCurveOut16);
+
+    _cmsFree(ContextID, p16);
+}
+
+static
+void* Prelin16dup(cmsContext ContextID, const void* ptr)
+{
+    Prelin16Data* p16 = (Prelin16Data*) ptr;
+    Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
+
+    if (Duped == NULL) return NULL;
+
+    Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
+    Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
+
+    return Duped;
+}
+
+
+static
+Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
+                               const cmsInterpParams* ColorMap,
+                               cmsUInt32Number nInputs, cmsToneCurve** In,
+                               cmsUInt32Number nOutputs, cmsToneCurve** Out )
+{
+    cmsUInt32Number i;
+    Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
+    if (p16 == NULL) return NULL;
+
+    p16 ->nInputs = nInputs;
+    p16 ->nOutputs = nOutputs;
+
+
+    for (i=0; i < nInputs; i++) {
+
+        if (In == NULL) {
+            p16 -> ParamsCurveIn16[i] = NULL;
+            p16 -> EvalCurveIn16[i] = Eval16nop1D;
+
+        }
+        else {
+            p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
+            p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
+        }
+    }
+
+    p16 ->CLUTparams = ColorMap;
+    p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
+
+
+    p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
+    if (p16->EvalCurveOut16 == NULL)
+    {
+        _cmsFree(ContextID, p16);
+        return NULL;
+    }
+
+    p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
+    if (p16->ParamsCurveOut16 == NULL)
+    {
+
+        _cmsFree(ContextID, p16->EvalCurveOut16);
+        _cmsFree(ContextID, p16);
+        return NULL;
+    }
+
+    for (i=0; i < nOutputs; i++) {
+
+        if (Out == NULL) {
+            p16 ->ParamsCurveOut16[i] = NULL;
+            p16 -> EvalCurveOut16[i] = Eval16nop1D;
+        }
+        else {
+
+            p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
+            p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
+        }
+    }
+
+    return p16;
+}
+
+
+
+// Resampling ---------------------------------------------------------------------------------
+
+#define PRELINEARIZATION_POINTS 4096
+
+// Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
+// almost any transform. We use floating point precision and then convert from floating point to 16 bits.
+static
+cmsInt32Number XFormSampler16(cmsContext ContextID,
+                              CMSREGISTER const cmsUInt16Number In[],
+                              CMSREGISTER cmsUInt16Number Out[],
+                              CMSREGISTER void* Cargo)
+{
+    cmsPipeline* Lut = (cmsPipeline*) Cargo;
+    cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
+    cmsUInt32Number i;
+
+    _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
+    _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
+
+    // From 16 bit to floating point
+    for (i=0; i < Lut ->InputChannels; i++)
+        InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
+
+    // Evaluate in floating point
+    cmsPipelineEvalFloat(ContextID, InFloat, OutFloat, Lut);
+
+    // Back to 16 bits representation
+    for (i=0; i < Lut ->OutputChannels; i++)
+        Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
+
+    // Always succeed
+    return TRUE;
+}
+
+// Try to see if the curves of a given MPE are linear
+static
+cmsBool AllCurvesAreLinear(cmsContext ContextID, cmsStage* mpe)
+{
+    cmsToneCurve** Curves;
+    cmsUInt32Number i, n;
+
+    Curves = _cmsStageGetPtrToCurveSet(mpe);
+    if (Curves == NULL) return FALSE;
+
+    n = cmsStageOutputChannels(ContextID, mpe);
+
+    for (i=0; i < n; i++) {
+        if (!cmsIsToneCurveLinear(ContextID, Curves[i])) return FALSE;
+    }
+
+    return TRUE;
+}
+
+// This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
+// is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
+static
+cmsBool  PatchLUT(cmsContext ContextID, cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
+                  cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
+{
+    _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
+    cmsInterpParams* p16  = Grid ->Params;
+    cmsFloat64Number px, py, pz, pw;
+    int        x0, y0, z0, w0;
+    int        i, index;
+
+    if (CLUT -> Type != cmsSigCLutElemType) {
+        cmsSignalError(ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
+        return FALSE;
+    }
+
+    if (nChannelsIn == 4) {
+
+        px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
+        py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
+        pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
+        pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
+
+        x0 = (int) floor(px);
+        y0 = (int) floor(py);
+        z0 = (int) floor(pz);
+        w0 = (int) floor(pw);
+
+        if (((px - x0) != 0) ||
+            ((py - y0) != 0) ||
+            ((pz - z0) != 0) ||
+            ((pw - w0) != 0)) return FALSE; // Not on exact node
+
+        index = (int) p16 -> opta[3] * x0 +
+                (int) p16 -> opta[2] * y0 +
+                (int) p16 -> opta[1] * z0 +
+                (int) p16 -> opta[0] * w0;
+    }
+    else
+        if (nChannelsIn == 3) {
+
+            px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
+            py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
+            pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
+
+            x0 = (int) floor(px);
+            y0 = (int) floor(py);
+            z0 = (int) floor(pz);
+
+            if (((px - x0) != 0) ||
+                ((py - y0) != 0) ||
+                ((pz - z0) != 0)) return FALSE;  // Not on exact node
+
+            index = (int) p16 -> opta[2] * x0 +
+                    (int) p16 -> opta[1] * y0 +
+                    (int) p16 -> opta[0] * z0;
+        }
+        else
+            if (nChannelsIn == 1) {
+
+                px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
+
+                x0 = (int) floor(px);
+
+                if (((px - x0) != 0)) return FALSE; // Not on exact node
+
+                index = (int) p16 -> opta[0] * x0;
+            }
+            else {
+                cmsSignalError(ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
+                return FALSE;
+            }
+
+    for (i = 0; i < (int) nChannelsOut; i++)
+        Grid->Tab.T[index + i] = Value[i];
+
+    return TRUE;
+}
+
+// Auxiliary, to see if two values are equal or very different
+static
+cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
+{
+    cmsUInt32Number i;
+
+    for (i=0; i < n; i++) {
+
+        if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided
+        if (White1[i] != White2[i]) return FALSE;
+    }
+    return TRUE;
+}
+
+
+// Locate the node for the white point and fix it to pure white in order to avoid scum dot.
