Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/zlib/deflate.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* deflate.c -- compress data using the deflation algorithm | |
| 2 * Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler | |
| 3 * For conditions of distribution and use, see copyright notice in zlib.h | |
| 4 */ | |
| 5 | |
| 6 /* | |
| 7 * ALGORITHM | |
| 8 * | |
| 9 * The "deflation" process depends on being able to identify portions | |
| 10 * of the input text which are identical to earlier input (within a | |
| 11 * sliding window trailing behind the input currently being processed). | |
| 12 * | |
| 13 * The most straightforward technique turns out to be the fastest for | |
| 14 * most input files: try all possible matches and select the longest. | |
| 15 * The key feature of this algorithm is that insertions into the string | |
| 16 * dictionary are very simple and thus fast, and deletions are avoided | |
| 17 * completely. Insertions are performed at each input character, whereas | |
| 18 * string matches are performed only when the previous match ends. So it | |
| 19 * is preferable to spend more time in matches to allow very fast string | |
| 20 * insertions and avoid deletions. The matching algorithm for small | |
| 21 * strings is inspired from that of Rabin & Karp. A brute force approach | |
| 22 * is used to find longer strings when a small match has been found. | |
| 23 * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze | |
| 24 * (by Leonid Broukhis). | |
| 25 * A previous version of this file used a more sophisticated algorithm | |
| 26 * (by Fiala and Greene) which is guaranteed to run in linear amortized | |
| 27 * time, but has a larger average cost, uses more memory and is patented. | |
| 28 * However the F&G algorithm may be faster for some highly redundant | |
| 29 * files if the parameter max_chain_length (described below) is too large. | |
| 30 * | |
| 31 * ACKNOWLEDGEMENTS | |
| 32 * | |
| 33 * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and | |
| 34 * I found it in 'freeze' written by Leonid Broukhis. | |
| 35 * Thanks to many people for bug reports and testing. | |
| 36 * | |
| 37 * REFERENCES | |
| 38 * | |
| 39 * Deutsch, L.P.,"DEFLATE Compressed Data Format Specification". | |
| 40 * Available in http://tools.ietf.org/html/rfc1951 | |
| 41 * | |
| 42 * A description of the Rabin and Karp algorithm is given in the book | |
| 43 * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. | |
| 44 * | |
| 45 * Fiala,E.R., and Greene,D.H. | |
| 46 * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 | |
| 47 * | |
| 48 */ | |
| 49 | |
| 50 /* @(#) $Id$ */ | |
| 51 | |
| 52 #include "deflate.h" | |
| 53 | |
| 54 const char deflate_copyright[] = | |
| 55 " deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler "; | |
| 56 /* | |
| 57 If you use the zlib library in a product, an acknowledgment is welcome | |
| 58 in the documentation of your product. If for some reason you cannot | |
| 59 include such an acknowledgment, I would appreciate that you keep this | |
| 60 copyright string in the executable of your product. | |
| 61 */ | |
| 62 | |
| 63 typedef enum { | |
| 64 need_more, /* block not completed, need more input or more output */ | |
| 65 block_done, /* block flush performed */ | |
| 66 finish_started, /* finish started, need only more output at next deflate */ | |
| 67 finish_done /* finish done, accept no more input or output */ | |
| 68 } block_state; | |
| 69 | |
| 70 typedef block_state (*compress_func)(deflate_state *s, int flush); | |
| 71 /* Compression function. Returns the block state after the call. */ | |
| 72 | |
| 73 local block_state deflate_stored(deflate_state *s, int flush); | |
| 74 local block_state deflate_fast(deflate_state *s, int flush); | |
| 75 #ifndef FASTEST | |
| 76 local block_state deflate_slow(deflate_state *s, int flush); | |
| 77 #endif | |
| 78 local block_state deflate_rle(deflate_state *s, int flush); | |
| 79 local block_state deflate_huff(deflate_state *s, int flush); | |
| 80 | |
| 81 /* =========================================================================== | |
| 82 * Local data | |
| 83 */ | |
| 84 | |
| 85 #define NIL 0 | |
| 86 /* Tail of hash chains */ | |
| 87 | |
| 88 #ifndef TOO_FAR | |
| 89 # define TOO_FAR 4096 | |
| 90 #endif | |
| 91 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ | |
| 92 | |
| 93 /* Values for max_lazy_match, good_match and max_chain_length, depending on | |
| 94 * the desired pack level (0..9). The values given below have been tuned to | |
| 95 * exclude worst case performance for pathological files. Better values may be | |
| 96 * found for specific files. | |
| 97 */ | |
| 98 typedef struct config_s { | |
| 99 ush good_length; /* reduce lazy search above this match length */ | |
| 100 ush max_lazy; /* do not perform lazy search above this match length */ | |
| 101 ush nice_length; /* quit search above this match length */ | |
| 102 ush max_chain; | |
| 103 compress_func func; | |
| 104 } config; | |
| 105 | |
| 106 #ifdef FASTEST | |
| 107 local const config configuration_table[2] = { | |
| 108 /* good lazy nice chain */ | |
| 109 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ | |
| 110 /* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */ | |
| 111 #else | |
| 112 local const config configuration_table[10] = { | |
| 113 /* good lazy nice chain */ | |
| 114 /* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */ | |
| 115 /* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */ | |
| 116 /* 2 */ {4, 5, 16, 8, deflate_fast}, | |
| 117 /* 3 */ {4, 6, 32, 32, deflate_fast}, | |
| 118 | |
| 119 /* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */ | |
| 120 /* 5 */ {8, 16, 32, 32, deflate_slow}, | |
| 121 /* 6 */ {8, 16, 128, 128, deflate_slow}, | |
| 122 /* 7 */ {8, 32, 128, 256, deflate_slow}, | |
| 123 /* 8 */ {32, 128, 258, 1024, deflate_slow}, | |
| 124 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */ | |
| 125 #endif | |
| 126 | |
| 127 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 | |
| 128 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different | |
| 129 * meaning. | |
| 130 */ | |
| 131 | |
| 132 /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */ | |
| 133 #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0)) | |
| 134 | |
| 135 /* =========================================================================== | |
| 136 * Update a hash value with the given input byte | |
| 137 * IN assertion: all calls to UPDATE_HASH are made with consecutive input | |
| 138 * characters, so that a running hash key can be computed from the previous | |
| 139 * key instead of complete recalculation each time. | |
| 140 */ | |
| 141 #define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask) | |
| 142 | |
| 143 | |
| 144 /* =========================================================================== | |
| 145 * Insert string str in the dictionary and set match_head to the previous head | |
| 146 * of the hash chain (the most recent string with same hash key). Return | |
| 147 * the previous length of the hash chain. | |
| 148 * If this file is compiled with -DFASTEST, the compression level is forced | |
| 149 * to 1, and no hash chains are maintained. | |
| 150 * IN assertion: all calls to INSERT_STRING are made with consecutive input | |
| 151 * characters and the first MIN_MATCH bytes of str are valid (except for | |
| 152 * the last MIN_MATCH-1 bytes of the input file). | |
| 153 */ | |
| 154 #ifdef FASTEST | |
| 155 #define INSERT_STRING(s, str, match_head) \ | |
| 156 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | |
| 157 match_head = s->head[s->ins_h], \ | |
| 158 s->head[s->ins_h] = (Pos)(str)) | |
| 159 #else | |
| 160 #define INSERT_STRING(s, str, match_head) \ | |
| 161 (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ | |
| 162 match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \ | |
| 163 s->head[s->ins_h] = (Pos)(str)) | |
| 164 #endif | |
| 165 | |
| 166 /* =========================================================================== | |
| 167 * Initialize the hash table (avoiding 64K overflow for 16 bit systems). | |
| 168 * prev[] will be initialized on the fly. | |
| 169 */ | |
| 170 #define CLEAR_HASH(s) \ | |
| 171 do { \ | |
| 172 s->head[s->hash_size - 1] = NIL; \ | |
| 173 zmemzero((Bytef *)s->head, \ | |
| 174 (unsigned)(s->hash_size - 1)*sizeof(*s->head)); \ | |
| 175 } while (0) | |
| 176 | |
| 177 /* =========================================================================== | |
| 178 * Slide the hash table when sliding the window down (could be avoided with 32 | |
| 179 * bit values at the expense of memory usage). We slide even when level == 0 to | |
| 180 * keep the hash table consistent if we switch back to level > 0 later. | |
| 181 */ | |
| 182 #if defined(__has_feature) | |
| 183 # if __has_feature(memory_sanitizer) | |
| 184 __attribute__((no_sanitize("memory"))) | |
| 185 # endif | |
| 186 #endif | |
| 187 local void slide_hash(deflate_state *s) { | |
| 188 unsigned n, m; | |
| 189 Posf *p; | |
| 190 uInt wsize = s->w_size; | |
| 191 | |
| 192 n = s->hash_size; | |
| 193 p = &s->head[n]; | |
| 194 do { | |
| 195 m = *--p; | |
| 196 *p = (Pos)(m >= wsize ? m - wsize : NIL); | |
| 197 } while (--n); | |
| 198 n = wsize; | |
| 199 #ifndef FASTEST | |
| 200 p = &s->prev[n]; | |
| 201 do { | |
| 202 m = *--p; | |
| 203 *p = (Pos)(m >= wsize ? m - wsize : NIL); | |
| 204 /* If n is not on any hash chain, prev[n] is garbage but | |
| 205 * its value will never be used. | |
| 206 */ | |
| 207 } while (--n); | |
| 208 #endif | |
| 209 } | |
| 210 | |
| 211 /* =========================================================================== | |
| 212 * Read a new buffer from the current input stream, update the adler32 | |
| 213 * and total number of bytes read. All deflate() input goes through | |
| 214 * this function so some applications may wish to modify it to avoid | |
| 215 * allocating a large strm->next_in buffer and copying from it. | |
| 216 * (See also flush_pending()). | |
| 217 */ | |
| 218 local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) { | |
| 219 unsigned len = strm->avail_in; | |
| 220 | |
| 221 if (len > size) len = size; | |
| 222 if (len == 0) return 0; | |
| 223 | |
| 224 strm->avail_in -= len; | |
| 225 | |
| 226 zmemcpy(buf, strm->next_in, len); | |
| 227 if (strm->state->wrap == 1) { | |
| 228 strm->adler = adler32(strm->adler, buf, len); | |
| 229 } | |
| 230 #ifdef GZIP | |
| 231 else if (strm->state->wrap == 2) { | |
| 232 strm->adler = crc32(strm->adler, buf, len); | |
| 233 } | |
| 234 #endif | |
| 235 strm->next_in += len; | |
| 236 strm->total_in += len; | |
| 237 | |
| 238 return len; | |
| 239 } | |
| 240 | |
| 241 /* =========================================================================== | |
| 242 * Fill the window when the lookahead becomes insufficient. | |
| 243 * Updates strstart and lookahead. | |
| 244 * | |
| 245 * IN assertion: lookahead < MIN_LOOKAHEAD | |
| 246 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD | |
