Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/training/common/intfeaturedist.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 // Copyright 2011 Google Inc. All Rights Reserved. | |
| 2 // Author: rays@google.com (Ray Smith) | |
| 3 /////////////////////////////////////////////////////////////////////// | |
| 4 // File: intfeaturedist.cpp | |
| 5 // Description: Fast set-difference-based feature distance calculator. | |
| 6 // | |
| 7 // Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 // you may not use this file except in compliance with the License. | |
| 9 // You may obtain a copy of the License at | |
| 10 // http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 // Unless required by applicable law or agreed to in writing, software | |
| 12 // distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 // See the License for the specific language governing permissions and | |
| 15 // limitations under the License. | |
| 16 // | |
| 17 /////////////////////////////////////////////////////////////////////// | |
| 18 | |
| 19 #include "intfeaturedist.h" | |
| 20 #include "intfeaturemap.h" | |
| 21 | |
| 22 namespace tesseract { | |
| 23 | |
| 24 IntFeatureDist::IntFeatureDist() | |
| 25 : size_(0) | |
| 26 , total_feature_weight_(0.0) | |
| 27 , feature_map_(nullptr) | |
| 28 , features_(nullptr) | |
| 29 , features_delta_one_(nullptr) | |
| 30 , features_delta_two_(nullptr) {} | |
| 31 | |
| 32 IntFeatureDist::~IntFeatureDist() { | |
| 33 Clear(); | |
| 34 } | |
| 35 | |
| 36 // Initialize the table to the given size of feature space. | |
| 37 void IntFeatureDist::Init(const IntFeatureMap *feature_map) { | |
| 38 size_ = feature_map->sparse_size(); | |
| 39 Clear(); | |
| 40 feature_map_ = feature_map; | |
| 41 features_ = new bool[size_]; | |
| 42 features_delta_one_ = new bool[size_]; | |
| 43 features_delta_two_ = new bool[size_]; | |
| 44 memset(features_, false, size_ * sizeof(features_[0])); | |
| 45 memset(features_delta_one_, false, size_ * sizeof(features_delta_one_[0])); | |
| 46 memset(features_delta_two_, false, size_ * sizeof(features_delta_two_[0])); | |
| 47 total_feature_weight_ = 0.0; | |
| 48 } | |
| 49 | |
| 50 // Setup the map for the given indexed_features that have been indexed by | |
| 51 // feature_map. | |
| 52 void IntFeatureDist::Set(const std::vector<int> &indexed_features, int canonical_count, | |
| 53 bool value) { | |
| 54 total_feature_weight_ = canonical_count; | |
| 55 for (int f : indexed_features) { | |
| 56 features_[f] = value; | |
| 57 for (int dir = -kNumOffsetMaps; dir <= kNumOffsetMaps; ++dir) { | |
| 58 if (dir == 0) { | |
| 59 continue; | |
| 60 } | |
| 61 const int mapped_f = feature_map_->OffsetFeature(f, dir); | |
| 62 if (mapped_f >= 0) { | |
| 63 features_delta_one_[mapped_f] = value; | |
| 64 for (int dir2 = -kNumOffsetMaps; dir2 <= kNumOffsetMaps; ++dir2) { | |
| 65 if (dir2 == 0) { | |
| 66 continue; | |
| 67 } | |
| 68 const int mapped_f2 = feature_map_->OffsetFeature(mapped_f, dir2); | |
| 69 if (mapped_f2 >= 0) { | |
| 70 features_delta_two_[mapped_f2] = value; | |
| 71 } | |
| 72 } | |
| 73 } | |
| 74 } | |
| 75 } | |
| 76 } | |
| 77 | |
| 78 // Compute the distance between the given feature vector and the last | |
| 79 // Set feature vector. | |
| 80 double IntFeatureDist::FeatureDistance(const std::vector<int> &features) const { | |
| 81 const int num_test_features = features.size(); | |
| 82 const double denominator = total_feature_weight_ + num_test_features; | |
| 83 double misses = denominator; | |
| 84 for (int i = 0; i < num_test_features; ++i) { | |
| 85 const int index = features[i]; | |
| 86 const double weight = 1.0; | |
| 87 if (features_[index]) { | |
| 88 // A perfect match. | |
| 89 misses -= 2.0 * weight; | |
| 90 } else if (features_delta_one_[index]) { | |
| 91 misses -= 1.5 * weight; | |
| 92 } else if (features_delta_two_[index]) { | |
| 93 // A near miss. | |
| 94 misses -= 1.0 * weight; | |
| 95 } | |
| 96 } | |
| 97 return misses / denominator; | |
| 98 } | |
| 99 | |
| 100 // Compute the distance between the given feature vector and the last | |
| 101 // Set feature vector. | |
| 102 double IntFeatureDist::DebugFeatureDistance(const std::vector<int> &features) const { | |
| 103 const int num_test_features = features.size(); | |
| 104 const double denominator = total_feature_weight_ + num_test_features; | |
| 105 double misses = denominator; | |
| 106 for (int i = 0; i < num_test_features; ++i) { | |
| 107 const int index = features[i]; | |
| 108 const double weight = 1.0; | |
| 109 INT_FEATURE_STRUCT f = feature_map_->InverseMapFeature(features[i]); | |
| 110 tprintf("Testing feature weight %g:", weight); | |
| 111 f.print(); | |
| 112 if (features_[index]) { | |
| 113 // A perfect match. | |
| 114 misses -= 2.0 * weight; | |
| 115 tprintf("Perfect hit\n"); | |
| 116 } else if (features_delta_one_[index]) { | |
| 117 misses -= 1.5 * weight; | |
| 118 tprintf("-1 hit\n"); | |
| 119 } else if (features_delta_two_[index]) { | |
| 120 // A near miss. | |
| 121 misses -= 1.0 * weight; | |
| 122 tprintf("-2 hit\n"); | |
| 123 } else { | |
| 124 tprintf("Total miss\n"); | |
| 125 } | |
| 126 } | |
| 127 tprintf("Features present:"); | |
| 128 for (int i = 0; i < size_; ++i) { | |
| 129 if (features_[i]) { | |
| 130 INT_FEATURE_STRUCT f = feature_map_->InverseMapFeature(i); | |
| 131 f.print(); | |
| 132 } | |
| 133 } | |
| 134 tprintf("\nMinus one features:"); | |
| 135 for (int i = 0; i < size_; ++i) { | |
| 136 if (features_delta_one_[i]) { | |
| 137 INT_FEATURE_STRUCT f = feature_map_->InverseMapFeature(i); | |
| 138 f.print(); | |
| 139 } | |
| 140 } | |
| 141 tprintf("\nMinus two features:"); | |
| 142 for (int i = 0; i < size_; ++i) { | |
| 143 if (features_delta_two_[i]) { | |
| 144 INT_FEATURE_STRUCT f = feature_map_->InverseMapFeature(i); | |
| 145 f.print(); | |
| 146 } | |
| 147 } | |
| 148 tprintf("\n"); | |
| 149 return misses / denominator; | |
| 150 } | |
| 151 | |
| 152 // Clear all data. | |
| 153 void IntFeatureDist::Clear() { | |
| 154 delete[] features_; | |
| 155 features_ = nullptr; | |
| 156 delete[] features_delta_one_; | |
| 157 features_delta_one_ = nullptr; | |
| 158 delete[] features_delta_two_; | |
| 159 features_delta_two_ = nullptr; | |
| 160 } | |
| 161 | |
| 162 } // namespace tesseract |