+static
+cmsBool FixWhiteMisalignment(cmsContext ContextID, cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
+{
+    cmsUInt16Number *WhitePointIn, *WhitePointOut;
+    cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
+    cmsUInt32Number i, nOuts, nIns;
+    cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
+
+    if (!_cmsEndPointsBySpace(EntryColorSpace,
+        &WhitePointIn, NULL, &nIns)) return FALSE;
+
+    if (!_cmsEndPointsBySpace(ExitColorSpace,
+        &WhitePointOut, NULL, &nOuts)) return FALSE;
+
+    // It needs to be fixed?
+    if (Lut ->InputChannels != nIns) return FALSE;
+    if (Lut ->OutputChannels != nOuts) return FALSE;
+
+    cmsPipelineEval16(ContextID, WhitePointIn, ObtainedOut, Lut);
+
+    if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
+
+    // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
+    if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
+        if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
+            if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
+                if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 1, cmsSigCLutElemType, &CLUT))
+                    return FALSE;
+
+    // We need to interpolate white points of both, pre and post curves
+    if (PreLin) {
+
+        cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
+
+        for (i=0; i < nIns; i++) {
+            WhiteIn[i] = cmsEvalToneCurve16(ContextID, Curves[i], WhitePointIn[i]);
+        }
+    }
+    else {
+        for (i=0; i < nIns; i++)
+            WhiteIn[i] = WhitePointIn[i];
+    }
+
+    // If any post-linearization, we need to find how is represented white before the curve, do
+    // a reverse interpolation in this case.
+    if (PostLin) {
+
+        cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
+
+        for (i=0; i < nOuts; i++) {
+
+            cmsToneCurve* InversePostLin = cmsReverseToneCurve(ContextID, Curves[i]);
+            if (InversePostLin == NULL) {
+                WhiteOut[i] = WhitePointOut[i];
+
+            } else {
+
+                WhiteOut[i] = cmsEvalToneCurve16(ContextID, InversePostLin, WhitePointOut[i]);
+                cmsFreeToneCurve(ContextID, InversePostLin);
+            }
+        }
+    }
+    else {
+        for (i=0; i < nOuts; i++)
+            WhiteOut[i] = WhitePointOut[i];
+    }
+
+    // Ok, proceed with patching. May fail and we don't care if it fails
+    PatchLUT(ContextID, CLUT, WhiteIn, WhiteOut, nOuts, nIns);
+
+    return TRUE;
+}
+
+// -----------------------------------------------------------------------------------------------------------------------------------------------
+// This function creates simple LUT from complex ones. The generated LUT has an optional set of
+// prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
+// These curves have to exist in the original LUT in order to be used in the simplified output.
+// Caller may also use the flags to allow this feature.
+// LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
+// This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
+// -----------------------------------------------------------------------------------------------------------------------------------------------
+
+static
+cmsBool OptimizeByResampling(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
+{
+    cmsPipeline* Src = NULL;
+    cmsPipeline* Dest = NULL;
+    cmsStage* CLUT;
+    cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
+    cmsUInt32Number nGridPoints;
+    cmsColorSpaceSignature ColorSpace, OutputColorSpace;
+    cmsStage *NewPreLin = NULL;
+    cmsStage *NewPostLin = NULL;
+    _cmsStageCLutData* DataCLUT;
+    cmsToneCurve** DataSetIn;
+    cmsToneCurve** DataSetOut;
+    Prelin16Data* p16;
+
+    // This is a lossy optimization! does not apply in floating-point cases
+    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
+
+    ColorSpace       = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*InputFormat));
+    OutputColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*OutputFormat));
+
+    // Color space must be specified
+    if (ColorSpace == (cmsColorSpaceSignature)0 ||
+        OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
+
+    nGridPoints = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, *dwFlags);
+
+    // For empty LUTs, 2 points are enough
+    if (cmsPipelineStageCount(ContextID, *Lut) == 0)
+        nGridPoints = 2;
+
+    Src = *Lut;
+
+    // Allocate an empty LUT
+    Dest =  cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
+    if (!Dest) return FALSE;
+
+    // Prelinearization tables are kept unless indicated by flags
+    if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
+
+        // Get a pointer to the prelinearization element
+        cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(ContextID, Src);
+
+        // Check if suitable
+        if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
+
+            // Maybe this is a linear tram, so we can avoid the whole stuff
+            if (!AllCurvesAreLinear(ContextID, PreLin)) {
+
+                // All seems ok, proceed.
+                NewPreLin = cmsStageDup(ContextID, PreLin);
+                if(!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, NewPreLin))
+                    goto Error;
+
+                // Remove prelinearization. Since we have duplicated the curve
+                // in destination LUT, the sampling should be applied after this stage.
+                cmsPipelineUnlinkStage(ContextID, Src, cmsAT_BEGIN, &KeepPreLin);
+            }
+        }
+    }
+
+    // Allocate the CLUT
+    CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
+    if (CLUT == NULL) goto Error;
+
+    // Add the CLUT to the destination LUT
+    if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, CLUT)) {
+        goto Error;
+    }
+
+    // Postlinearization tables are kept unless indicated by flags
+    if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
+
+        // Get a pointer to the postlinearization if present
+        cmsStage* PostLin = cmsPipelineGetPtrToLastStage(ContextID, Src);
+
+        // Check if suitable
+        if (PostLin && cmsStageType(ContextID, PostLin) == cmsSigCurveSetElemType) {
+
+            // Maybe this is a linear tram, so we can avoid the whole stuff
+            if (!AllCurvesAreLinear(ContextID, PostLin)) {
+
+                // All seems ok, proceed.
+                NewPostLin = cmsStageDup(ContextID, PostLin);
+                if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, NewPostLin))
+                    goto Error;
+
+                // In destination LUT, the sampling should be applied after this stage.
+                cmsPipelineUnlinkStage(ContextID, Src, cmsAT_END, &KeepPostLin);
+            }
+        }
+    }
+
+    // Now its time to do the sampling. We have to ignore pre/post linearization
+    // The source LUT without pre/post curves is passed as parameter.
+    if (!cmsStageSampleCLut16bit(ContextID, CLUT, XFormSampler16, (void*) Src, 0)) {
+Error:
+        // Ops, something went wrong, Restore stages
+        if (KeepPreLin != NULL) {
+            if (!cmsPipelineInsertStage(ContextID, Src, cmsAT_BEGIN, KeepPreLin)) {
+                _cmsAssert(0); // This never happens
+            }
+        }
+        if (KeepPostLin != NULL) {
+            if (!cmsPipelineInsertStage(ContextID, Src, cmsAT_END,   KeepPostLin)) {
+                _cmsAssert(0); // This never happens
+            }
+        }
+        cmsPipelineFree(ContextID, Dest);
+        return FALSE;
+    }
+
+    // Done.