| 247 * At least one byte has been read, or avail_in == 0; reads are | |
| 248 * performed for at least two bytes (required for the zip translate_eol | |
| 249 * option -- not supported here). | |
| 250 */ | |
| 251 local void fill_window(deflate_state *s) { | |
| 252 unsigned n; | |
| 253 unsigned more; /* Amount of free space at the end of the window. */ | |
| 254 uInt wsize = s->w_size; | |
| 255 | |
| 256 Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead"); | |
| 257 | |
| 258 do { | |
| 259 more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); | |
| 260 | |
| 261 /* Deal with !@#$% 64K limit: */ | |
| 262 if (sizeof(int) <= 2) { | |
| 263 if (more == 0 && s->strstart == 0 && s->lookahead == 0) { | |
| 264 more = wsize; | |
| 265 | |
| 266 } else if (more == (unsigned)(-1)) { | |
| 267 /* Very unlikely, but possible on 16 bit machine if | |
| 268 * strstart == 0 && lookahead == 1 (input done a byte at time) | |
| 269 */ | |
| 270 more--; | |
| 271 } | |
| 272 } | |
| 273 | |
| 274 /* If the window is almost full and there is insufficient lookahead, | |
| 275 * move the upper half to the lower one to make room in the upper half. | |
| 276 */ | |
| 277 if (s->strstart >= wsize + MAX_DIST(s)) { | |
| 278 | |
| 279 zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more); | |
| 280 s->match_start -= wsize; | |
| 281 s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ | |
| 282 s->block_start -= (long) wsize; | |
| 283 if (s->insert > s->strstart) | |
| 284 s->insert = s->strstart; | |
| 285 slide_hash(s); | |
| 286 more += wsize; | |
| 287 } | |
| 288 if (s->strm->avail_in == 0) break; | |
| 289 | |
| 290 /* If there was no sliding: | |
| 291 * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && | |
| 292 * more == window_size - lookahead - strstart | |
| 293 * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) | |
| 294 * => more >= window_size - 2*WSIZE + 2 | |
| 295 * In the BIG_MEM or MMAP case (not yet supported), | |
| 296 * window_size == input_size + MIN_LOOKAHEAD && | |
| 297 * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. | |
| 298 * Otherwise, window_size == 2*WSIZE so more >= 2. | |
| 299 * If there was sliding, more >= WSIZE. So in all cases, more >= 2. | |
| 300 */ | |
| 301 Assert(more >= 2, "more < 2"); | |
| 302 | |
| 303 n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more); | |
| 304 s->lookahead += n; | |
| 305 | |
| 306 /* Initialize the hash value now that we have some input: */ | |
| 307 if (s->lookahead + s->insert >= MIN_MATCH) { | |
| 308 uInt str = s->strstart - s->insert; | |
| 309 s->ins_h = s->window[str]; | |
| 310 UPDATE_HASH(s, s->ins_h, s->window[str + 1]); | |
| 311 #if MIN_MATCH != 3 | |
| 312 Call UPDATE_HASH() MIN_MATCH-3 more times | |
| 313 #endif | |
| 314 while (s->insert) { | |
| 315 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); | |
| 316 #ifndef FASTEST | |
| 317 s->prev[str & s->w_mask] = s->head[s->ins_h]; | |
| 318 #endif | |
| 319 s->head[s->ins_h] = (Pos)str; | |
| 320 str++; | |
| 321 s->insert--; | |
| 322 if (s->lookahead + s->insert < MIN_MATCH) | |
| 323 break; | |
| 324 } | |
| 325 } | |
| 326 /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, | |
| 327 * but this is not important since only literal bytes will be emitted. | |
| 328 */ | |
| 329 | |
| 330 } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); | |
| 331 | |
| 332 /* If the WIN_INIT bytes after the end of the current data have never been | |
| 333 * written, then zero those bytes in order to avoid memory check reports of | |
| 334 * the use of uninitialized (or uninitialised as Julian writes) bytes by | |
| 335 * the longest match routines. Update the high water mark for the next | |
| 336 * time through here. WIN_INIT is set to MAX_MATCH since the longest match | |
| 337 * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead. | |
| 338 */ | |
| 339 if (s->high_water < s->window_size) { | |
| 340 ulg curr = s->strstart + (ulg)(s->lookahead); | |
| 341 ulg init; | |
| 342 | |
| 343 if (s->high_water < curr) { | |
| 344 /* Previous high water mark below current data -- zero WIN_INIT | |
| 345 * bytes or up to end of window, whichever is less. | |
| 346 */ | |
| 347 init = s->window_size - curr; | |
| 348 if (init > WIN_INIT) | |
| 349 init = WIN_INIT; | |
| 350 zmemzero(s->window + curr, (unsigned)init); | |
| 351 s->high_water = curr + init; | |
| 352 } | |
| 353 else if (s->high_water < (ulg)curr + WIN_INIT) { | |
| 354 /* High water mark at or above current data, but below current data | |
| 355 * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up | |
| 356 * to end of window, whichever is less. | |
| 357 */ | |
| 358 init = (ulg)curr + WIN_INIT - s->high_water; | |
| 359 if (init > s->window_size - s->high_water) | |
| 360 init = s->window_size - s->high_water; | |
| 361 zmemzero(s->window + s->high_water, (unsigned)init); | |
| 362 s->high_water += init; | |
| 363 } | |
| 364 } | |
| 365 | |
| 366 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | |
| 367 "not enough room for search"); | |
| 368 } | |
| 369 | |
| 370 /* ========================================================================= */ | |
| 371 int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version, | |
| 372 int stream_size) { | |
| 373 return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, | |
| 374 Z_DEFAULT_STRATEGY, version, stream_size); | |
| 375 /* To do: ignore strm->next_in if we use it as window */ | |
| 376 } | |
| 377 | |
| 378 /* ========================================================================= */ | |
| 379 int ZEXPORT deflateInit2_(z_streamp strm, int level, int method, | |
| 380 int windowBits, int memLevel, int strategy, | |
| 381 const char *version, int stream_size) { | |
| 382 deflate_state *s; | |
| 383 int wrap = 1; | |
| 384 static const char my_version[] = ZLIB_VERSION; | |
| 385 | |
| 386 if (version == Z_NULL || version[0] != my_version[0] || | |
| 387 stream_size != sizeof(z_stream)) { | |
| 388 return Z_VERSION_ERROR; | |
| 389 } | |
| 390 if (strm == Z_NULL) return Z_STREAM_ERROR; | |
| 391 | |
| 392 strm->msg = Z_NULL; | |
| 393 if (strm->zalloc == (alloc_func)0) { | |
| 394 #ifdef Z_SOLO | |
| 395 return Z_STREAM_ERROR; | |
| 396 #else | |
| 397 strm->zalloc = zcalloc; | |
| 398 strm->opaque = (voidpf)0; | |
| 399 #endif | |
| 400 } | |
| 401 if (strm->zfree == (free_func)0) | |
| 402 #ifdef Z_SOLO | |
| 403 return Z_STREAM_ERROR; | |
| 404 #else | |
| 405 strm->zfree = zcfree; | |
| 406 #endif | |
| 407 | |
| 408 #ifdef FASTEST | |
| 409 if (level != 0) level = 1; | |
| 410 #else | |
| 411 if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
| 412 #endif | |
| 413 | |
| 414 if (windowBits < 0) { /* suppress zlib wrapper */ | |
| 415 wrap = 0; | |
| 416 if (windowBits < -15) | |
| 417 return Z_STREAM_ERROR; | |
| 418 windowBits = -windowBits; | |
| 419 } | |
| 420 #ifdef GZIP | |
| 421 else if (windowBits > 15) { | |
| 422 wrap = 2; /* write gzip wrapper instead */ | |
| 423 windowBits -= 16; | |
| 424 } | |
| 425 #endif | |
| 426 if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED || | |
| 427 windowBits < 8 || windowBits > 15 || level < 0 || level > 9 || | |
| 428 strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) { | |
| 429 return Z_STREAM_ERROR; | |
| 430 } | |
| 431 if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */ | |
| 432 s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); | |
| 433 if (s == Z_NULL) return Z_MEM_ERROR; | |
| 434 strm->state = (struct internal_state FAR *)s; | |
| 435 s->strm = strm; | |
| 436 s->status = INIT_STATE; /* to pass state test in deflateReset() */ | |
| 437 | |
| 438 s->wrap = wrap; | |
| 439 s->gzhead = Z_NULL; | |
| 440 s->w_bits = (uInt)windowBits; | |
| 441 s->w_size = 1 << s->w_bits; | |
| 442 s->w_mask = s->w_size - 1; | |
| 443 | |
| 444 s->hash_bits = (uInt)memLevel + 7; | |
| 445 s->hash_size = 1 << s->hash_bits; | |
| 446 s->hash_mask = s->hash_size - 1; | |
| 447 s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH); | |
| 448 | |
| 449 s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); | |
| 450 s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); | |
| 451 s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); | |
| 452 | |
| 453 s->high_water = 0; /* nothing written to s->window yet */ | |
| 454 | |
| 455 s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ | |
| 456 | |
| 457 /* We overlay pending_buf and sym_buf. This works since the average size | |
| 458 * for length/distance pairs over any compressed block is assured to be 31 | |
| 459 * bits or less. | |
| 460 * | |
| 461 * Analysis: The longest fixed codes are a length code of 8 bits plus 5 | |
| 462 * extra bits, for lengths 131 to 257. The longest fixed distance codes are | |
| 463 * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest | |
| 464 * possible fixed-codes length/distance pair is then 31 bits total. | |
| 465 * | |
| 466 * sym_buf starts one-fourth of the way into pending_buf. So there are | |
| 467 * three bytes in sym_buf for every four bytes in pending_buf. Each symbol | |
| 468 * in sym_buf is three bytes -- two for the distance and one for the | |
| 469 * literal/length. As each symbol is consumed, the pointer to the next | |
| 470 * sym_buf value to read moves forward three bytes. From that symbol, up to | |
| 471 * 31 bits are written to pending_buf. The closest the written pending_buf | |
| 472 * bits gets to the next sym_buf symbol to read is just before the last | |
| 473 * code is written. At that time, 31*(n - 2) bits have been written, just | |
| 474 * after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at | |
| 475 * 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1 | |
| 476 * symbols are written.) The closest the writing gets to what is unread is | |
| 477 * then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and | |
| 478 * can range from 128 to 32768. | |
| 479 * | |
| 480 * Therefore, at a minimum, there are 142 bits of space between what is | |
| 481 * written and what is read in the overlain buffers, so the symbols cannot | |
| 482 * be overwritten by the compressed data. That space is actually 139 bits, | |
| 483 * due to the three-bit fixed-code block header. | |
| 484 * | |
| 485 * That covers the case where either Z_FIXED is specified, forcing fixed | |
| 486 * codes, or when the use of fixed codes is chosen, because that choice | |
| 487 * results in a smaller compressed block than dynamic codes. That latter | |
| 488 * condition then assures that the above analysis also covers all dynamic | |
| 489 * blocks. A dynamic-code block will only be chosen to be emitted if it has | |
| 490 * fewer bits than a fixed-code block would for the same set of symbols. | |
| 491 * Therefore its average symbol length is assured to be less than 31. So | |
| 492 * the compressed data for a dynamic block also cannot overwrite the | |
| 493 * symbols from which it is being constructed. | |
| 494 */ | |
| 495 | |
| 496 s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS); | |
| 497 s->pending_buf_size = (ulg)s->lit_bufsize * 4; | |
