comparison mupdf-source/thirdparty/tesseract/src/training/common/ctc.cpp @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
comparison
equal deleted inserted replaced
1:1d09e1dec1d9 2:b50eed0cc0ef
1 ///////////////////////////////////////////////////////////////////////
2 // File: ctc.cpp
3 // Description: Slightly improved standard CTC to compute the targets.
4 // Author: Ray Smith
5 //
6 // (C) Copyright 2016, Google Inc.
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 ///////////////////////////////////////////////////////////////////////
17
18 #include "ctc.h"
19
20 #include "matrix.h"
21 #include "network.h"
22 #include "networkio.h"
23 #include "scrollview.h"
24
25 #include <algorithm>
26 #include <cfloat> // for FLT_MAX
27 #include <cmath>
28 #include <memory>
29
30 namespace tesseract {
31
32 // Magic constants that keep CTC stable.
33 // Minimum probability limit for softmax input to ctc_loss.
34 const float CTC::kMinProb_ = 1e-12;
35 // Maximum absolute argument to exp().
36 const double CTC::kMaxExpArg_ = 80.0;
37 // Minimum probability for total prob in time normalization.
38 const double CTC::kMinTotalTimeProb_ = 1e-8;
39 // Minimum probability for total prob in final normalization.
40 const double CTC::kMinTotalFinalProb_ = 1e-6;
41
42 // Builds a target using CTC. Slightly improved as follows:
43 // Includes normalizations and clipping for stability.
44 // labels should be pre-padded with nulls everywhere.
45 // labels can be longer than the time sequence, but the total number of
46 // essential labels (non-null plus nulls between equal labels) must not exceed
47 // the number of timesteps in outputs.
48 // outputs is the output of the network, and should have already been
49 // normalized with NormalizeProbs.
50 // On return targets is filled with the computed targets.
51 // Returns false if there is insufficient time for the labels.
52 /* static */
53 bool CTC::ComputeCTCTargets(const std::vector<int> &labels, int null_char,
54 const GENERIC_2D_ARRAY<float> &outputs, NetworkIO *targets) {
55 std::unique_ptr<CTC> ctc(new CTC(labels, null_char, outputs));
56 if (!ctc->ComputeLabelLimits()) {
57 return false; // Not enough time.
58 }
59 // Generate simple targets purely from the truth labels by spreading them
60 // evenly over time.
61 GENERIC_2D_ARRAY<float> simple_targets;
62 ctc->ComputeSimpleTargets(&simple_targets);
63 // Add the simple targets as a starter bias to the network outputs.
64 float bias_fraction = ctc->CalculateBiasFraction();
65 simple_targets *= bias_fraction;
66 ctc->outputs_ += simple_targets;
67 NormalizeProbs(&ctc->outputs_);
68 // Run regular CTC on the biased outputs.
69 // Run forward and backward
70 GENERIC_2D_ARRAY<double> log_alphas, log_betas;
71 ctc->Forward(&log_alphas);
72 ctc->Backward(&log_betas);
73 // Normalize and come out of log space with a clipped softmax over time.
74 log_alphas += log_betas;
75 ctc->NormalizeSequence(&log_alphas);
76 ctc->LabelsToClasses(log_alphas, targets);
77 NormalizeProbs(targets);
78 return true;
79 }
80
81 CTC::CTC(const std::vector<int> &labels, int null_char, const GENERIC_2D_ARRAY<float> &outputs)
82 : labels_(labels), outputs_(outputs), null_char_(null_char) {
83 num_timesteps_ = outputs.dim1();
84 num_classes_ = outputs.dim2();
85 num_labels_ = labels_.size();
86 }
87
88 // Computes vectors of min and max label index for each timestep, based on
89 // whether skippability of nulls makes it possible to complete a valid path.
90 bool CTC::ComputeLabelLimits() {
91 min_labels_.clear();
92 min_labels_.resize(num_timesteps_, 0);
93 max_labels_.clear();
94 max_labels_.resize(num_timesteps_, 0);
95 int min_u = num_labels_ - 1;
96 if (labels_[min_u] == null_char_) {
97 --min_u;
98 }
99 for (int t = num_timesteps_ - 1; t >= 0; --t) {
100 min_labels_[t] = min_u;
101 if (min_u > 0) {
102 --min_u;
103 if (labels_[min_u] == null_char_ && min_u > 0 && labels_[min_u + 1] != labels_[min_u - 1]) {
104 --min_u;
105 }
106 }
107 }
108 int max_u = labels_[0] == null_char_;
109 for (int t = 0; t < num_timesteps_; ++t) {
110 max_labels_[t] = max_u;
111 if (max_labels_[t] < min_labels_[t]) {
112 return false; // Not enough room.