+
+    if (KeepPreLin != NULL) cmsStageFree(ContextID, KeepPreLin);
+    if (KeepPostLin != NULL) cmsStageFree(ContextID, KeepPostLin);
+    cmsPipelineFree(ContextID, Src);
+
+    DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
+
+    if (NewPreLin == NULL) DataSetIn = NULL;
+    else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
+
+    if (NewPostLin == NULL) DataSetOut = NULL;
+    else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
+
+
+    if (DataSetIn == NULL && DataSetOut == NULL) {
+
+        _cmsPipelineSetOptimizationParameters(ContextID, Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
+    }
+    else {
+
+        p16 = PrelinOpt16alloc(ContextID,
+            DataCLUT ->Params,
+            Dest ->InputChannels,
+            DataSetIn,
+            Dest ->OutputChannels,
+            DataSetOut);
+
+        _cmsPipelineSetOptimizationParameters(ContextID, Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
+    }
+
+
+    // Don't fix white on absolute colorimetric
+    if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
+        *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
+
+    if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
+
+        FixWhiteMisalignment(ContextID, Dest, ColorSpace, OutputColorSpace);
+    }
+
+    *Lut = Dest;
+    return TRUE;
+
+    cmsUNUSED_PARAMETER(Intent);
+}
+
+
+// -----------------------------------------------------------------------------------------------------------------------------------------------
+// Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
+// Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
+// for RGB transforms. See the paper for more details
+// -----------------------------------------------------------------------------------------------------------------------------------------------
+
+
+// Normalize endpoints by slope limiting max and min. This assures endpoints as well.
+// Descending curves are handled as well.
+static
+void SlopeLimiting(cmsContext ContextID, cmsToneCurve* g)
+{
+    int BeginVal, EndVal;
+    int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
+    int AtEnd   = (int) g ->nEntries - AtBegin - 1;                                  // And 98%
+    cmsFloat64Number Val, Slope, beta;
+    int i;
+
+    if (cmsIsToneCurveDescending(ContextID, g)) {
+        BeginVal = 0xffff; EndVal = 0;
+    }
+    else {
+        BeginVal = 0; EndVal = 0xffff;
+    }
+
+    // Compute slope and offset for begin of curve
+    Val   = g ->Table16[AtBegin];
+    Slope = (Val - BeginVal) / AtBegin;
+    beta  = Val - Slope * AtBegin;
+
+    for (i=0; i < AtBegin; i++)
+        g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
+
+    // Compute slope and offset for the end
+    Val   = g ->Table16[AtEnd];
+    Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
+    beta  = Val - Slope * AtEnd;
+
+    for (i = AtEnd; i < (int) g ->nEntries; i++)
+        g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
+}
+
+
+// Precomputes tables for 8-bit on input devicelink.
+static
+Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
+{
+    int i;
+    cmsUInt16Number Input[3];
+    cmsS15Fixed16Number v1, v2, v3;
+    Prelin8Data* p8;
+
+    p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
+    if (p8 == NULL) return NULL;
+
+    // Since this only works for 8 bit input, values comes always as x * 257,
+    // we can safely take msb byte (x << 8 + x)
+
+    for (i=0; i < 256; i++) {
+
+        if (G != NULL) {
+
+            // Get 16-bit representation
+            Input[0] = cmsEvalToneCurve16(ContextID, G[0], FROM_8_TO_16(i));
+            Input[1] = cmsEvalToneCurve16(ContextID, G[1], FROM_8_TO_16(i));
+            Input[2] = cmsEvalToneCurve16(ContextID, G[2], FROM_8_TO_16(i));
+        }
+        else {
+            Input[0] = FROM_8_TO_16(i);
+            Input[1] = FROM_8_TO_16(i);
+            Input[2] = FROM_8_TO_16(i);
+        }
+
+
+        // Move to 0..1.0 in fixed domain
+        v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
+        v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
+        v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
+
+        // Store the precalculated table of nodes
+        p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
+        p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
+        p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
+
+        // Store the precalculated table of offsets
+        p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
+        p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
+        p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
+    }
+
+    p8 ->ContextID = ContextID;
+    p8 ->p = p;
+
+    return p8;
+}
+
+static
+void Prelin8free(cmsContext ContextID, void* ptr)
+{
+    _cmsFree(ContextID, ptr);
+}
+
+static
+void* Prelin8dup(cmsContext ContextID, const void* ptr)
+{
+    return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
+}
+
+
+
+// A optimized interpolation for 8-bit input.