| 498 | |
| 499 if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || | |
| 500 s->pending_buf == Z_NULL) { | |
| 501 s->status = FINISH_STATE; | |
| 502 strm->msg = ERR_MSG(Z_MEM_ERROR); | |
| 503 deflateEnd (strm); | |
| 504 return Z_MEM_ERROR; | |
| 505 } | |
| 506 #ifdef LIT_MEM | |
| 507 s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1)); | |
| 508 s->l_buf = s->pending_buf + (s->lit_bufsize << 2); | |
| 509 s->sym_end = s->lit_bufsize - 1; | |
| 510 #else | |
| 511 s->sym_buf = s->pending_buf + s->lit_bufsize; | |
| 512 s->sym_end = (s->lit_bufsize - 1) * 3; | |
| 513 #endif | |
| 514 /* We avoid equality with lit_bufsize*3 because of wraparound at 64K | |
| 515 * on 16 bit machines and because stored blocks are restricted to | |
| 516 * 64K-1 bytes. | |
| 517 */ | |
| 518 | |
| 519 s->level = level; | |
| 520 s->strategy = strategy; | |
| 521 s->method = (Byte)method; | |
| 522 | |
| 523 return deflateReset(strm); | |
| 524 } | |
| 525 | |
| 526 /* ========================================================================= | |
| 527 * Check for a valid deflate stream state. Return 0 if ok, 1 if not. | |
| 528 */ | |
| 529 local int deflateStateCheck(z_streamp strm) { | |
| 530 deflate_state *s; | |
| 531 if (strm == Z_NULL || | |
| 532 strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) | |
| 533 return 1; | |
| 534 s = strm->state; | |
| 535 if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE && | |
| 536 #ifdef GZIP | |
| 537 s->status != GZIP_STATE && | |
| 538 #endif | |
| 539 s->status != EXTRA_STATE && | |
| 540 s->status != NAME_STATE && | |
| 541 s->status != COMMENT_STATE && | |
| 542 s->status != HCRC_STATE && | |
| 543 s->status != BUSY_STATE && | |
| 544 s->status != FINISH_STATE)) | |
| 545 return 1; | |
| 546 return 0; | |
| 547 } | |
| 548 | |
| 549 /* ========================================================================= */ | |
| 550 int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary, | |
| 551 uInt dictLength) { | |
| 552 deflate_state *s; | |
| 553 uInt str, n; | |
| 554 int wrap; | |
| 555 unsigned avail; | |
| 556 z_const unsigned char *next; | |
| 557 | |
| 558 if (deflateStateCheck(strm) || dictionary == Z_NULL) | |
| 559 return Z_STREAM_ERROR; | |
| 560 s = strm->state; | |
| 561 wrap = s->wrap; | |
| 562 if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead) | |
| 563 return Z_STREAM_ERROR; | |
| 564 | |
| 565 /* when using zlib wrappers, compute Adler-32 for provided dictionary */ | |
| 566 if (wrap == 1) | |
| 567 strm->adler = adler32(strm->adler, dictionary, dictLength); | |
| 568 s->wrap = 0; /* avoid computing Adler-32 in read_buf */ | |
| 569 | |
| 570 /* if dictionary would fill window, just replace the history */ | |
| 571 if (dictLength >= s->w_size) { | |
| 572 if (wrap == 0) { /* already empty otherwise */ | |
| 573 CLEAR_HASH(s); | |
| 574 s->strstart = 0; | |
| 575 s->block_start = 0L; | |
| 576 s->insert = 0; | |
| 577 } | |
| 578 dictionary += dictLength - s->w_size; /* use the tail */ | |
| 579 dictLength = s->w_size; | |
| 580 } | |
| 581 | |
| 582 /* insert dictionary into window and hash */ | |
| 583 avail = strm->avail_in; | |
| 584 next = strm->next_in; | |
| 585 strm->avail_in = dictLength; | |
| 586 strm->next_in = (z_const Bytef *)dictionary; | |
| 587 fill_window(s); | |
| 588 while (s->lookahead >= MIN_MATCH) { | |
| 589 str = s->strstart; | |
| 590 n = s->lookahead - (MIN_MATCH-1); | |
| 591 do { | |
| 592 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]); | |
| 593 #ifndef FASTEST | |
| 594 s->prev[str & s->w_mask] = s->head[s->ins_h]; | |
| 595 #endif | |
| 596 s->head[s->ins_h] = (Pos)str; | |
| 597 str++; | |
| 598 } while (--n); | |
| 599 s->strstart = str; | |
| 600 s->lookahead = MIN_MATCH-1; | |
| 601 fill_window(s); | |
| 602 } | |
| 603 s->strstart += s->lookahead; | |
| 604 s->block_start = (long)s->strstart; | |
| 605 s->insert = s->lookahead; | |
| 606 s->lookahead = 0; | |
| 607 s->match_length = s->prev_length = MIN_MATCH-1; | |
| 608 s->match_available = 0; | |
| 609 strm->next_in = next; | |
| 610 strm->avail_in = avail; | |
| 611 s->wrap = wrap; | |
| 612 return Z_OK; | |
| 613 } | |
| 614 | |
| 615 /* ========================================================================= */ | |
| 616 int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary, | |
| 617 uInt *dictLength) { | |
| 618 deflate_state *s; | |
| 619 uInt len; | |
| 620 | |
| 621 if (deflateStateCheck(strm)) | |
| 622 return Z_STREAM_ERROR; | |
| 623 s = strm->state; | |
| 624 len = s->strstart + s->lookahead; | |
| 625 if (len > s->w_size) | |
| 626 len = s->w_size; | |
| 627 if (dictionary != Z_NULL && len) | |
| 628 zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len); | |
| 629 if (dictLength != Z_NULL) | |
| 630 *dictLength = len; | |
| 631 return Z_OK; | |
| 632 } | |
| 633 | |
| 634 /* ========================================================================= */ | |
| 635 int ZEXPORT deflateResetKeep(z_streamp strm) { | |
| 636 deflate_state *s; | |
| 637 | |
| 638 if (deflateStateCheck(strm)) { | |
| 639 return Z_STREAM_ERROR; | |
| 640 } | |
| 641 | |
| 642 strm->total_in = strm->total_out = 0; | |
| 643 strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ | |
| 644 strm->data_type = Z_UNKNOWN; | |
| 645 | |
| 646 s = (deflate_state *)strm->state; | |
| 647 s->pending = 0; | |
| 648 s->pending_out = s->pending_buf; | |
| 649 | |
| 650 if (s->wrap < 0) { | |
| 651 s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */ | |
| 652 } | |
| 653 s->status = | |
| 654 #ifdef GZIP | |
| 655 s->wrap == 2 ? GZIP_STATE : | |
| 656 #endif | |
| 657 INIT_STATE; | |
| 658 strm->adler = | |
| 659 #ifdef GZIP | |
| 660 s->wrap == 2 ? crc32(0L, Z_NULL, 0) : | |
| 661 #endif | |
| 662 adler32(0L, Z_NULL, 0); | |
| 663 s->last_flush = -2; | |
| 664 | |
| 665 _tr_init(s); | |
| 666 | |
| 667 return Z_OK; | |
| 668 } | |
| 669 | |
| 670 /* =========================================================================== | |
| 671 * Initialize the "longest match" routines for a new zlib stream | |
| 672 */ | |
| 673 local void lm_init(deflate_state *s) { | |
| 674 s->window_size = (ulg)2L*s->w_size; | |
| 675 | |
| 676 CLEAR_HASH(s); | |
| 677 | |
| 678 /* Set the default configuration parameters: | |
| 679 */ | |
| 680 s->max_lazy_match = configuration_table[s->level].max_lazy; | |
| 681 s->good_match = configuration_table[s->level].good_length; | |
| 682 s->nice_match = configuration_table[s->level].nice_length; | |
| 683 s->max_chain_length = configuration_table[s->level].max_chain; | |
| 684 | |
| 685 s->strstart = 0; | |
| 686 s->block_start = 0L; | |
| 687 s->lookahead = 0; | |
| 688 s->insert = 0; | |
| 689 s->match_length = s->prev_length = MIN_MATCH-1; | |
| 690 s->match_available = 0; | |
| 691 s->ins_h = 0; | |
| 692 } | |
| 693 | |
| 694 /* ========================================================================= */ | |
| 695 int ZEXPORT deflateReset(z_streamp strm) { | |
| 696 int ret; | |
| 697 | |
| 698 ret = deflateResetKeep(strm); | |
| 699 if (ret == Z_OK) | |
| 700 lm_init(strm->state); | |
| 701 return ret; | |
| 702 } | |
| 703 | |
| 704 /* ========================================================================= */ | |
| 705 int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) { | |
| 706 if (deflateStateCheck(strm) || strm->state->wrap != 2) | |
| 707 return Z_STREAM_ERROR; | |
| 708 strm->state->gzhead = head; | |
| 709 return Z_OK; | |
| 710 } | |
| 711 | |
| 712 /* ========================================================================= */ | |
| 713 int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) { | |
| 714 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | |
| 715 if (pending != Z_NULL) | |
| 716 *pending = strm->state->pending; | |
| 717 if (bits != Z_NULL) | |
| 718 *bits = strm->state->bi_valid; | |
| 719 return Z_OK; | |
| 720 } | |
| 721 | |
| 722 /* ========================================================================= */ | |
| 723 int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) { | |
| 724 deflate_state *s; | |
| 725 int put; | |
| 726 | |
| 727 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | |
| 728 s = strm->state; | |
| 729 #ifdef LIT_MEM | |
| 730 if (bits < 0 || bits > 16 || | |
| 731 (uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3)) | |
| 732 return Z_BUF_ERROR; | |
| 733 #else | |
| 734 if (bits < 0 || bits > 16 || | |
| 735 s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3)) | |
| 736 return Z_BUF_ERROR; | |
| 737 #endif | |
| 738 do { | |
| 739 put = Buf_size - s->bi_valid; | |
| 740 if (put > bits) | |
| 741 put = bits; | |
| 742 s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid); | |
| 743 s->bi_valid += put; | |
| 744 _tr_flush_bits(s); | |
| 745 value >>= put; | |
| 746 bits -= put; | |
| 747 } while (bits); | |
| 748 return Z_OK; | |
| 749 } | |
| 750 | |
| 751 /* ========================================================================= */ | |
| 752 int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) { | |
| 753 deflate_state *s; | |
| 754 compress_func func; | |
| 755 | |
| 756 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | |
| 757 s = strm->state; | |
| 758 | |
| 759 #ifdef FASTEST | |
| 760 if (level != 0) level = 1; | |
| 761 #else | |
| 762 if (level == Z_DEFAULT_COMPRESSION) level = 6; | |
| 763 #endif | |
| 764 if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) { | |
| 765 return Z_STREAM_ERROR; | |
| 766 } | |
| 767 func = configuration_table[s->level].func; | |
| 768 | |
| 769 if ((strategy != s->strategy || func != configuration_table[level].func) && | |
| 770 s->last_flush != -2) { | |
| 771 /* Flush the last buffer: */ | |
| 772 int err = deflate(strm, Z_BLOCK); | |
| 773 if (err == Z_STREAM_ERROR) | |
| 774 return err; | |
| 775 if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead) | |
| 776 return Z_BUF_ERROR; | |
| 777 } | |
| 778 if (s->level != level) { | |
| 779 if (s->level == 0 && s->matches != 0) { | |
| 780 if (s->matches == 1) | |
| 781 slide_hash(s); | |
| 782 else | |
| 783 CLEAR_HASH(s); | |
| 784 s->matches = 0; | |
| 785 } | |
| 786 s->level = level; | |
| 787 s->max_lazy_match = configuration_table[level].max_lazy; | |
| 788 s->good_match = configuration_table[level].good_length; | |
| 789 s->nice_match = configuration_table[level].nice_length; | |
| 790 s->max_chain_length = configuration_table[level].max_chain; | |
| 791 } | |
| 792 s->strategy = strategy; | |
| 793 return Z_OK; | |
| 794 } | |
| 795 | |
| 796 /* ========================================================================= */ | |
| 797 int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy, | |
| 798 int nice_length, int max_chain) { | |
| 799 deflate_state *s; | |
| 800 | |
| 801 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | |
| 802 s = strm->state; | |
| 803 s->good_match = (uInt)good_length; | |
| 804 s->max_lazy_match = (uInt)max_lazy; | |
| 805 s->nice_match = nice_length; | |
| 806 s->max_chain_length = (uInt)max_chain; | |
| 807 return Z_OK; | |
| 808 } | |