113 }
114 if (max_u + 1 < num_labels_) {
115 ++max_u;
116 if (labels_[max_u] == null_char_ && max_u + 1 < num_labels_ &&
117 labels_[max_u + 1] != labels_[max_u - 1]) {
118 ++max_u;
119 }
120 }
121 }
122 return true;
123 }
124
125 // Computes targets based purely on the labels by spreading the labels evenly
126 // over the available timesteps.
127 void CTC::ComputeSimpleTargets(GENERIC_2D_ARRAY<float> *targets) const {
128 // Initialize all targets to zero.
129 targets->Resize(num_timesteps_, num_classes_, 0.0f);
130 std::vector<float> half_widths;
131 std::vector<int> means;
132 ComputeWidthsAndMeans(&half_widths, &means);
133 for (int l = 0; l < num_labels_; ++l) {
134 int label = labels_[l];
135 float left_half_width = half_widths[l];
136 float right_half_width = left_half_width;
137 int mean = means[l];
138 if (label == null_char_) {
139 if (!NeededNull(l)) {
140 if ((l > 0 && mean == means[l - 1]) || (l + 1 < num_labels_ && mean == means[l + 1])) {
141 continue; // Drop overlapping null.
142 }
143 }
144 // Make sure that no space is left unoccupied and that non-nulls always
145 // peak at 1 by stretching nulls to meet their neighbors.
146 if (l > 0) {
147 left_half_width = mean - means[l - 1];
148 }
149 if (l + 1 < num_labels_) {
150 right_half_width = means[l + 1] - mean;
151 }
152 }
153 if (mean >= 0 && mean < num_timesteps_) {
154 targets->put(mean, label, 1.0f);
155 }
156 for (int offset = 1; offset < left_half_width && mean >= offset; ++offset) {
157 float prob = 1.0f - offset / left_half_width;
158 if (mean - offset < num_timesteps_ && prob > targets->get(mean - offset, label)) {
159 targets->put(mean - offset, label, prob);
160 }
161 }
162 for (int offset = 1; offset < right_half_width && mean + offset < num_timesteps_; ++offset) {
163 float prob = 1.0f - offset / right_half_width;
164 if (mean + offset >= 0 && prob > targets->get(mean + offset, label)) {
165 targets->put(mean + offset, label, prob);
166 }
167 }
168 }
169 }
170
171 // Computes mean positions and half widths of the simple targets by spreading
172 // the labels evenly over the available timesteps.
173 void CTC::ComputeWidthsAndMeans(std::vector<float> *half_widths, std::vector<int> *means) const {
174 // Count the number of labels of each type, in regexp terms, counts plus
175 // (non-null or necessary null, which must occur at least once) and star
176 // (optional null).
177 int num_plus = 0, num_star = 0;
178 for (int i = 0; i < num_labels_; ++i) {
179 if (labels_[i] != null_char_ || NeededNull(i)) {
180 ++num_plus;
181 } else {
182 ++num_star;
183 }
184 }
185 // Compute the size for each type. If there is enough space for everything
186 // to have size>=1, then all are equal, otherwise plus_size=1 and star gets
187 // whatever is left-over.
188 float plus_size = 1.0f, star_size = 0.0f;
189 float total_floating = num_plus + num_star;
190 if (total_floating <= num_timesteps_) {
191 plus_size = star_size = num_timesteps_ / total_floating;
192 } else if (num_star > 0) {
193 star_size = static_cast<float>(num_timesteps_ - num_plus) / num_star;
194 }
195 // Set the width and compute the mean of each.
196 float mean_pos = 0.0f;
197 for (int i = 0; i < num_labels_; ++i) {
198 float half_width;
199 if (labels_[i] != null_char_ || NeededNull(i)) {
200 half_width = plus_size / 2.0f;
201 } else {
202 half_width = star_size / 2.0f;
203 }
204 mean_pos += half_width;
205 means->push_back(static_cast<int>(mean_pos));
206 mean_pos += half_width;
207 half_widths->push_back(half_width);
208 }
209 }
210
211 // Helper returns the index of the highest probability label at timestep t.
212 static int BestLabel(const GENERIC_2D_ARRAY<float> &outputs, int t) {
213 int result = 0;
214 int num_classes = outputs.dim2();
215 const float *outputs_t = outputs[t];
216 for (int c = 1; c < num_classes; ++c) {
217 if (outputs_t[c] > outputs_t[result]) {
218 result = c;
219 }
220 }
221 return result;
222 }
223
224 // Calculates and returns a suitable fraction of the simple targets to add
225 // to the network outputs.