+#define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
+static CMS_NO_SANITIZE
+void PrelinEval8(cmsContext ContextID,
+                 CMSREGISTER const cmsUInt16Number Input[],
+                 CMSREGISTER cmsUInt16Number Output[],
+                 CMSREGISTER const void* D)
+{
+    cmsUInt8Number         r, g, b;
+    cmsS15Fixed16Number    rx, ry, rz;
+    cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
+    int                    OutChan;
+    CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
+    Prelin8Data* p8 = (Prelin8Data*) D;
+    CMSREGISTER const cmsInterpParams* p = p8 ->p;
+    int                    TotalOut = (int) p -> nOutputs;
+    const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
+    cmsUNUSED_PARAMETER(ContextID);
+
+    r = (cmsUInt8Number) (Input[0] >> 8);
+    g = (cmsUInt8Number) (Input[1] >> 8);
+    b = (cmsUInt8Number) (Input[2] >> 8);
+
+    X0 = (cmsS15Fixed16Number) p8->X0[r];
+    Y0 = (cmsS15Fixed16Number) p8->Y0[g];
+    Z0 = (cmsS15Fixed16Number) p8->Z0[b];
+
+    rx = p8 ->rx[r];
+    ry = p8 ->ry[g];
+    rz = p8 ->rz[b];
+
+    X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 :  p ->opta[2]);
+    Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 :  p ->opta[1]);
+    Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 :  p ->opta[0]);
+
+
+    // These are the 6 Tetrahedral
+    for (OutChan=0; OutChan < TotalOut; OutChan++) {
+
+        c0 = DENS(X0, Y0, Z0);
+
+        if (rx >= ry && ry >= rz)
+        {
+            c1 = DENS(X1, Y0, Z0) - c0;
+            c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
+            c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
+        }
+        else
+            if (rx >= rz && rz >= ry)
+            {
+                c1 = DENS(X1, Y0, Z0) - c0;
+                c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
+                c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
+            }
+            else
+                if (rz >= rx && rx >= ry)
+                {
+                    c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
+                    c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
+                    c3 = DENS(X0, Y0, Z1) - c0;
+                }
+                else
+                    if (ry >= rx && rx >= rz)
+                    {
+                        c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
+                        c2 = DENS(X0, Y1, Z0) - c0;
+                        c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
+                    }
+                    else
+                        if (ry >= rz && rz >= rx)
+                        {
+                            c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
+                            c2 = DENS(X0, Y1, Z0) - c0;
+                            c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
+                        }
+                        else
+                            if (rz >= ry && ry >= rx)
+                            {
+                                c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
+                                c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
+                                c3 = DENS(X0, Y0, Z1) - c0;
+                            }
+                            else  {
+                                c1 = c2 = c3 = 0;
+                            }
+
+        Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
+        Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
+
+    }
+}
+
+#undef DENS
+
+
+// Curves that contain wide empty areas are not optimizeable
+static
+cmsBool IsDegenerated(const cmsToneCurve* g)
+{
+    cmsUInt32Number i, Zeros = 0, Poles = 0;
+    cmsUInt32Number nEntries = g ->nEntries;
+
+    for (i=0; i < nEntries; i++) {
+
+        if (g ->Table16[i] == 0x0000) Zeros++;
+        if (g ->Table16[i] == 0xffff) Poles++;
+    }
+
+    if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
+    if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros
+    if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles
+
+    return FALSE;
+}
+
+// --------------------------------------------------------------------------------------------------------------
+// We need xput over here
+
+static
+cmsBool OptimizeByComputingLinearization(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
+{
+    cmsPipeline* OriginalLut;
+    cmsUInt32Number nGridPoints;
+    cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
+    cmsUInt32Number t, i;
+    cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
+    cmsBool lIsSuitable, lIsLinear;
+    cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
+    cmsStage* OptimizedCLUTmpe;
+    cmsColorSpaceSignature ColorSpace, OutputColorSpace;
+    cmsStage* OptimizedPrelinMpe;
+    cmsToneCurve** OptimizedPrelinCurves;
+    _cmsStageCLutData* OptimizedPrelinCLUT;
+
+
+    // This is a lossy optimization! does not apply in floating-point cases
+    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
+
+    // Only on chunky RGB
+    if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
+    if (T_PLANAR(*InputFormat)) return FALSE;
+
+    if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
+    if (T_PLANAR(*OutputFormat)) return FALSE;
+
+    // On 16 bits, user has to specify the feature
+    if (!_cmsFormatterIs8bit(*InputFormat)) {
+        if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
+    }
+
+    OriginalLut = *Lut;
+    ColorSpace       = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*InputFormat));
+    OutputColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*OutputFormat));
+
+    // Color space must be specified
+    if (ColorSpace == (cmsColorSpaceSignature)0 ||
+        OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
+
+    nGridPoints      = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, *dwFlags);
+
+    // Empty gamma containers
+    memset(Trans, 0, sizeof(Trans));
+    memset(TransReverse, 0, sizeof(TransReverse));
+
+    // If the last stage of the original lut are curves, and those curves are
+    // degenerated, it is likely the transform is squeezing and clipping
+    // the output from previous CLUT. We cannot optimize this case
+    {
+        cmsStage* last = cmsPipelineGetPtrToLastStage(ContextID, OriginalLut);
+
+        if (last == NULL) goto Error;
+        if (cmsStageType(ContextID, last) == cmsSigCurveSetElemType) {
+
+            _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(ContextID, last);
+            for (i = 0; i < Data->nCurves; i++) {
+                if (IsDegenerated(Data->TheCurves[i]))
+                    goto Error;
+            }
+        }
+    }
+
+    for (t = 0; t < OriginalLut ->InputChannels; t++) {
+        Trans[t] = cmsBuildTabulatedToneCurve16(ContextID, PRELINEARIZATION_POINTS, NULL);
+        if (Trans[t] == NULL) goto Error;
+    }
+
+    // Populate the curves
+    for (i=0; i < PRELINEARIZATION_POINTS; i++) {
+
+        v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
+
+        // Feed input with a gray ramp
+        for (t=0; t < OriginalLut ->InputChannels; t++)
+            In[t] = v;
+
+        // Evaluate the gray value
+        cmsPipelineEvalFloat(ContextID, In, Out, OriginalLut);
+
+        // Store result in curve
+        for (t=0; t < OriginalLut ->InputChannels; t++)
+        {
+            if (Trans[t]->Table16 != NULL)
+                Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
+        }
+    }
+
+    // Slope-limit the obtained curves
+    for (t = 0; t < OriginalLut ->InputChannels; t++)
+        SlopeLimiting(ContextID, Trans[t]);
+
+    // Check for validity. lIsLinear is here for debug purposes