| 809 | |
| 810 /* ========================================================================= | |
| 811 * For the default windowBits of 15 and memLevel of 8, this function returns a | |
| 812 * close to exact, as well as small, upper bound on the compressed size. This | |
| 813 * is an expansion of ~0.03%, plus a small constant. | |
| 814 * | |
| 815 * For any setting other than those defaults for windowBits and memLevel, one | |
| 816 * of two worst case bounds is returned. This is at most an expansion of ~4% or | |
| 817 * ~13%, plus a small constant. | |
| 818 * | |
| 819 * Both the 0.03% and 4% derive from the overhead of stored blocks. The first | |
| 820 * one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second | |
| 821 * is for stored blocks of 127 bytes (the worst case memLevel == 1). The | |
| 822 * expansion results from five bytes of header for each stored block. | |
| 823 * | |
| 824 * The larger expansion of 13% results from a window size less than or equal to | |
| 825 * the symbols buffer size (windowBits <= memLevel + 7). In that case some of | |
| 826 * the data being compressed may have slid out of the sliding window, impeding | |
| 827 * a stored block from being emitted. Then the only choice is a fixed or | |
| 828 * dynamic block, where a fixed block limits the maximum expansion to 9 bits | |
| 829 * per 8-bit byte, plus 10 bits for every block. The smallest block size for | |
| 830 * which this can occur is 255 (memLevel == 2). | |
| 831 * | |
| 832 * Shifts are used to approximate divisions, for speed. | |
| 833 */ | |
| 834 uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) { | |
| 835 deflate_state *s; | |
| 836 uLong fixedlen, storelen, wraplen; | |
| 837 | |
| 838 /* upper bound for fixed blocks with 9-bit literals and length 255 | |
| 839 (memLevel == 2, which is the lowest that may not use stored blocks) -- | |
| 840 ~13% overhead plus a small constant */ | |
| 841 fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) + | |
| 842 (sourceLen >> 9) + 4; | |
| 843 | |
| 844 /* upper bound for stored blocks with length 127 (memLevel == 1) -- | |
| 845 ~4% overhead plus a small constant */ | |
| 846 storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) + | |
| 847 (sourceLen >> 11) + 7; | |
| 848 | |
| 849 /* if can't get parameters, return larger bound plus a zlib wrapper */ | |
| 850 if (deflateStateCheck(strm)) | |
| 851 return (fixedlen > storelen ? fixedlen : storelen) + 6; | |
| 852 | |
| 853 /* compute wrapper length */ | |
| 854 s = strm->state; | |
| 855 switch (s->wrap) { | |
| 856 case 0: /* raw deflate */ | |
| 857 wraplen = 0; | |
| 858 break; | |
| 859 case 1: /* zlib wrapper */ | |
| 860 wraplen = 6 + (s->strstart ? 4 : 0); | |
| 861 break; | |
| 862 #ifdef GZIP | |
| 863 case 2: /* gzip wrapper */ | |
| 864 wraplen = 18; | |
| 865 if (s->gzhead != Z_NULL) { /* user-supplied gzip header */ | |
| 866 Bytef *str; | |
| 867 if (s->gzhead->extra != Z_NULL) | |
| 868 wraplen += 2 + s->gzhead->extra_len; | |
| 869 str = s->gzhead->name; | |
| 870 if (str != Z_NULL) | |
| 871 do { | |
| 872 wraplen++; | |
| 873 } while (*str++); | |
| 874 str = s->gzhead->comment; | |
| 875 if (str != Z_NULL) | |
| 876 do { | |
| 877 wraplen++; | |
| 878 } while (*str++); | |
| 879 if (s->gzhead->hcrc) | |
| 880 wraplen += 2; | |
| 881 } | |
| 882 break; | |
| 883 #endif | |
| 884 default: /* for compiler happiness */ | |
| 885 wraplen = 6; | |
| 886 } | |
| 887 | |
| 888 /* if not default parameters, return one of the conservative bounds */ | |
| 889 if (s->w_bits != 15 || s->hash_bits != 8 + 7) | |
| 890 return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) + | |
| 891 wraplen; | |
| 892 | |
| 893 /* default settings: return tight bound for that case -- ~0.03% overhead | |
| 894 plus a small constant */ | |
| 895 return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) + | |
| 896 (sourceLen >> 25) + 13 - 6 + wraplen; | |
| 897 } | |
| 898 | |
| 899 /* ========================================================================= | |
| 900 * Put a short in the pending buffer. The 16-bit value is put in MSB order. | |
| 901 * IN assertion: the stream state is correct and there is enough room in | |
| 902 * pending_buf. | |
| 903 */ | |
| 904 local void putShortMSB(deflate_state *s, uInt b) { | |
| 905 put_byte(s, (Byte)(b >> 8)); | |
| 906 put_byte(s, (Byte)(b & 0xff)); | |
| 907 } | |
| 908 | |
| 909 /* ========================================================================= | |
| 910 * Flush as much pending output as possible. All deflate() output, except for | |
| 911 * some deflate_stored() output, goes through this function so some | |
| 912 * applications may wish to modify it to avoid allocating a large | |
| 913 * strm->next_out buffer and copying into it. (See also read_buf()). | |
| 914 */ | |
| 915 local void flush_pending(z_streamp strm) { | |
| 916 unsigned len; | |
| 917 deflate_state *s = strm->state; | |
| 918 | |
| 919 _tr_flush_bits(s); | |
| 920 len = s->pending; | |
| 921 if (len > strm->avail_out) len = strm->avail_out; | |
| 922 if (len == 0) return; | |
| 923 | |
| 924 zmemcpy(strm->next_out, s->pending_out, len); | |
| 925 strm->next_out += len; | |
| 926 s->pending_out += len; | |
| 927 strm->total_out += len; | |
| 928 strm->avail_out -= len; | |
| 929 s->pending -= len; | |
| 930 if (s->pending == 0) { | |
| 931 s->pending_out = s->pending_buf; | |
| 932 } | |
| 933 } | |
| 934 | |
| 935 /* =========================================================================== | |
| 936 * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1]. | |
| 937 */ | |
| 938 #define HCRC_UPDATE(beg) \ | |
| 939 do { \ | |
| 940 if (s->gzhead->hcrc && s->pending > (beg)) \ | |
| 941 strm->adler = crc32(strm->adler, s->pending_buf + (beg), \ | |
| 942 s->pending - (beg)); \ | |
| 943 } while (0) | |
| 944 | |
| 945 /* ========================================================================= */ | |
| 946 int ZEXPORT deflate(z_streamp strm, int flush) { | |
| 947 int old_flush; /* value of flush param for previous deflate call */ | |
| 948 deflate_state *s; | |
| 949 | |
| 950 if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) { | |
| 951 return Z_STREAM_ERROR; | |
| 952 } | |
| 953 s = strm->state; | |
| 954 | |
| 955 if (strm->next_out == Z_NULL || | |
| 956 (strm->avail_in != 0 && strm->next_in == Z_NULL) || | |
| 957 (s->status == FINISH_STATE && flush != Z_FINISH)) { | |
| 958 ERR_RETURN(strm, Z_STREAM_ERROR); | |
| 959 } | |
| 960 if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); | |
| 961 | |
| 962 old_flush = s->last_flush; | |
| 963 s->last_flush = flush; | |
| 964 | |
| 965 /* Flush as much pending output as possible */ | |
| 966 if (s->pending != 0) { | |
| 967 flush_pending(strm); | |
| 968 if (strm->avail_out == 0) { | |
| 969 /* Since avail_out is 0, deflate will be called again with | |
| 970 * more output space, but possibly with both pending and | |
| 971 * avail_in equal to zero. There won't be anything to do, | |
| 972 * but this is not an error situation so make sure we | |
| 973 * return OK instead of BUF_ERROR at next call of deflate: | |
| 974 */ | |
| 975 s->last_flush = -1; | |
| 976 return Z_OK; | |
| 977 } | |
| 978 | |
| 979 /* Make sure there is something to do and avoid duplicate consecutive | |
| 980 * flushes. For repeated and useless calls with Z_FINISH, we keep | |
| 981 * returning Z_STREAM_END instead of Z_BUF_ERROR. | |
| 982 */ | |
| 983 } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) && | |
| 984 flush != Z_FINISH) { | |
| 985 ERR_RETURN(strm, Z_BUF_ERROR); | |
| 986 } | |
| 987 | |
| 988 /* User must not provide more input after the first FINISH: */ | |
| 989 if (s->status == FINISH_STATE && strm->avail_in != 0) { | |
| 990 ERR_RETURN(strm, Z_BUF_ERROR); | |
| 991 } | |
| 992 | |
| 993 /* Write the header */ | |
| 994 if (s->status == INIT_STATE && s->wrap == 0) | |
| 995 s->status = BUSY_STATE; | |
| 996 if (s->status == INIT_STATE) { | |
| 997 /* zlib header */ | |
| 998 uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8; | |
| 999 uInt level_flags; | |
| 1000 | |
| 1001 if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2) | |
| 1002 level_flags = 0; | |
| 1003 else if (s->level < 6) | |
| 1004 level_flags = 1; | |
| 1005 else if (s->level == 6) | |
| 1006 level_flags = 2; | |
| 1007 else | |
| 1008 level_flags = 3; | |
| 1009 header |= (level_flags << 6); | |
| 1010 if (s->strstart != 0) header |= PRESET_DICT; | |
| 1011 header += 31 - (header % 31); | |
| 1012 | |
| 1013 putShortMSB(s, header); | |
| 1014 | |
| 1015 /* Save the adler32 of the preset dictionary: */ | |
| 1016 if (s->strstart != 0) { | |
| 1017 putShortMSB(s, (uInt)(strm->adler >> 16)); | |
| 1018 putShortMSB(s, (uInt)(strm->adler & 0xffff)); | |
| 1019 } | |
| 1020 strm->adler = adler32(0L, Z_NULL, 0); | |
| 1021 s->status = BUSY_STATE; | |
| 1022 | |
| 1023 /* Compression must start with an empty pending buffer */ | |
| 1024 flush_pending(strm); | |
| 1025 if (s->pending != 0) { | |
| 1026 s->last_flush = -1; | |
| 1027 return Z_OK; | |
| 1028 } | |
| 1029 } | |
| 1030 #ifdef GZIP | |
| 1031 if (s->status == GZIP_STATE) { | |
| 1032 /* gzip header */ | |
| 1033 strm->adler = crc32(0L, Z_NULL, 0); | |
| 1034 put_byte(s, 31); | |
| 1035 put_byte(s, 139); | |
| 1036 put_byte(s, 8); | |
| 1037 if (s->gzhead == Z_NULL) { | |
| 1038 put_byte(s, 0); | |
| 1039 put_byte(s, 0); | |
| 1040 put_byte(s, 0); | |
| 1041 put_byte(s, 0); | |
| 1042 put_byte(s, 0); | |
| 1043 put_byte(s, s->level == 9 ? 2 : | |
| 1044 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? | |
| 1045 4 : 0)); | |
| 1046 put_byte(s, OS_CODE); | |
| 1047 s->status = BUSY_STATE; | |
| 1048 | |
| 1049 /* Compression must start with an empty pending buffer */ | |
| 1050 flush_pending(strm); | |
| 1051 if (s->pending != 0) { | |
| 1052 s->last_flush = -1; | |
| 1053 return Z_OK; | |
| 1054 } | |
| 1055 } | |
| 1056 else { | |
| 1057 put_byte(s, (s->gzhead->text ? 1 : 0) + | |
| 1058 (s->gzhead->hcrc ? 2 : 0) + | |
| 1059 (s->gzhead->extra == Z_NULL ? 0 : 4) + | |
| 1060 (s->gzhead->name == Z_NULL ? 0 : 8) + | |
| 1061 (s->gzhead->comment == Z_NULL ? 0 : 16) | |
| 1062 ); | |
| 1063 put_byte(s, (Byte)(s->gzhead->time & 0xff)); | |
| 1064 put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff)); | |
| 1065 put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff)); | |
| 1066 put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff)); | |
| 1067 put_byte(s, s->level == 9 ? 2 : | |
| 1068 (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ? | |
| 1069 4 : 0)); | |
| 1070 put_byte(s, s->gzhead->os & 0xff); | |
| 1071 if (s->gzhead->extra != Z_NULL) { | |
| 1072 put_byte(s, s->gzhead->extra_len & 0xff); | |
| 1073 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff); | |
| 1074 } | |
| 1075 if (s->gzhead->hcrc) | |
| 1076 strm->adler = crc32(strm->adler, s->pending_buf, | |
| 1077 s->pending); | |
| 1078 s->gzindex = 0; | |
| 1079 s->status = EXTRA_STATE; | |
| 1080 } | |
| 1081 } | |
| 1082 if (s->status == EXTRA_STATE) { | |
| 1083 if (s->gzhead->extra != Z_NULL) { | |