226 float CTC::CalculateBiasFraction() {
227 // Compute output labels via basic decoding.
228 std::vector<int> output_labels;
229 for (int t = 0; t < num_timesteps_; ++t) {
230 int label = BestLabel(outputs_, t);
231 while (t + 1 < num_timesteps_ && BestLabel(outputs_, t + 1) == label) {
232 ++t;
233 }
234 if (label != null_char_) {
235 output_labels.push_back(label);
236 }
237 }
238 // Simple bag of labels error calculation.
239 std::vector<int> truth_counts(num_classes_);
240 std::vector<int> output_counts(num_classes_);
241 for (int l = 0; l < num_labels_; ++l) {
242 ++truth_counts[labels_[l]];
243 }
244 for (auto l : output_labels) {
245 ++output_counts[l];
246 }
247 // Count the number of true and false positive non-nulls and truth labels.
248 int true_pos = 0, false_pos = 0, total_labels = 0;
249 for (int c = 0; c < num_classes_; ++c) {
250 if (c == null_char_) {
251 continue;
252 }
253 int truth_count = truth_counts[c];
254 int ocr_count = output_counts[c];
255 if (truth_count > 0) {
256 total_labels += truth_count;
257 if (ocr_count > truth_count) {
258 true_pos += truth_count;
259 false_pos += ocr_count - truth_count;
260 } else {
261 true_pos += ocr_count;
262 }
263 }
264 // We don't need to count classes that don't exist in the truth as
265 // false positives, because they don't affect CTC at all.
266 }
267 if (total_labels == 0) {
268 return 0.0f;
269 }
270 return exp(std::max(true_pos - false_pos, 1) * std::log(kMinProb_) / total_labels);
271 }
272
273 // Given ln(x) and ln(y), returns ln(x + y), using:
274 // ln(x + y) = ln(y) + ln(1 + exp(ln(y) - ln(x)), ensuring that ln(x) is the
275 // bigger number to maximize precision.
276 static double LogSumExp(double ln_x, double ln_y) {
277 if (ln_x >= ln_y) {
278 return ln_x + log1p(exp(ln_y - ln_x));
279 } else {
280 return ln_y + log1p(exp(ln_x - ln_y));
281 }
282 }
283
284 // Runs the forward CTC pass, filling in log_probs.
285 void CTC::Forward(GENERIC_2D_ARRAY<double> *log_probs) const {
286 log_probs->Resize(num_timesteps_, num_labels_, -FLT_MAX);
287 log_probs->put(0, 0, log(outputs_(0, labels_[0])));
288 if (labels_[0] == null_char_) {
289 log_probs->put(0, 1, log(outputs_(0, labels_[1])));
290 }
291 for (int t = 1; t < num_timesteps_; ++t) {
292 const float *outputs_t = outputs_[t];
293 for (int u = min_labels_[t]; u <= max_labels_[t]; ++u) {
294 // Continuing the same label.
295 double log_sum = log_probs->get(t - 1, u);
296 // Change from previous label.
297 if (u > 0) {
298 log_sum = LogSumExp(log_sum, log_probs->get(t - 1, u - 1));
299 }
300 // Skip the null if allowed.
301 if (u >= 2 && labels_[u - 1] == null_char_ && labels_[u] != labels_[u - 2]) {
302 log_sum = LogSumExp(log_sum, log_probs->get(t - 1, u - 2));
303 }
304 // Add in the log prob of the current label.
305 double label_prob = outputs_t[labels_[u]];
306 log_sum += log(label_prob);
307 log_probs->put(t, u, log_sum);
308 }
309 }
310 }
311
312 // Runs the backward CTC pass, filling in log_probs.
313 void CTC::Backward(GENERIC_2D_ARRAY<double> *log_probs) const {
314 log_probs->Resize(num_timesteps_, num_labels_, -FLT_MAX);
315 log_probs->put(num_timesteps_ - 1, num_labels_ - 1, 0.0);
316 if (labels_[num_labels_ - 1] == null_char_) {
317 log_probs->put(num_timesteps_ - 1, num_labels_ - 2, 0.0);
318 }
319 for (int t = num_timesteps_ - 2; t >= 0; --t) {
320 const float *outputs_tp1 = outputs_[t + 1];
321 for (int u = min_labels_[t]; u <= max_labels_[t]; ++u) {
322 // Continuing the same label.
323 double log_sum = log_probs->get(t + 1, u) + std::log(outputs_tp1[labels_[u]]);
324 // Change from previous label.
325 if (u + 1 < num_labels_) {
326 double prev_prob = outputs_tp1[labels_[u + 1]];
327 log_sum = LogSumExp(log_sum, log_probs->get(t + 1, u + 1) + log(prev_prob));
328 }
329 // Skip the null if allowed.