+    lIsSuitable = TRUE;
+    lIsLinear   = TRUE;
+    for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
+
+        // Exclude if already linear
+        if (!cmsIsToneCurveLinear(ContextID, Trans[t]))
+            lIsLinear = FALSE;
+
+        // Exclude if non-monotonic
+        if (!cmsIsToneCurveMonotonic(ContextID, Trans[t]))
+            lIsSuitable = FALSE;
+
+        if (IsDegenerated(Trans[t]))
+            lIsSuitable = FALSE;
+    }
+
+    // If it is not suitable, just quit
+    if (!lIsSuitable) goto Error;
+
+    // Invert curves if possible
+    for (t = 0; t < OriginalLut ->InputChannels; t++) {
+        TransReverse[t] = cmsReverseToneCurveEx(ContextID, PRELINEARIZATION_POINTS, Trans[t]);
+        if (TransReverse[t] == NULL) goto Error;
+    }
+
+    // Now inset the reversed curves at the begin of transform
+    LutPlusCurves = cmsPipelineDup(ContextID, OriginalLut);
+    if (LutPlusCurves == NULL) goto Error;
+
+    if (!cmsPipelineInsertStage(ContextID, LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(ContextID, OriginalLut ->InputChannels, TransReverse)))
+        goto Error;
+
+    // Create the result LUT
+    OptimizedLUT = cmsPipelineAlloc(ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
+    if (OptimizedLUT == NULL) goto Error;
+
+    OptimizedPrelinMpe = cmsStageAllocToneCurves(ContextID, OriginalLut ->InputChannels, Trans);
+
+    // Create and insert the curves at the beginning
+    if (!cmsPipelineInsertStage(ContextID, OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
+        goto Error;
+
+    // Allocate the CLUT for result
+    OptimizedCLUTmpe = cmsStageAllocCLut16bit(ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
+
+    // Add the CLUT to the destination LUT
+    if (!cmsPipelineInsertStage(ContextID, OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
+        goto Error;
+
+    // Resample the LUT
+    if (!cmsStageSampleCLut16bit(ContextID, OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
+
+    // Free resources
+    for (t = 0; t < OriginalLut ->InputChannels; t++) {
+
+        if (Trans[t]) cmsFreeToneCurve(ContextID, Trans[t]);
+        if (TransReverse[t]) cmsFreeToneCurve(ContextID, TransReverse[t]);
+    }
+
+    cmsPipelineFree(ContextID, LutPlusCurves);
+
+
+    OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
+    OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
+
+    // Set the evaluator if 8-bit
+    if (_cmsFormatterIs8bit(*InputFormat)) {
+
+        Prelin8Data* p8 = PrelinOpt8alloc(ContextID,
+                                                OptimizedPrelinCLUT ->Params,
+                                                OptimizedPrelinCurves);
+        if (p8 == NULL) return FALSE;
+
+        _cmsPipelineSetOptimizationParameters(ContextID, OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
+
+    }
+    else
+    {
+        Prelin16Data* p16 = PrelinOpt16alloc(ContextID,
+            OptimizedPrelinCLUT ->Params,
+            3, OptimizedPrelinCurves, 3, NULL);
+        if (p16 == NULL) return FALSE;
+
+        _cmsPipelineSetOptimizationParameters(ContextID, OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
+
+    }
+
+    // Don't fix white on absolute colorimetric
+    if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
+        *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
+
+    if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
+
+        if (!FixWhiteMisalignment(ContextID, OptimizedLUT, ColorSpace, OutputColorSpace)) {
+
+            return FALSE;
+        }
+    }
+
+    // And return the obtained LUT
+
+    cmsPipelineFree(ContextID, OriginalLut);
+    *Lut = OptimizedLUT;
+    return TRUE;
+
+Error:
+
+    for (t = 0; t < OriginalLut ->InputChannels; t++) {
+
+        if (Trans[t]) cmsFreeToneCurve(ContextID, Trans[t]);
+        if (TransReverse[t]) cmsFreeToneCurve(ContextID, TransReverse[t]);
+    }
+
+    if (LutPlusCurves != NULL) cmsPipelineFree(ContextID, LutPlusCurves);
+    if (OptimizedLUT != NULL) cmsPipelineFree(ContextID, OptimizedLUT);
+
+    return FALSE;
+
+    cmsUNUSED_PARAMETER(Intent);
+    cmsUNUSED_PARAMETER(lIsLinear);
+}
+
+
+// Curves optimizer ------------------------------------------------------------------------------------------------------------------
+
+static
+void CurvesFree(cmsContext ContextID, void* ptr)
+{
+     Curves16Data* Data = (Curves16Data*) ptr;
+     cmsUInt32Number i;
+
+     for (i=0; i < Data -> nCurves; i++) {
+
+         _cmsFree(ContextID, Data ->Curves[i]);
+     }
+
+     _cmsFree(ContextID, Data ->Curves);
+     _cmsFree(ContextID, ptr);
+}
+
+static
+void* CurvesDup(cmsContext ContextID, const void* ptr)
+{
+    Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
+    cmsUInt32Number i;
+
+    if (Data == NULL) return NULL;
+
+    Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
+
+    for (i=0; i < Data -> nCurves; i++) {
+        Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
+    }
+
+    return (void*) Data;
+}
+
+// Precomputes tables for 8-bit on input devicelink.
+static
+Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
+{
+    cmsUInt32Number i, j;
+    Curves16Data* c16;
+
+    c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
+    if (c16 == NULL) return NULL;
+
+    c16 ->nCurves = nCurves;
+    c16 ->nElements = nElements;
+
+    c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
+    if (c16->Curves == NULL) {
+        _cmsFree(ContextID, c16);
+        return NULL;
+    }
+
+    for (i=0; i < nCurves; i++) {
+
+        c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
+
+        if (c16->Curves[i] == NULL) {
+
+            for (j=0; j < i; j++) {
+                _cmsFree(ContextID, c16->Curves[j]);
+            }
+            _cmsFree(ContextID, c16->Curves);
+            _cmsFree(ContextID, c16);
+            return NULL;
+        }
+
+        if (nElements == 256U) {
+
+            for (j=0; j < nElements; j++) {
+
+                c16 ->Curves[i][j] = cmsEvalToneCurve16(ContextID, G[i], FROM_8_TO_16(j));
+            }
+        }
+        else {
+
+            for (j=0; j < nElements; j++) {
+                c16 ->Curves[i][j] = cmsEvalToneCurve16(ContextID, G[i], (cmsUInt16Number) j);
+            }
+        }
+    }
+
+    return c16;
+}
+
+static
+void FastEvaluateCurves8(cmsContext ContextID,
+                         CMSREGISTER const cmsUInt16Number In[],
+                         CMSREGISTER cmsUInt16Number Out[],
+                         CMSREGISTER const void* D)
+{
+    Curves16Data* Data = (Curves16Data*) D;
+    int x;
+    cmsUInt32Number i;
+    cmsUNUSED_PARAMETER(ContextID);
+
+    for (i=0; i < Data ->nCurves; i++) {
+
+         x = (In[i] >> 8);
+         Out[i] = Data -> Curves[i][x];
+    }
+}
+
+
+static
+void FastEvaluateCurves16(cmsContext ContextID,
+                          CMSREGISTER const cmsUInt16Number In[],
+                          CMSREGISTER cmsUInt16Number Out[],
+                          CMSREGISTER const void* D)
+{
+    Curves16Data* Data = (Curves16Data*) D;
+    cmsUInt32Number i;
+    cmsUNUSED_PARAMETER(ContextID);
+
+    for (i=0; i < Data ->nCurves; i++) {
+         Out[i] = Data -> Curves[i][In[i]];
+    }
+}
+
+
+static
+void FastIdentity16(cmsContext ContextID,
+                    CMSREGISTER const cmsUInt16Number In[],
+                    CMSREGISTER cmsUInt16Number Out[],
+                    CMSREGISTER const void* D)
+{
+    cmsPipeline* Lut = (cmsPipeline*) D;
+    cmsUInt32Number i;
+    cmsUNUSED_PARAMETER(ContextID);
+
+    for (i=0; i < Lut ->InputChannels; i++) {
+         Out[i] = In[i];
+    }
+}
+
+
+// If the target LUT holds only curves, the optimization procedure is to join all those
+// curves together. That only works on curves and does not work on matrices.