| 1084 ulg beg = s->pending; /* start of bytes to update crc */ | |
| 1085 uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex; | |
| 1086 while (s->pending + left > s->pending_buf_size) { | |
| 1087 uInt copy = s->pending_buf_size - s->pending; | |
| 1088 zmemcpy(s->pending_buf + s->pending, | |
| 1089 s->gzhead->extra + s->gzindex, copy); | |
| 1090 s->pending = s->pending_buf_size; | |
| 1091 HCRC_UPDATE(beg); | |
| 1092 s->gzindex += copy; | |
| 1093 flush_pending(strm); | |
| 1094 if (s->pending != 0) { | |
| 1095 s->last_flush = -1; | |
| 1096 return Z_OK; | |
| 1097 } | |
| 1098 beg = 0; | |
| 1099 left -= copy; | |
| 1100 } | |
| 1101 zmemcpy(s->pending_buf + s->pending, | |
| 1102 s->gzhead->extra + s->gzindex, left); | |
| 1103 s->pending += left; | |
| 1104 HCRC_UPDATE(beg); | |
| 1105 s->gzindex = 0; | |
| 1106 } | |
| 1107 s->status = NAME_STATE; | |
| 1108 } | |
| 1109 if (s->status == NAME_STATE) { | |
| 1110 if (s->gzhead->name != Z_NULL) { | |
| 1111 ulg beg = s->pending; /* start of bytes to update crc */ | |
| 1112 int val; | |
| 1113 do { | |
| 1114 if (s->pending == s->pending_buf_size) { | |
| 1115 HCRC_UPDATE(beg); | |
| 1116 flush_pending(strm); | |
| 1117 if (s->pending != 0) { | |
| 1118 s->last_flush = -1; | |
| 1119 return Z_OK; | |
| 1120 } | |
| 1121 beg = 0; | |
| 1122 } | |
| 1123 val = s->gzhead->name[s->gzindex++]; | |
| 1124 put_byte(s, val); | |
| 1125 } while (val != 0); | |
| 1126 HCRC_UPDATE(beg); | |
| 1127 s->gzindex = 0; | |
| 1128 } | |
| 1129 s->status = COMMENT_STATE; | |
| 1130 } | |
| 1131 if (s->status == COMMENT_STATE) { | |
| 1132 if (s->gzhead->comment != Z_NULL) { | |
| 1133 ulg beg = s->pending; /* start of bytes to update crc */ | |
| 1134 int val; | |
| 1135 do { | |
| 1136 if (s->pending == s->pending_buf_size) { | |
| 1137 HCRC_UPDATE(beg); | |
| 1138 flush_pending(strm); | |
| 1139 if (s->pending != 0) { | |
| 1140 s->last_flush = -1; | |
| 1141 return Z_OK; | |
| 1142 } | |
| 1143 beg = 0; | |
| 1144 } | |
| 1145 val = s->gzhead->comment[s->gzindex++]; | |
| 1146 put_byte(s, val); | |
| 1147 } while (val != 0); | |
| 1148 HCRC_UPDATE(beg); | |
| 1149 } | |
| 1150 s->status = HCRC_STATE; | |
| 1151 } | |
| 1152 if (s->status == HCRC_STATE) { | |
| 1153 if (s->gzhead->hcrc) { | |
| 1154 if (s->pending + 2 > s->pending_buf_size) { | |
| 1155 flush_pending(strm); | |
| 1156 if (s->pending != 0) { | |
| 1157 s->last_flush = -1; | |
| 1158 return Z_OK; | |
| 1159 } | |
| 1160 } | |
| 1161 put_byte(s, (Byte)(strm->adler & 0xff)); | |
| 1162 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); | |
| 1163 strm->adler = crc32(0L, Z_NULL, 0); | |
| 1164 } | |
| 1165 s->status = BUSY_STATE; | |
| 1166 | |
| 1167 /* Compression must start with an empty pending buffer */ | |
| 1168 flush_pending(strm); | |
| 1169 if (s->pending != 0) { | |
| 1170 s->last_flush = -1; | |
| 1171 return Z_OK; | |
| 1172 } | |
| 1173 } | |
| 1174 #endif | |
| 1175 | |
| 1176 /* Start a new block or continue the current one. | |
| 1177 */ | |
| 1178 if (strm->avail_in != 0 || s->lookahead != 0 || | |
| 1179 (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) { | |
| 1180 block_state bstate; | |
| 1181 | |
| 1182 bstate = s->level == 0 ? deflate_stored(s, flush) : | |
| 1183 s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) : | |
| 1184 s->strategy == Z_RLE ? deflate_rle(s, flush) : | |
| 1185 (*(configuration_table[s->level].func))(s, flush); | |
| 1186 | |
| 1187 if (bstate == finish_started || bstate == finish_done) { | |
| 1188 s->status = FINISH_STATE; | |
| 1189 } | |
| 1190 if (bstate == need_more || bstate == finish_started) { | |
| 1191 if (strm->avail_out == 0) { | |
| 1192 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */ | |
| 1193 } | |
| 1194 return Z_OK; | |
| 1195 /* If flush != Z_NO_FLUSH && avail_out == 0, the next call | |
| 1196 * of deflate should use the same flush parameter to make sure | |
| 1197 * that the flush is complete. So we don't have to output an | |
| 1198 * empty block here, this will be done at next call. This also | |
| 1199 * ensures that for a very small output buffer, we emit at most | |
| 1200 * one empty block. | |
| 1201 */ | |
| 1202 } | |
| 1203 if (bstate == block_done) { | |
| 1204 if (flush == Z_PARTIAL_FLUSH) { | |
| 1205 _tr_align(s); | |
| 1206 } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */ | |
| 1207 _tr_stored_block(s, (char*)0, 0L, 0); | |
| 1208 /* For a full flush, this empty block will be recognized | |
| 1209 * as a special marker by inflate_sync(). | |
| 1210 */ | |
| 1211 if (flush == Z_FULL_FLUSH) { | |
| 1212 CLEAR_HASH(s); /* forget history */ | |
| 1213 if (s->lookahead == 0) { | |
| 1214 s->strstart = 0; | |
| 1215 s->block_start = 0L; | |
| 1216 s->insert = 0; | |
| 1217 } | |
| 1218 } | |
| 1219 } | |
| 1220 flush_pending(strm); | |
| 1221 if (strm->avail_out == 0) { | |
| 1222 s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */ | |
| 1223 return Z_OK; | |
| 1224 } | |
| 1225 } | |
| 1226 } | |
| 1227 | |
| 1228 if (flush != Z_FINISH) return Z_OK; | |
| 1229 if (s->wrap <= 0) return Z_STREAM_END; | |
| 1230 | |
| 1231 /* Write the trailer */ | |
| 1232 #ifdef GZIP | |
| 1233 if (s->wrap == 2) { | |
| 1234 put_byte(s, (Byte)(strm->adler & 0xff)); | |
| 1235 put_byte(s, (Byte)((strm->adler >> 8) & 0xff)); | |
| 1236 put_byte(s, (Byte)((strm->adler >> 16) & 0xff)); | |
| 1237 put_byte(s, (Byte)((strm->adler >> 24) & 0xff)); | |
| 1238 put_byte(s, (Byte)(strm->total_in & 0xff)); | |
| 1239 put_byte(s, (Byte)((strm->total_in >> 8) & 0xff)); | |
| 1240 put_byte(s, (Byte)((strm->total_in >> 16) & 0xff)); | |
| 1241 put_byte(s, (Byte)((strm->total_in >> 24) & 0xff)); | |
| 1242 } | |
| 1243 else | |
| 1244 #endif | |
| 1245 { | |
| 1246 putShortMSB(s, (uInt)(strm->adler >> 16)); | |
| 1247 putShortMSB(s, (uInt)(strm->adler & 0xffff)); | |
| 1248 } | |
| 1249 flush_pending(strm); | |
| 1250 /* If avail_out is zero, the application will call deflate again | |
| 1251 * to flush the rest. | |
| 1252 */ | |
| 1253 if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */ | |
| 1254 return s->pending != 0 ? Z_OK : Z_STREAM_END; | |
| 1255 } | |
| 1256 | |
| 1257 /* ========================================================================= */ | |
| 1258 int ZEXPORT deflateEnd(z_streamp strm) { | |
| 1259 int status; | |
| 1260 | |
| 1261 if (deflateStateCheck(strm)) return Z_STREAM_ERROR; | |
| 1262 | |
| 1263 status = strm->state->status; | |
| 1264 | |
| 1265 /* Deallocate in reverse order of allocations: */ | |
| 1266 TRY_FREE(strm, strm->state->pending_buf); | |
| 1267 TRY_FREE(strm, strm->state->head); | |
| 1268 TRY_FREE(strm, strm->state->prev); | |
| 1269 TRY_FREE(strm, strm->state->window); | |
| 1270 | |
| 1271 ZFREE(strm, strm->state); | |
| 1272 strm->state = Z_NULL; | |
| 1273 | |
| 1274 return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK; | |
| 1275 } | |
| 1276 | |
| 1277 /* ========================================================================= | |
| 1278 * Copy the source state to the destination state. | |
| 1279 * To simplify the source, this is not supported for 16-bit MSDOS (which | |
| 1280 * doesn't have enough memory anyway to duplicate compression states). | |
| 1281 */ | |
| 1282 int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) { | |
| 1283 #ifdef MAXSEG_64K | |
| 1284 (void)dest; | |
| 1285 (void)source; | |
| 1286 return Z_STREAM_ERROR; | |
| 1287 #else | |
| 1288 deflate_state *ds; | |
| 1289 deflate_state *ss; | |
| 1290 | |
| 1291 | |
| 1292 if (deflateStateCheck(source) || dest == Z_NULL) { | |
| 1293 return Z_STREAM_ERROR; | |
| 1294 } | |
| 1295 | |
| 1296 ss = source->state; | |
| 1297 | |
| 1298 zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream)); | |
| 1299 | |
| 1300 ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state)); | |
| 1301 if (ds == Z_NULL) return Z_MEM_ERROR; | |
| 1302 dest->state = (struct internal_state FAR *) ds; | |
| 1303 zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state)); | |
| 1304 ds->strm = dest; | |
| 1305 | |
| 1306 ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte)); | |
| 1307 ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos)); | |
| 1308 ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos)); | |
| 1309 ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS); | |
| 1310 | |
| 1311 if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL || | |
| 1312 ds->pending_buf == Z_NULL) { | |
| 1313 deflateEnd (dest); | |
| 1314 return Z_MEM_ERROR; | |
| 1315 } | |
| 1316 /* following zmemcpy do not work for 16-bit MSDOS */ | |
| 1317 zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte)); | |
| 1318 zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos)); | |
| 1319 zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos)); | |
| 1320 zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS); | |
| 1321 | |
| 1322 ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf); | |
| 1323 #ifdef LIT_MEM | |
| 1324 ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1)); | |
| 1325 ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2); | |
| 1326 #else | |
| 1327 ds->sym_buf = ds->pending_buf + ds->lit_bufsize; | |
| 1328 #endif | |
| 1329 | |
| 1330 ds->l_desc.dyn_tree = ds->dyn_ltree; | |
| 1331 ds->d_desc.dyn_tree = ds->dyn_dtree; | |
| 1332 ds->bl_desc.dyn_tree = ds->bl_tree; | |
| 1333 | |
| 1334 return Z_OK; | |
| 1335 #endif /* MAXSEG_64K */ | |
| 1336 } | |
| 1337 | |
| 1338 #ifndef FASTEST | |
| 1339 /* =========================================================================== | |
| 1340 * Set match_start to the longest match starting at the given string and | |
| 1341 * return its length. Matches shorter or equal to prev_length are discarded, | |
| 1342 * in which case the result is equal to prev_length and match_start is | |
| 1343 * garbage. | |
| 1344 * IN assertions: cur_match is the head of the hash chain for the current | |
| 1345 * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | |
| 1346 * OUT assertion: the match length is not greater than s->lookahead. | |
| 1347 */ | |
| 1348 local uInt longest_match(deflate_state *s, IPos cur_match) { | |
| 1349 unsigned chain_length = s->max_chain_length;/* max hash chain length */ | |
| 1350 register Bytef *scan = s->window + s->strstart; /* current string */ | |
| 1351 register Bytef *match; /* matched string */ | |
| 1352 register int len; /* length of current match */ | |
| 1353 int best_len = (int)s->prev_length; /* best match length so far */ | |
| 1354 int nice_match = s->nice_match; /* stop if match long enough */ | |
| 1355 IPos limit = s->strstart > (IPos)MAX_DIST(s) ? | |
| 1356 s->strstart - (IPos)MAX_DIST(s) : NIL; | |
| 1357 /* Stop when cur_match becomes <= limit. To simplify the code, | |
| 1358 * we prevent matches with the string of window index 0. | |
| 1359 */ | |
| 1360 Posf *prev = s->prev; | |
| 1361 uInt wmask = s->w_mask; | |
| 1362 | |
| 1363 #ifdef UNALIGNED_OK | |
| 1364 /* Compare two bytes at a time. Note: this is not always beneficial. | |