330 if (u + 2 < num_labels_ && labels_[u + 1] == null_char_ && labels_[u] != labels_[u + 2]) {
331 double skip_prob = outputs_tp1[labels_[u + 2]];
332 log_sum = LogSumExp(log_sum, log_probs->get(t + 1, u + 2) + log(skip_prob));
333 }
334 log_probs->put(t, u, log_sum);
335 }
336 }
337 }
338
339 // Normalizes and brings probs out of log space with a softmax over time.
340 void CTC::NormalizeSequence(GENERIC_2D_ARRAY<double> *probs) const {
341 double max_logprob = probs->Max();
342 for (int u = 0; u < num_labels_; ++u) {
343 double total = 0.0;
344 for (int t = 0; t < num_timesteps_; ++t) {
345 // Separate impossible path from unlikely probs.
346 double prob = probs->get(t, u);
347 if (prob > -FLT_MAX) {
348 prob = ClippedExp(prob - max_logprob);
349 } else {
350 prob = 0.0;
351 }
352 total += prob;
353 probs->put(t, u, prob);
354 }
355 // Note that although this is a probability distribution over time and
356 // therefore should sum to 1, it is important to allow some labels to be
357 // all zero, (or at least tiny) as it is necessary to skip some blanks.
358 if (total < kMinTotalTimeProb_) {
359 total = kMinTotalTimeProb_;
360 }
361 for (int t = 0; t < num_timesteps_; ++t) {
362 probs->put(t, u, probs->get(t, u) / total);
363 }
364 }
365 }
366
367 // For each timestep computes the max prob for each class over all
368 // instances of the class in the labels_, and sets the targets to
369 // the max observed prob.
370 void CTC::LabelsToClasses(const GENERIC_2D_ARRAY<double> &probs, NetworkIO *targets) const {
371 // For each timestep compute the max prob for each class over all
372 // instances of the class in the labels_.
373 for (int t = 0; t < num_timesteps_; ++t) {
374 float *targets_t = targets->f(t);
375 std::vector<double> class_probs(num_classes_);
376 for (int u = 0; u < num_labels_; ++u) {
377 double prob = probs(t, u);
378 // Note that although Graves specifies sum over all labels of the same
379 // class, we need to allow skipped blanks to go to zero, so they don't
380 // interfere with the non-blanks, so max is better than sum.
381 if (prob > class_probs[labels_[u]]) {
382 class_probs[labels_[u]] = prob;
383 }
384 // class_probs[labels_[u]] += prob;
385 }
386 int best_class = 0;
387 for (int c = 0; c < num_classes_; ++c) {
388 targets_t[c] = class_probs[c];
389 if (class_probs[c] > class_probs[best_class]) {
390 best_class = c;
391 }
392 }
393 }
394 }
395
396 // Normalizes the probabilities such that no target has a prob below min_prob,
397 // and, provided that the initial total is at least min_total_prob, then all
398 // probs will sum to 1, otherwise to sum/min_total_prob. The maximum output
399 // probability is thus 1 - (num_classes-1)*min_prob.
400 /* static */
401 void CTC::NormalizeProbs(GENERIC_2D_ARRAY<float> *probs) {
402 int num_timesteps = probs->dim1();
403 int num_classes = probs->dim2();
404 for (int t = 0; t < num_timesteps; ++t) {
405 float *probs_t = (*probs)[t];
406 // Compute the total and clip that to prevent amplification of noise.
407 double total = 0.0;
408 for (int c = 0; c < num_classes; ++c) {
409 total += probs_t[c];
410 }
411 if (total < kMinTotalFinalProb_) {
412 total = kMinTotalFinalProb_;
413 }
414 // Compute the increased total as a result of clipping.
415 double increment = 0.0;
416 for (int c = 0; c < num_classes; ++c) {
417 double prob = probs_t[c] / total;
418 if (prob < kMinProb_) {
419 increment += kMinProb_ - prob;
420 }
421 }
422 // Now normalize with clipping. Any additional clipping is negligible.
423 total += increment;
424 for (int c = 0; c < num_classes; ++c) {
425 float prob = probs_t[c] / total;
426 probs_t[c] = std::max(prob, kMinProb_);
427 }
428 }
429 }
430
431 // Returns true if the label at index is a needed null.
432 bool CTC::NeededNull(int index) const {
433 return labels_[index] == null_char_ && index > 0 && index + 1 < num_labels_ &&
434 labels_[index + 1] == labels_[index - 1];
435 }
436
437 } // namespace tesseract