+static
+cmsBool OptimizeByJoiningCurves(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
+{
+    cmsToneCurve** GammaTables = NULL;
+    cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
+    cmsUInt32Number i, j;
+    cmsPipeline* Src = *Lut;
+    cmsPipeline* Dest = NULL;
+    cmsStage* mpe;
+    cmsStage* ObtainedCurves = NULL;
+
+
+    // This is a lossy optimization! does not apply in floating-point cases
+    if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
+
+    //  Only curves in this LUT?
+    for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, Src);
+         mpe != NULL;
+         mpe = cmsStageNext(ContextID, mpe)) {
+            if (cmsStageType(ContextID, mpe) != cmsSigCurveSetElemType) return FALSE;
+    }
+
+    // Allocate an empty LUT
+    Dest =  cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
+    if (Dest == NULL) return FALSE;
+
+    // Create target curves
+    GammaTables = (cmsToneCurve**) _cmsCalloc(ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
+    if (GammaTables == NULL) goto Error;
+
+    for (i=0; i < Src ->InputChannels; i++) {
+        GammaTables[i] = cmsBuildTabulatedToneCurve16(ContextID, PRELINEARIZATION_POINTS, NULL);
+        if (GammaTables[i] == NULL) goto Error;
+    }
+
+    // Compute 16 bit result by using floating point
+    for (i=0; i < PRELINEARIZATION_POINTS; i++) {
+
+        for (j=0; j < Src ->InputChannels; j++)
+            InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
+
+        cmsPipelineEvalFloat(ContextID, InFloat, OutFloat, Src);
+
+        for (j=0; j < Src ->InputChannels; j++)
+            GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
+    }
+
+    ObtainedCurves = cmsStageAllocToneCurves(ContextID, Src ->InputChannels, GammaTables);
+    if (ObtainedCurves == NULL) goto Error;
+
+    for (i=0; i < Src ->InputChannels; i++) {
+        cmsFreeToneCurve(ContextID, GammaTables[i]);
+        GammaTables[i] = NULL;
+    }
+
+    if (GammaTables != NULL) {
+        _cmsFree(ContextID, GammaTables);
+        GammaTables = NULL;
+    }
+
+    // Maybe the curves are linear at the end
+    if (!AllCurvesAreLinear(ContextID, ObtainedCurves)) {
+       _cmsStageToneCurvesData* Data;
+
+        if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, ObtainedCurves))
+            goto Error;
+        Data = (_cmsStageToneCurvesData*) cmsStageData(ContextID, ObtainedCurves);
+        ObtainedCurves = NULL;
+
+        // If the curves are to be applied in 8 bits, we can save memory
+        if (_cmsFormatterIs8bit(*InputFormat)) {
+             Curves16Data* c16 = CurvesAlloc(ContextID, Data ->nCurves, 256, Data ->TheCurves);
+
+             if (c16 == NULL) goto Error;
+             *dwFlags |= cmsFLAGS_NOCACHE;
+            _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
+
+        }
+        else {
+             Curves16Data* c16 = CurvesAlloc(ContextID, Data ->nCurves, 65536, Data ->TheCurves);
+
+             if (c16 == NULL) goto Error;
+             *dwFlags |= cmsFLAGS_NOCACHE;
+            _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
+        }
+    }
+    else {
+
+        // LUT optimizes to nothing. Set the identity LUT
+        cmsStageFree(ContextID, ObtainedCurves);
+        ObtainedCurves = NULL;
+
+        if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, cmsStageAllocIdentity(ContextID, Src ->InputChannels)))
+            goto Error;
+
+        *dwFlags |= cmsFLAGS_NOCACHE;
+        _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastIdentity16, (void*) Dest, NULL, NULL);
+    }
+
+    // We are done.
+    cmsPipelineFree(ContextID, Src);
+    *Lut = Dest;
+    return TRUE;
+
+Error:
+
+    if (ObtainedCurves != NULL) cmsStageFree(ContextID, ObtainedCurves);
+    if (GammaTables != NULL) {
+        for (i=0; i < Src ->InputChannels; i++) {
+            if (GammaTables[i] != NULL) cmsFreeToneCurve(ContextID, GammaTables[i]);
+        }
+
+        _cmsFree(ContextID, GammaTables);
+    }
+
+    if (Dest != NULL) cmsPipelineFree(ContextID, Dest);
+    return FALSE;
+
+    cmsUNUSED_PARAMETER(Intent);
+    cmsUNUSED_PARAMETER(InputFormat);
+    cmsUNUSED_PARAMETER(OutputFormat);
+    cmsUNUSED_PARAMETER(dwFlags);
+}
+
+// -------------------------------------------------------------------------------------------------------------------------------------
+// LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
+
+
+static
+void  FreeMatShaper(cmsContext ContextID, void* Data)
+{
+    if (Data != NULL) _cmsFree(ContextID, Data);
+}
+
+static
+void* DupMatShaper(cmsContext ContextID, const void* Data)
+{
+    return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
+}
+
+
+// A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point
+// to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
+// in total about 50K, and the performance boost is huge!