| 1365 * Try with and without -DUNALIGNED_OK to check. | |
| 1366 */ | |
| 1367 register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; | |
| 1368 register ush scan_start = *(ushf*)scan; | |
| 1369 register ush scan_end = *(ushf*)(scan + best_len - 1); | |
| 1370 #else | |
| 1371 register Bytef *strend = s->window + s->strstart + MAX_MATCH; | |
| 1372 register Byte scan_end1 = scan[best_len - 1]; | |
| 1373 register Byte scan_end = scan[best_len]; | |
| 1374 #endif | |
| 1375 | |
| 1376 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
| 1377 * It is easy to get rid of this optimization if necessary. | |
| 1378 */ | |
| 1379 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
| 1380 | |
| 1381 /* Do not waste too much time if we already have a good match: */ | |
| 1382 if (s->prev_length >= s->good_match) { | |
| 1383 chain_length >>= 2; | |
| 1384 } | |
| 1385 /* Do not look for matches beyond the end of the input. This is necessary | |
| 1386 * to make deflate deterministic. | |
| 1387 */ | |
| 1388 if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead; | |
| 1389 | |
| 1390 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | |
| 1391 "need lookahead"); | |
| 1392 | |
| 1393 do { | |
| 1394 Assert(cur_match < s->strstart, "no future"); | |
| 1395 match = s->window + cur_match; | |
| 1396 | |
| 1397 /* Skip to next match if the match length cannot increase | |
| 1398 * or if the match length is less than 2. Note that the checks below | |
| 1399 * for insufficient lookahead only occur occasionally for performance | |
| 1400 * reasons. Therefore uninitialized memory will be accessed, and | |
| 1401 * conditional jumps will be made that depend on those values. | |
| 1402 * However the length of the match is limited to the lookahead, so | |
| 1403 * the output of deflate is not affected by the uninitialized values. | |
| 1404 */ | |
| 1405 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258) | |
| 1406 /* This code assumes sizeof(unsigned short) == 2. Do not use | |
| 1407 * UNALIGNED_OK if your compiler uses a different size. | |
| 1408 */ | |
| 1409 if (*(ushf*)(match + best_len - 1) != scan_end || | |
| 1410 *(ushf*)match != scan_start) continue; | |
| 1411 | |
| 1412 /* It is not necessary to compare scan[2] and match[2] since they are | |
| 1413 * always equal when the other bytes match, given that the hash keys | |
| 1414 * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at | |
| 1415 * strstart + 3, + 5, up to strstart + 257. We check for insufficient | |
| 1416 * lookahead only every 4th comparison; the 128th check will be made | |
| 1417 * at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is | |
| 1418 * necessary to put more guard bytes at the end of the window, or | |
| 1419 * to check more often for insufficient lookahead. | |
| 1420 */ | |
| 1421 Assert(scan[2] == match[2], "scan[2]?"); | |
| 1422 scan++, match++; | |
| 1423 do { | |
| 1424 } while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) && | |
| 1425 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && | |
| 1426 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && | |
| 1427 *(ushf*)(scan += 2) == *(ushf*)(match += 2) && | |
| 1428 scan < strend); | |
| 1429 /* The funny "do {}" generates better code on most compilers */ | |
| 1430 | |
| 1431 /* Here, scan <= window + strstart + 257 */ | |
| 1432 Assert(scan <= s->window + (unsigned)(s->window_size - 1), | |
| 1433 "wild scan"); | |
| 1434 if (*scan == *match) scan++; | |
| 1435 | |
| 1436 len = (MAX_MATCH - 1) - (int)(strend - scan); | |
| 1437 scan = strend - (MAX_MATCH-1); | |
| 1438 | |
| 1439 #else /* UNALIGNED_OK */ | |
| 1440 | |
| 1441 if (match[best_len] != scan_end || | |
| 1442 match[best_len - 1] != scan_end1 || | |
| 1443 *match != *scan || | |
| 1444 *++match != scan[1]) continue; | |
| 1445 | |
| 1446 /* The check at best_len - 1 can be removed because it will be made | |
| 1447 * again later. (This heuristic is not always a win.) | |
| 1448 * It is not necessary to compare scan[2] and match[2] since they | |
| 1449 * are always equal when the other bytes match, given that | |
| 1450 * the hash keys are equal and that HASH_BITS >= 8. | |
| 1451 */ | |
| 1452 scan += 2, match++; | |
| 1453 Assert(*scan == *match, "match[2]?"); | |
| 1454 | |
| 1455 /* We check for insufficient lookahead only every 8th comparison; | |
| 1456 * the 256th check will be made at strstart + 258. | |
| 1457 */ | |
| 1458 do { | |
| 1459 } while (*++scan == *++match && *++scan == *++match && | |
| 1460 *++scan == *++match && *++scan == *++match && | |
| 1461 *++scan == *++match && *++scan == *++match && | |
| 1462 *++scan == *++match && *++scan == *++match && | |
| 1463 scan < strend); | |
| 1464 | |
| 1465 Assert(scan <= s->window + (unsigned)(s->window_size - 1), | |
| 1466 "wild scan"); | |
| 1467 | |
| 1468 len = MAX_MATCH - (int)(strend - scan); | |
| 1469 scan = strend - MAX_MATCH; | |
| 1470 | |
| 1471 #endif /* UNALIGNED_OK */ | |
| 1472 | |
| 1473 if (len > best_len) { | |
| 1474 s->match_start = cur_match; | |
| 1475 best_len = len; | |
| 1476 if (len >= nice_match) break; | |
| 1477 #ifdef UNALIGNED_OK | |
| 1478 scan_end = *(ushf*)(scan + best_len - 1); | |
| 1479 #else | |
| 1480 scan_end1 = scan[best_len - 1]; | |
| 1481 scan_end = scan[best_len]; | |
| 1482 #endif | |
| 1483 } | |
| 1484 } while ((cur_match = prev[cur_match & wmask]) > limit | |
| 1485 && --chain_length != 0); | |
| 1486 | |
| 1487 if ((uInt)best_len <= s->lookahead) return (uInt)best_len; | |
| 1488 return s->lookahead; | |
| 1489 } | |
| 1490 | |
| 1491 #else /* FASTEST */ | |
| 1492 | |
| 1493 /* --------------------------------------------------------------------------- | |
| 1494 * Optimized version for FASTEST only | |
| 1495 */ | |
| 1496 local uInt longest_match(deflate_state *s, IPos cur_match) { | |
| 1497 register Bytef *scan = s->window + s->strstart; /* current string */ | |
| 1498 register Bytef *match; /* matched string */ | |
| 1499 register int len; /* length of current match */ | |
| 1500 register Bytef *strend = s->window + s->strstart + MAX_MATCH; | |
| 1501 | |
| 1502 /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. | |
| 1503 * It is easy to get rid of this optimization if necessary. | |
| 1504 */ | |
| 1505 Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); | |
| 1506 | |
| 1507 Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD, | |
| 1508 "need lookahead"); | |
| 1509 | |
| 1510 Assert(cur_match < s->strstart, "no future"); | |
| 1511 | |
| 1512 match = s->window + cur_match; | |
| 1513 | |
| 1514 /* Return failure if the match length is less than 2: | |
| 1515 */ | |
| 1516 if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1; | |
| 1517 | |
| 1518 /* The check at best_len - 1 can be removed because it will be made | |
| 1519 * again later. (This heuristic is not always a win.) | |
| 1520 * It is not necessary to compare scan[2] and match[2] since they | |
| 1521 * are always equal when the other bytes match, given that | |
| 1522 * the hash keys are equal and that HASH_BITS >= 8. | |
| 1523 */ | |
| 1524 scan += 2, match += 2; | |
| 1525 Assert(*scan == *match, "match[2]?"); | |
| 1526 | |
| 1527 /* We check for insufficient lookahead only every 8th comparison; | |
| 1528 * the 256th check will be made at strstart + 258. | |
| 1529 */ | |
| 1530 do { | |
| 1531 } while (*++scan == *++match && *++scan == *++match && | |
| 1532 *++scan == *++match && *++scan == *++match && | |
| 1533 *++scan == *++match && *++scan == *++match && | |
| 1534 *++scan == *++match && *++scan == *++match && | |
| 1535 scan < strend); | |
| 1536 | |
| 1537 Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan"); | |
| 1538 | |
| 1539 len = MAX_MATCH - (int)(strend - scan); | |
| 1540 | |
| 1541 if (len < MIN_MATCH) return MIN_MATCH - 1; | |
| 1542 | |
| 1543 s->match_start = cur_match; | |
| 1544 return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead; | |
| 1545 } | |
| 1546 | |
| 1547 #endif /* FASTEST */ | |
| 1548 | |
| 1549 #ifdef ZLIB_DEBUG | |
| 1550 | |
| 1551 #define EQUAL 0 | |
| 1552 /* result of memcmp for equal strings */ | |
| 1553 | |
| 1554 /* =========================================================================== | |
| 1555 * Check that the match at match_start is indeed a match. | |
| 1556 */ | |
| 1557 local void check_match(deflate_state *s, IPos start, IPos match, int length) { | |
| 1558 /* check that the match is indeed a match */ | |
| 1559 Bytef *back = s->window + (int)match, *here = s->window + start; | |
| 1560 IPos len = length; | |
| 1561 if (match == (IPos)-1) { | |
| 1562 /* match starts one byte before the current window -- just compare the | |
| 1563 subsequent length-1 bytes */ | |
| 1564 back++; | |
| 1565 here++; | |
| 1566 len--; | |
| 1567 } | |
| 1568 if (zmemcmp(back, here, len) != EQUAL) { | |
| 1569 fprintf(stderr, " start %u, match %d, length %d\n", | |
| 1570 start, (int)match, length); | |
| 1571 do { | |
| 1572 fprintf(stderr, "(%02x %02x)", *back++, *here++); | |
| 1573 } while (--len != 0); | |
| 1574 z_error("invalid match"); | |
| 1575 } | |
| 1576 if (z_verbose > 1) { | |
| 1577 fprintf(stderr,"\\[%d,%d]", start - match, length); | |
| 1578 do { putc(s->window[start++], stderr); } while (--length != 0); | |
| 1579 } | |
| 1580 } | |
| 1581 #else | |
| 1582 # define check_match(s, start, match, length) | |
| 1583 #endif /* ZLIB_DEBUG */ | |
| 1584 | |
| 1585 /* =========================================================================== | |
| 1586 * Flush the current block, with given end-of-file flag. | |
| 1587 * IN assertion: strstart is set to the end of the current match. | |
| 1588 */ | |
| 1589 #define FLUSH_BLOCK_ONLY(s, last) { \ | |
| 1590 _tr_flush_block(s, (s->block_start >= 0L ? \ | |
| 1591 (charf *)&s->window[(unsigned)s->block_start] : \ | |
| 1592 (charf *)Z_NULL), \ | |
| 1593 (ulg)((long)s->strstart - s->block_start), \ | |
| 1594 (last)); \ | |
| 1595 s->block_start = s->strstart; \ | |
| 1596 flush_pending(s->strm); \ | |
| 1597 Tracev((stderr,"[FLUSH]")); \ | |
| 1598 } | |
| 1599 | |
| 1600 /* Same but force premature exit if necessary. */ | |
| 1601 #define FLUSH_BLOCK(s, last) { \ | |
| 1602 FLUSH_BLOCK_ONLY(s, last); \ | |
| 1603 if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \ | |
| 1604 } | |
| 1605 | |
| 1606 /* Maximum stored block length in deflate format (not including header). */ | |
| 1607 #define MAX_STORED 65535 | |
| 1608 | |
| 1609 /* Minimum of a and b. */ | |
| 1610 #define MIN(a, b) ((a) > (b) ? (b) : (a)) | |
| 1611 | |
| 1612 /* =========================================================================== | |
| 1613 * Copy without compression as much as possible from the input stream, return | |
| 1614 * the current block state. | |
| 1615 * | |
| 1616 * In case deflateParams() is used to later switch to a non-zero compression | |
| 1617 * level, s->matches (otherwise unused when storing) keeps track of the number | |
| 1618 * of hash table slides to perform. If s->matches is 1, then one hash table | |
| 1619 * slide will be done when switching. If s->matches is 2, the maximum value | |