+static CMS_NO_SANITIZE
+void MatShaperEval16(cmsContext ContextID,
+                     CMSREGISTER const cmsUInt16Number In[],
+                     CMSREGISTER cmsUInt16Number Out[],
+                     CMSREGISTER const void* D)
+{
+    MatShaper8Data* p = (MatShaper8Data*) D;
+    cmsS1Fixed14Number l1, l2, l3, r, g, b;
+    cmsUInt32Number ri, gi, bi;
+    cmsUNUSED_PARAMETER(ContextID);
+
+    // In this case (and only in this case!) we can use this simplification since
+    // In[] is assured to come from a 8 bit number. (a << 8 | a)
+    ri = In[0] & 0xFFU;
+    gi = In[1] & 0xFFU;
+    bi = In[2] & 0xFFU;
+
+    // Across first shaper, which also converts to 1.14 fixed point
+    r = p->Shaper1R[ri];
+    g = p->Shaper1G[gi];
+    b = p->Shaper1B[bi];
+
+    // Evaluate the matrix in 1.14 fixed point
+    l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
+    l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
+    l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
+
+    // Now we have to clip to 0..1.0 range
+    ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
+    gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
+    bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
+
+    // And across second shaper,
+    Out[0] = p->Shaper2R[ri];
+    Out[1] = p->Shaper2G[gi];
+    Out[2] = p->Shaper2B[bi];
+
+}
+
+// This table converts from 8 bits to 1.14 after applying the curve
+static
+void FillFirstShaper(cmsContext ContextID, cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
+{
+    int i;
+    cmsFloat32Number R, y;
+
+    for (i=0; i < 256; i++) {
+
+        R   = (cmsFloat32Number) (i / 255.0);
+        y   = cmsEvalToneCurveFloat(ContextID, Curve, R);
+
+        if (y < 131072.0)
+            Table[i] = DOUBLE_TO_1FIXED14(y);
+        else
+            Table[i] = 0x7fffffff;
+    }
+}
+
+// This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
+static
+void FillSecondShaper(cmsContext ContextID, cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
+{
+    int i;
+    cmsFloat32Number R, Val;
+
+    for (i=0; i < 16385; i++) {
+
+        R   = (cmsFloat32Number) (i / 16384.0);
+        Val = cmsEvalToneCurveFloat(ContextID, Curve, R);    // Val comes 0..1.0
+
+        if (Val < 0)
+            Val = 0;
+
+        if (Val > 1.0)
+            Val = 1.0;
+
+        if (Is8BitsOutput) {
+
+            // If 8 bits output, we can optimize further by computing the / 257 part.
+            // first we compute the resulting byte and then we store the byte times
+            // 257. This quantization allows to round very quick by doing a >> 8, but
+            // since the low byte is always equal to msb, we can do a & 0xff and this works!
+            cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
+            cmsUInt8Number  b = FROM_16_TO_8(w);
+
+            Table[i] = FROM_8_TO_16(b);
+        }
+        else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
+    }
+}
+
+// Compute the matrix-shaper structure
+static
+cmsBool SetMatShaper(cmsContext ContextID, cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
+{
+    MatShaper8Data* p;
+    int i, j;
+    cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
+
+    // Allocate a big chuck of memory to store precomputed tables
+    p = (MatShaper8Data*) _cmsMalloc(ContextID, sizeof(MatShaper8Data));
+    if (p == NULL) return FALSE;
+
+    // Precompute tables
+    FillFirstShaper(ContextID, p ->Shaper1R, Curve1[0]);
+    FillFirstShaper(ContextID, p ->Shaper1G, Curve1[1]);
+    FillFirstShaper(ContextID, p ->Shaper1B, Curve1[2]);
+
+    FillSecondShaper(ContextID, p ->Shaper2R, Curve2[0], Is8Bits);
+    FillSecondShaper(ContextID, p ->Shaper2G, Curve2[1], Is8Bits);
+    FillSecondShaper(ContextID, p ->Shaper2B, Curve2[2], Is8Bits);
+
+    // Convert matrix to nFixed14. Note that those values may take more than 16 bits
+    for (i=0; i < 3; i++) {
+        for (j=0; j < 3; j++) {
+            p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
+        }
+    }
+
+    for (i=0; i < 3; i++) {
+
+        if (Off == NULL) {
+            p ->Off[i] = 0;
+        }
+        else {
+            p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
+        }
+    }
+
+    // Mark as optimized for faster formatter
+    if (Is8Bits)
+        *OutputFormat |= OPTIMIZED_SH(1);
+
+    // Fill function pointers
+    _cmsPipelineSetOptimizationParameters(ContextID, Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
+    return TRUE;
+}
+
+//  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
+static
+cmsBool OptimizeMatrixShaper(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
+{
+       cmsStage* Curve1, *Curve2;
+       cmsStage* Matrix1, *Matrix2;
+       cmsMAT3 res;
+       cmsBool IdentityMat;
+       cmsPipeline* Dest, *Src;
+       cmsFloat64Number* Offset;
+
+       // Only works on RGB to RGB
+       if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
+
+       // Only works on 8 bit input
+       if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
+
+       // Does not work in the presence of premultiplied alpha, as that causes the values
+       // passed in to not actually be '8 bit' in the way that we rely on.
+       if (*dwFlags & cmsFLAGS_PREMULT) return FALSE;
+
+       // Seems suitable, proceed
+       Src = *Lut;
+
+       // Check for:
+       //
+       //    shaper-matrix-matrix-shaper
+       //    shaper-matrix-shaper
+       //
+       // Both of those constructs are possible (first because abs. colorimetric).
+       // additionally, In the first case, the input matrix offset should be zero.
+
+       IdentityMat = FALSE;
+       if (cmsPipelineCheckAndRetreiveStages(ContextID, Src, 4,
+              cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
+              &Curve1, &Matrix1, &Matrix2, &Curve2)) {
+
+              // Get both matrices
+              _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix1);
+              _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix2);
+
+              // Only RGB to RGB
+              if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 ||
+                  Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE;
+
+              // Input offset should be zero
+              if (Data1->Offset != NULL) return FALSE;
+
+              // Multiply both matrices to get the result
+              _cmsMAT3per(ContextID, &res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
+
+              // Only 2nd matrix has offset, or it is zero
+              Offset = Data2->Offset;
+
+              // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
+              if (_cmsMAT3isIdentity(ContextID, &res) && Offset == NULL) {
+
+                     // We can get rid of full matrix
+                     IdentityMat = TRUE;
+              }
+
+       }
+       else {
+
+              if (cmsPipelineCheckAndRetreiveStages(ContextID, Src, 3,
+                     cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
+                     &Curve1, &Matrix1, &Curve2)) {
+
+                     _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix1);
+
+                     if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3) return FALSE;
+
+                     // Copy the matrix to our result
+                     memcpy(&res, Data->Double, sizeof(res));
+
+                     // Preserve the Odffset (may be NULL as a zero offset)
+                     Offset = Data->Offset;
+
+                     if (_cmsMAT3isIdentity(ContextID, &res) && Offset == NULL) {
+
+                            // We can get rid of full matrix
+                            IdentityMat = TRUE;
+                     }
+              }
+              else
+                     return FALSE; // Not optimizeable this time
+
+       }
+
+      // Allocate an empty LUT
+    Dest =  cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
+    if (!Dest) return FALSE;
+
+    // Assamble the new LUT
+    if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, cmsStageDup(ContextID, Curve1)))
+        goto Error;
+
+    if (!IdentityMat) {
+
+           if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, cmsStageAllocMatrix(ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
+                  goto Error;
+    }
+
+    if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, cmsStageDup(ContextID, Curve2)))
+        goto Error;
+
+    // If identity on matrix, we can further optimize the curves, so call the join curves routine
+    if (IdentityMat) {
+
+        OptimizeByJoiningCurves(ContextID, &Dest, Intent, InputFormat, OutputFormat, dwFlags);
+    }
+    else {
+        _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(ContextID, Curve1);
+        _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(ContextID, Curve2);
+
+        // In this particular optimization, cache does not help as it takes more time to deal with
+        // the cache than with the pixel handling
+        *dwFlags |= cmsFLAGS_NOCACHE;
+
+        // Setup the optimizarion routines
+        SetMatShaper(ContextID, Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
+    }
+
+    cmsPipelineFree(ContextID, Src);
+    *Lut = Dest;
+    return TRUE;
+Error:
+    // Leave Src unchanged
+    cmsPipelineFree(ContextID, Dest);
+    return FALSE;
+}
+
+
+// -------------------------------------------------------------------------------------------------------------------------------------
+// Optimization plug-ins
+
+// List of optimizations
+typedef struct _cmsOptimizationCollection_st {
+
+    _cmsOPToptimizeFn  OptimizePtr;
+
+    struct _cmsOptimizationCollection_st *Next;
+
+} _cmsOptimizationCollection;
+
+
+// The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
+static _cmsOptimizationCollection DefaultOptimization[] = {
+
+    { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
+    { OptimizeMatrixShaper,               &DefaultOptimization[2] },
+    { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
+    { OptimizeByResampling,               NULL }
+};
+
+// The linked list head
+_cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
+
+
+// Duplicates the zone of memory used by the plug-in in the new context
+static
+void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
+                               const struct _cmsContext_struct* src)
+{
+   _cmsOptimizationPluginChunkType newHead = { NULL };
+   _cmsOptimizationCollection*  entry;
+   _cmsOptimizationCollection*  Anterior = NULL;
+   _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
+
+    _cmsAssert(ctx != NULL);
+    _cmsAssert(head != NULL);
+
+    // Walk the list copying all nodes
+   for (entry = head->OptimizationCollection;
+        entry != NULL;
+        entry = entry ->Next) {
+
+            _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
+
+            if (newEntry == NULL)
+                return;
+
+            // We want to keep the linked list order, so this is a little bit tricky
+            newEntry -> Next = NULL;
+            if (Anterior)
+                Anterior -> Next = newEntry;
+
+            Anterior = newEntry;
+
+            if (newHead.OptimizationCollection == NULL)
+                newHead.OptimizationCollection = newEntry;
+    }
+
+  ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
+}
+
+void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
+                                         const struct _cmsContext_struct* src)
+{
+  if (src != NULL) {
+
+        // Copy all linked list
+       DupPluginOptimizationList(ctx, src);
+    }
+    else {
+        static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
+        ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
+    }
+}
+
+
+// Register new ways to optimize
+cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
+{
+    cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
+    _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
+    _cmsOptimizationCollection* fl;
+
+    if (Data == NULL) {
+
+        ctx->OptimizationCollection = NULL;
+        return TRUE;
+    }
+
+    // Optimizer callback is required
+    if (Plugin ->OptimizePtr == NULL) return FALSE;
+
+    fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
+    if (fl == NULL) return FALSE;
+
+    // Copy the parameters
+    fl ->OptimizePtr = Plugin ->OptimizePtr;
+
+    // Keep linked list
+    fl ->Next = ctx->OptimizationCollection;
+
+    // Set the head
+    ctx ->OptimizationCollection = fl;
+
+    // All is ok
+    return TRUE;
+}
+
+// The entry point for LUT optimization
+cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID,
+                             cmsPipeline**    PtrLut,
+                             cmsUInt32Number  Intent,
+                             cmsUInt32Number* InputFormat,
+                             cmsUInt32Number* OutputFormat,
+                             cmsUInt32Number* dwFlags)
+{
+    _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
+    _cmsOptimizationCollection* Opts;
+    cmsBool AnySuccess = FALSE;
+    cmsStage* mpe;
+
+    // A CLUT is being asked, so force this specific optimization
+    if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
+
+        PreOptimize(ContextID, *PtrLut);
+        return OptimizeByResampling(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
+    }
+
+    // Anything to optimize?
+    if ((*PtrLut) ->Elements == NULL) {
+        _cmsPipelineSetOptimizationParameters(ContextID, *PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
+        return TRUE;
+    }
+
+    // Named color pipelines cannot be optimized
+    for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, *PtrLut);
+        mpe != NULL;
+        mpe = cmsStageNext(ContextID, mpe)) {
+           if (cmsStageType(ContextID, mpe) == cmsSigNamedColorElemType) return FALSE;
+    }
+
+    // Try to get rid of identities and trivial conversions.
+    AnySuccess = PreOptimize(ContextID, *PtrLut);
+
+    // After removal do we end with an identity?
+    if ((*PtrLut) ->Elements == NULL) {
+        _cmsPipelineSetOptimizationParameters(ContextID, *PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
+        return TRUE;
+    }
+
+    // Do not optimize, keep all precision
+    if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
+        return FALSE;
+
+    // Try plug-in optimizations
+    for (Opts = ctx->OptimizationCollection;
+         Opts != NULL;
+         Opts = Opts ->Next) {
+
+            // If one schema succeeded, we are done
+            if (Opts ->OptimizePtr(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
+
+                return TRUE;    // Optimized!
+            }
+    }
+
+   // Try built-in optimizations
+    for (Opts = DefaultOptimization;
+         Opts != NULL;
+         Opts = Opts ->Next) {
+
+            if (Opts ->OptimizePtr(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
+
+                return TRUE;
+            }
+    }
+
+    // Only simple optimizations succeeded
+    return AnySuccess;
+}
+
+cmsBool _cmsLutIsIdentity(cmsPipeline *PtrLut)
+{
+    return !PtrLut || PtrLut->Eval16Fn == FastIdentity16;
+}