| 1620 * allowed here, then the hash table will be cleared, since two or more slides | |
| 1621 * is the same as a clear. | |
| 1622 * | |
| 1623 * deflate_stored() is written to minimize the number of times an input byte is | |
| 1624 * copied. It is most efficient with large input and output buffers, which | |
| 1625 * maximizes the opportunities to have a single copy from next_in to next_out. | |
| 1626 */ | |
| 1627 local block_state deflate_stored(deflate_state *s, int flush) { | |
| 1628 /* Smallest worthy block size when not flushing or finishing. By default | |
| 1629 * this is 32K. This can be as small as 507 bytes for memLevel == 1. For | |
| 1630 * large input and output buffers, the stored block size will be larger. | |
| 1631 */ | |
| 1632 unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size); | |
| 1633 | |
| 1634 /* Copy as many min_block or larger stored blocks directly to next_out as | |
| 1635 * possible. If flushing, copy the remaining available input to next_out as | |
| 1636 * stored blocks, if there is enough space. | |
| 1637 */ | |
| 1638 unsigned len, left, have, last = 0; | |
| 1639 unsigned used = s->strm->avail_in; | |
| 1640 do { | |
| 1641 /* Set len to the maximum size block that we can copy directly with the | |
| 1642 * available input data and output space. Set left to how much of that | |
| 1643 * would be copied from what's left in the window. | |
| 1644 */ | |
| 1645 len = MAX_STORED; /* maximum deflate stored block length */ | |
| 1646 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ | |
| 1647 if (s->strm->avail_out < have) /* need room for header */ | |
| 1648 break; | |
| 1649 /* maximum stored block length that will fit in avail_out: */ | |
| 1650 have = s->strm->avail_out - have; | |
| 1651 left = s->strstart - s->block_start; /* bytes left in window */ | |
| 1652 if (len > (ulg)left + s->strm->avail_in) | |
| 1653 len = left + s->strm->avail_in; /* limit len to the input */ | |
| 1654 if (len > have) | |
| 1655 len = have; /* limit len to the output */ | |
| 1656 | |
| 1657 /* If the stored block would be less than min_block in length, or if | |
| 1658 * unable to copy all of the available input when flushing, then try | |
| 1659 * copying to the window and the pending buffer instead. Also don't | |
| 1660 * write an empty block when flushing -- deflate() does that. | |
| 1661 */ | |
| 1662 if (len < min_block && ((len == 0 && flush != Z_FINISH) || | |
| 1663 flush == Z_NO_FLUSH || | |
| 1664 len != left + s->strm->avail_in)) | |
| 1665 break; | |
| 1666 | |
| 1667 /* Make a dummy stored block in pending to get the header bytes, | |
| 1668 * including any pending bits. This also updates the debugging counts. | |
| 1669 */ | |
| 1670 last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0; | |
| 1671 _tr_stored_block(s, (char *)0, 0L, last); | |
| 1672 | |
| 1673 /* Replace the lengths in the dummy stored block with len. */ | |
| 1674 s->pending_buf[s->pending - 4] = len; | |
| 1675 s->pending_buf[s->pending - 3] = len >> 8; | |
| 1676 s->pending_buf[s->pending - 2] = ~len; | |
| 1677 s->pending_buf[s->pending - 1] = ~len >> 8; | |
| 1678 | |
| 1679 /* Write the stored block header bytes. */ | |
| 1680 flush_pending(s->strm); | |
| 1681 | |
| 1682 #ifdef ZLIB_DEBUG | |
| 1683 /* Update debugging counts for the data about to be copied. */ | |
| 1684 s->compressed_len += len << 3; | |
| 1685 s->bits_sent += len << 3; | |
| 1686 #endif | |
| 1687 | |
| 1688 /* Copy uncompressed bytes from the window to next_out. */ | |
| 1689 if (left) { | |
| 1690 if (left > len) | |
| 1691 left = len; | |
| 1692 zmemcpy(s->strm->next_out, s->window + s->block_start, left); | |
| 1693 s->strm->next_out += left; | |
| 1694 s->strm->avail_out -= left; | |
| 1695 s->strm->total_out += left; | |
| 1696 s->block_start += left; | |
| 1697 len -= left; | |
| 1698 } | |
| 1699 | |
| 1700 /* Copy uncompressed bytes directly from next_in to next_out, updating | |
| 1701 * the check value. | |
| 1702 */ | |
| 1703 if (len) { | |
| 1704 read_buf(s->strm, s->strm->next_out, len); | |
| 1705 s->strm->next_out += len; | |
| 1706 s->strm->avail_out -= len; | |
| 1707 s->strm->total_out += len; | |
| 1708 } | |
| 1709 } while (last == 0); | |
| 1710 | |
| 1711 /* Update the sliding window with the last s->w_size bytes of the copied | |
| 1712 * data, or append all of the copied data to the existing window if less | |
| 1713 * than s->w_size bytes were copied. Also update the number of bytes to | |
| 1714 * insert in the hash tables, in the event that deflateParams() switches to | |
| 1715 * a non-zero compression level. | |
| 1716 */ | |
| 1717 used -= s->strm->avail_in; /* number of input bytes directly copied */ | |
| 1718 if (used) { | |
| 1719 /* If any input was used, then no unused input remains in the window, | |
| 1720 * therefore s->block_start == s->strstart. | |
| 1721 */ | |
| 1722 if (used >= s->w_size) { /* supplant the previous history */ | |
| 1723 s->matches = 2; /* clear hash */ | |
| 1724 zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size); | |
| 1725 s->strstart = s->w_size; | |
| 1726 s->insert = s->strstart; | |
| 1727 } | |
| 1728 else { | |
| 1729 if (s->window_size - s->strstart <= used) { | |
| 1730 /* Slide the window down. */ | |
| 1731 s->strstart -= s->w_size; | |
| 1732 zmemcpy(s->window, s->window + s->w_size, s->strstart); | |
| 1733 if (s->matches < 2) | |
| 1734 s->matches++; /* add a pending slide_hash() */ | |
| 1735 if (s->insert > s->strstart) | |
| 1736 s->insert = s->strstart; | |
| 1737 } | |
| 1738 zmemcpy(s->window + s->strstart, s->strm->next_in - used, used); | |
| 1739 s->strstart += used; | |
| 1740 s->insert += MIN(used, s->w_size - s->insert); | |
| 1741 } | |
| 1742 s->block_start = s->strstart; | |
| 1743 } | |
| 1744 if (s->high_water < s->strstart) | |
| 1745 s->high_water = s->strstart; | |
| 1746 | |
| 1747 /* If the last block was written to next_out, then done. */ | |
| 1748 if (last) | |
| 1749 return finish_done; | |
| 1750 | |
| 1751 /* If flushing and all input has been consumed, then done. */ | |
| 1752 if (flush != Z_NO_FLUSH && flush != Z_FINISH && | |
| 1753 s->strm->avail_in == 0 && (long)s->strstart == s->block_start) | |
| 1754 return block_done; | |
| 1755 | |
| 1756 /* Fill the window with any remaining input. */ | |
| 1757 have = s->window_size - s->strstart; | |
| 1758 if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) { | |
| 1759 /* Slide the window down. */ | |
| 1760 s->block_start -= s->w_size; | |
| 1761 s->strstart -= s->w_size; | |
| 1762 zmemcpy(s->window, s->window + s->w_size, s->strstart); | |
| 1763 if (s->matches < 2) | |
| 1764 s->matches++; /* add a pending slide_hash() */ | |
| 1765 have += s->w_size; /* more space now */ | |
| 1766 if (s->insert > s->strstart) | |
| 1767 s->insert = s->strstart; | |
| 1768 } | |
| 1769 if (have > s->strm->avail_in) | |
| 1770 have = s->strm->avail_in; | |
| 1771 if (have) { | |
| 1772 read_buf(s->strm, s->window + s->strstart, have); | |
| 1773 s->strstart += have; | |
| 1774 s->insert += MIN(have, s->w_size - s->insert); | |
| 1775 } | |
| 1776 if (s->high_water < s->strstart) | |
| 1777 s->high_water = s->strstart; | |
| 1778 | |
| 1779 /* There was not enough avail_out to write a complete worthy or flushed | |
| 1780 * stored block to next_out. Write a stored block to pending instead, if we | |
| 1781 * have enough input for a worthy block, or if flushing and there is enough | |
| 1782 * room for the remaining input as a stored block in the pending buffer. | |
| 1783 */ | |
| 1784 have = (s->bi_valid + 42) >> 3; /* number of header bytes */ | |
| 1785 /* maximum stored block length that will fit in pending: */ | |
| 1786 have = MIN(s->pending_buf_size - have, MAX_STORED); | |
| 1787 min_block = MIN(have, s->w_size); | |
| 1788 left = s->strstart - s->block_start; | |
| 1789 if (left >= min_block || | |
| 1790 ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH && | |
| 1791 s->strm->avail_in == 0 && left <= have)) { | |
| 1792 len = MIN(left, have); | |
| 1793 last = flush == Z_FINISH && s->strm->avail_in == 0 && | |
| 1794 len == left ? 1 : 0; | |
| 1795 _tr_stored_block(s, (charf *)s->window + s->block_start, len, last); | |
| 1796 s->block_start += len; | |
| 1797 flush_pending(s->strm); | |
| 1798 } | |
| 1799 | |
| 1800 /* We've done all we can with the available input and output. */ | |
| 1801 return last ? finish_started : need_more; | |
| 1802 } | |
| 1803 | |
| 1804 /* =========================================================================== | |
| 1805 * Compress as much as possible from the input stream, return the current | |
| 1806 * block state. | |
| 1807 * This function does not perform lazy evaluation of matches and inserts | |
| 1808 * new strings in the dictionary only for unmatched strings or for short | |
| 1809 * matches. It is used only for the fast compression options. | |
| 1810 */ | |
| 1811 local block_state deflate_fast(deflate_state *s, int flush) { | |
| 1812 IPos hash_head; /* head of the hash chain */ | |
| 1813 int bflush; /* set if current block must be flushed */ | |
| 1814 | |
| 1815 for (;;) { | |
| 1816 /* Make sure that we always have enough lookahead, except | |
| 1817 * at the end of the input file. We need MAX_MATCH bytes | |
| 1818 * for the next match, plus MIN_MATCH bytes to insert the | |
| 1819 * string following the next match. | |
| 1820 */ | |
| 1821 if (s->lookahead < MIN_LOOKAHEAD) { | |
| 1822 fill_window(s); | |
| 1823 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
| 1824 return need_more; | |
| 1825 } | |
| 1826 if (s->lookahead == 0) break; /* flush the current block */ | |
| 1827 } | |
| 1828 | |
| 1829 /* Insert the string window[strstart .. strstart + 2] in the | |
| 1830 * dictionary, and set hash_head to the head of the hash chain: | |
| 1831 */ | |
| 1832 hash_head = NIL; | |
| 1833 if (s->lookahead >= MIN_MATCH) { | |
| 1834 INSERT_STRING(s, s->strstart, hash_head); | |
| 1835 } | |
| 1836 | |
| 1837 /* Find the longest match, discarding those <= prev_length. | |
| 1838 * At this point we have always match_length < MIN_MATCH | |
| 1839 */ | |
| 1840 if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { | |
| 1841 /* To simplify the code, we prevent matches with the string | |
| 1842 * of window index 0 (in particular we have to avoid a match | |
| 1843 * of the string with itself at the start of the input file). | |
| 1844 */ | |
| 1845 s->match_length = longest_match (s, hash_head); | |
| 1846 /* longest_match() sets match_start */ | |
| 1847 } | |
| 1848 if (s->match_length >= MIN_MATCH) { | |
| 1849 check_match(s, s->strstart, s->match_start, s->match_length); | |
| 1850 | |
| 1851 _tr_tally_dist(s, s->strstart - s->match_start, | |
| 1852 s->match_length - MIN_MATCH, bflush); | |
| 1853 | |
| 1854 s->lookahead -= s->match_length; | |
| 1855 | |
| 1856 /* Insert new strings in the hash table only if the match length | |
| 1857 * is not too large. This saves time but degrades compression. | |
| 1858 */ | |
| 1859 #ifndef FASTEST | |
| 1860 if (s->match_length <= s->max_insert_length && | |
| 1861 s->lookahead >= MIN_MATCH) { | |
| 1862 s->match_length--; /* string at strstart already in table */ | |
| 1863 do { | |
| 1864 s->strstart++; | |
| 1865 INSERT_STRING(s, s->strstart, hash_head); | |
| 1866 /* strstart never exceeds WSIZE-MAX_MATCH, so there are | |
| 1867 * always MIN_MATCH bytes ahead. | |
| 1868 */ | |
| 1869 } while (--s->match_length != 0); | |
| 1870 s->strstart++; | |
| 1871 } else | |
| 1872 #endif | |
| 1873 { | |
| 1874 s->strstart += s->match_length; | |
| 1875 s->match_length = 0; | |
| 1876 s->ins_h = s->window[s->strstart]; | |
| 1877 UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]); | |
| 1878 #if MIN_MATCH != 3 | |
| 1879 Call UPDATE_HASH() MIN_MATCH-3 more times | |
| 1880 #endif | |
| 1881 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not | |
| 1882 * matter since it will be recomputed at next deflate call. | |
| 1883 */ | |
| 1884 } | |
| 1885 } else { | |
| 1886 /* No match, output a literal byte */ | |
| 1887 Tracevv((stderr,"%c", s->window[s->strstart])); | |
| 1888 _tr_tally_lit(s, s->window[s->strstart], bflush); | |
| 1889 s->lookahead--; | |
| 1890 s->strstart++; | |
| 1891 } | |
| 1892 if (bflush) FLUSH_BLOCK(s, 0); | |
| 1893 } | |
| 1894 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; | |
| 1895 if (flush == Z_FINISH) { | |
| 1896 FLUSH_BLOCK(s, 1); | |
| 1897 return finish_done; | |
| 1898 } | |
| 1899 if (s->sym_next) | |
| 1900 FLUSH_BLOCK(s, 0); | |
| 1901 return block_done; | |
| 1902 } | |
| 1903 | |
| 1904 #ifndef FASTEST | |
| 1905 /* =========================================================================== | |
| 1906 * Same as above, but achieves better compression. We use a lazy | |
| 1907 * evaluation for matches: a match is finally adopted only if there is | |
| 1908 * no better match at the next window position. | |
| 1909 */ | |
| 1910 local block_state deflate_slow(deflate_state *s, int flush) { | |
| 1911 IPos hash_head; /* head of hash chain */ | |
| 1912 int bflush; /* set if current block must be flushed */ | |
| 1913 | |
| 1914 /* Process the input block. */ | |
| 1915 for (;;) { | |
| 1916 /* Make sure that we always have enough lookahead, except | |
| 1917 * at the end of the input file. We need MAX_MATCH bytes | |
| 1918 * for the next match, plus MIN_MATCH bytes to insert the | |
| 1919 * string following the next match. | |
| 1920 */ | |
| 1921 if (s->lookahead < MIN_LOOKAHEAD) { | |
| 1922 fill_window(s); | |
| 1923 if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) { | |
| 1924 return need_more; | |
| 1925 } | |
| 1926 if (s->lookahead == 0) break; /* flush the current block */ | |
| 1927 } | |
| 1928 | |
| 1929 /* Insert the string window[strstart .. strstart + 2] in the | |
| 1930 * dictionary, and set hash_head to the head of the hash chain: | |
| 1931 */ | |
| 1932 hash_head = NIL; | |
| 1933 if (s->lookahead >= MIN_MATCH) { | |
| 1934 INSERT_STRING(s, s->strstart, hash_head); | |
| 1935 } | |
| 1936 | |
| 1937 /* Find the longest match, discarding those <= prev_length. | |
| 1938 */ | |
| 1939 s->prev_length = s->match_length, s->prev_match = s->match_start; | |
| 1940 s->match_length = MIN_MATCH-1; | |
| 1941 | |
| 1942 if (hash_head != NIL && s->prev_length < s->max_lazy_match && | |
| 1943 s->strstart - hash_head <= MAX_DIST(s)) { | |
| 1944 /* To simplify the code, we prevent matches with the string | |
| 1945 * of window index 0 (in particular we have to avoid a match | |
| 1946 * of the string with itself at the start of the input file). | |
| 1947 */ | |
| 1948 s->match_length = longest_match (s, hash_head); | |
| 1949 /* longest_match() sets match_start */ | |
| 1950 | |
| 1951 if (s->match_length <= 5 && (s->strategy == Z_FILTERED | |
| 1952 #if TOO_FAR <= 32767 | |
| 1953 || (s->match_length == MIN_MATCH && | |
| 1954 s->strstart - s->match_start > TOO_FAR) | |
| 1955 #endif | |
| 1956 )) { | |
| 1957 | |
| 1958 /* If prev_match is also MIN_MATCH, match_start is garbage | |
| 1959 * but we will ignore the current match anyway. | |
| 1960 */ | |
| 1961 s->match_length = MIN_MATCH-1; | |
| 1962 } | |
| 1963 } | |
| 1964 /* If there was a match at the previous step and the current | |
| 1965 * match is not better, output the previous match: | |
| 1966 */ | |
| 1967 if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { | |
| 1968 uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; | |
| 1969 /* Do not insert strings in hash table beyond this. */ | |
| 1970 | |
| 1971 check_match(s, s->strstart - 1, s->prev_match, s->prev_length); | |
| 1972 | |
| 1973 _tr_tally_dist(s, s->strstart - 1 - s->prev_match, | |
| 1974 s->prev_length - MIN_MATCH, bflush); | |
| 1975 | |
| 1976 /* Insert in hash table all strings up to the end of the match. | |
| 1977 * strstart - 1 and strstart are already inserted. If there is not | |
| 1978 * enough lookahead, the last two strings are not inserted in | |
| 1979 * the hash table. | |
| 1980 */ | |
| 1981 s->lookahead -= s->prev_length - 1; | |
| 1982 s->prev_length -= 2; | |
| 1983 do { | |
| 1984 if (++s->strstart <= max_insert) { | |
| 1985 INSERT_STRING(s, s->strstart, hash_head); | |
| 1986 } | |
| 1987 } while (--s->prev_length != 0); | |
| 1988 s->match_available = 0; | |
| 1989 s->match_length = MIN_MATCH-1; | |
| 1990 s->strstart++; | |
| 1991 | |
| 1992 if (bflush) FLUSH_BLOCK(s, 0); | |
| 1993 | |
| 1994 } else if (s->match_available) { | |
| 1995 /* If there was no match at the previous position, output a | |
| 1996 * single literal. If there was a match but the current match | |
| 1997 * is longer, truncate the previous match to a single literal. | |
| 1998 */ | |
| 1999 Tracevv((stderr,"%c", s->window[s->strstart - 1])); | |
| 2000 _tr_tally_lit(s, s->window[s->strstart - 1], bflush); | |
| 2001 if (bflush) { | |
| 2002 FLUSH_BLOCK_ONLY(s, 0); | |
| 2003 } | |
| 2004 s->strstart++; | |
| 2005 s->lookahead--; | |
| 2006 if (s->strm->avail_out == 0) return need_more; | |
| 2007 } else { | |
| 2008 /* There is no previous match to compare with, wait for | |
| 2009 * the next step to decide. | |
| 2010 */ | |
| 2011 s->match_available = 1; | |
| 2012 s->strstart++; | |
| 2013 s->lookahead--; | |
| 2014 } | |
| 2015 } | |
| 2016 Assert (flush != Z_NO_FLUSH, "no flush?"); | |
| 2017 if (s->match_available) { | |
| 2018 Tracevv((stderr,"%c", s->window[s->strstart - 1])); | |
| 2019 _tr_tally_lit(s, s->window[s->strstart - 1], bflush); | |
| 2020 s->match_available = 0; | |
| 2021 } | |
| 2022 s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1; | |
| 2023 if (flush == Z_FINISH) { | |
| 2024 FLUSH_BLOCK(s, 1); | |
| 2025 return finish_done; | |
| 2026 } | |
| 2027 if (s->sym_next) | |
| 2028 FLUSH_BLOCK(s, 0); | |
| 2029 return block_done; | |
| 2030 } | |
| 2031 #endif /* FASTEST */ | |
| 2032 | |
| 2033 /* =========================================================================== | |
| 2034 * For Z_RLE, simply look for runs of bytes, generate matches only of distance | |
| 2035 * one. Do not maintain a hash table. (It will be regenerated if this run of | |
| 2036 * deflate switches away from Z_RLE.) | |
| 2037 */ | |
| 2038 local block_state deflate_rle(deflate_state *s, int flush) { | |
| 2039 int bflush; /* set if current block must be flushed */ | |
| 2040 uInt prev; /* byte at distance one to match */ | |
| 2041 Bytef *scan, *strend; /* scan goes up to strend for length of run */ | |
| 2042 | |
| 2043 for (;;) { | |
| 2044 /* Make sure that we always have enough lookahead, except | |
| 2045 * at the end of the input file. We need MAX_MATCH bytes | |
| 2046 * for the longest run, plus one for the unrolled loop. | |
| 2047 */ | |
| 2048 if (s->lookahead <= MAX_MATCH) { | |
| 2049 fill_window(s); | |
| 2050 if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) { | |
| 2051 return need_more; | |
| 2052 } | |
| 2053 if (s->lookahead == 0) break; /* flush the current block */ | |
| 2054 } | |
| 2055 | |
| 2056 /* See how many times the previous byte repeats */ | |
| 2057 s->match_length = 0; | |
| 2058 if (s->lookahead >= MIN_MATCH && s->strstart > 0) { | |
| 2059 scan = s->window + s->strstart - 1; | |
| 2060 prev = *scan; | |
| 2061 if (prev == *++scan && prev == *++scan && prev == *++scan) { | |
| 2062 strend = s->window + s->strstart + MAX_MATCH; | |
| 2063 do { | |
| 2064 } while (prev == *++scan && prev == *++scan && | |
| 2065 prev == *++scan && prev == *++scan && | |
| 2066 prev == *++scan && prev == *++scan && | |
| 2067 prev == *++scan && prev == *++scan && | |
| 2068 scan < strend); | |
| 2069 s->match_length = MAX_MATCH - (uInt)(strend - scan); | |
| 2070 if (s->match_length > s->lookahead) | |
| 2071 s->match_length = s->lookahead; | |
| 2072 } | |
| 2073 Assert(scan <= s->window + (uInt)(s->window_size - 1), | |
| 2074 "wild scan"); | |
| 2075 } | |
| 2076 | |
| 2077 /* Emit match if have run of MIN_MATCH or longer, else emit literal */ | |
| 2078 if (s->match_length >= MIN_MATCH) { | |
| 2079 check_match(s, s->strstart, s->strstart - 1, s->match_length); | |
| 2080 | |
| 2081 _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush); | |
| 2082 | |
| 2083 s->lookahead -= s->match_length; | |
| 2084 s->strstart += s->match_length; | |
| 2085 s->match_length = 0; | |
| 2086 } else { | |
| 2087 /* No match, output a literal byte */ | |
| 2088 Tracevv((stderr,"%c", s->window[s->strstart])); | |
| 2089 _tr_tally_lit(s, s->window[s->strstart], bflush); | |
| 2090 s->lookahead--; | |
| 2091 s->strstart++; | |
| 2092 } | |
| 2093 if (bflush) FLUSH_BLOCK(s, 0); | |
| 2094 } | |
| 2095 s->insert = 0; | |
| 2096 if (flush == Z_FINISH) { | |
| 2097 FLUSH_BLOCK(s, 1); | |
| 2098 return finish_done; | |
| 2099 } | |
| 2100 if (s->sym_next) | |
| 2101 FLUSH_BLOCK(s, 0); | |
| 2102 return block_done; | |
| 2103 } | |
| 2104 | |
| 2105 /* =========================================================================== | |
| 2106 * For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table. | |
| 2107 * (It will be regenerated if this run of deflate switches away from Huffman.) | |
| 2108 */ | |
| 2109 local block_state deflate_huff(deflate_state *s, int flush) { | |
| 2110 int bflush; /* set if current block must be flushed */ | |
| 2111 | |
| 2112 for (;;) { | |
| 2113 /* Make sure that we have a literal to write. */ | |
| 2114 if (s->lookahead == 0) { | |
| 2115 fill_window(s); | |
| 2116 if (s->lookahead == 0) { | |
| 2117 if (flush == Z_NO_FLUSH) | |
| 2118 return need_more; | |
| 2119 break; /* flush the current block */ | |
| 2120 } | |
| 2121 } | |
| 2122 | |
| 2123 /* Output a literal byte */ | |
| 2124 s->match_length = 0; | |
| 2125 Tracevv((stderr,"%c", s->window[s->strstart])); | |
| 2126 _tr_tally_lit(s, s->window[s->strstart], bflush); | |
| 2127 s->lookahead--; | |
| 2128 s->strstart++; | |
| 2129 if (bflush) FLUSH_BLOCK(s, 0); | |
| 2130 } | |
| 2131 s->insert = 0; | |
| 2132 if (flush == Z_FINISH) { | |
| 2133 FLUSH_BLOCK(s, 1); | |
| 2134 return finish_done; | |
| 2135 } | |
| 2136 if (s->sym_next) | |
| 2137 FLUSH_BLOCK(s, 0); | |
| 2138 return block_done; | |
| 2139 } |
