Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/lstm/input.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /////////////////////////////////////////////////////////////////////// | |
| 2 // File: input.cpp | |
| 3 // Description: Input layer class for neural network implementations. | |
| 4 // Author: Ray Smith | |
| 5 // | |
| 6 // (C) Copyright 2014, Google Inc. | |
| 7 // Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 // you may not use this file except in compliance with the License. | |
| 9 // You may obtain a copy of the License at | |
| 10 // http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 // Unless required by applicable law or agreed to in writing, software | |
| 12 // distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 // See the License for the specific language governing permissions and | |
| 15 // limitations under the License. | |
| 16 /////////////////////////////////////////////////////////////////////// | |
| 17 | |
| 18 #include "input.h" | |
| 19 | |
| 20 #include <allheaders.h> | |
| 21 #include "imagedata.h" | |
| 22 #include "pageres.h" | |
| 23 #include "scrollview.h" | |
| 24 | |
| 25 namespace tesseract { | |
| 26 | |
| 27 // Max height for variable height inputs before scaling anyway. | |
| 28 const int kMaxInputHeight = 48; | |
| 29 | |
| 30 Input::Input(const std::string &name, int ni, int no) | |
| 31 : Network(NT_INPUT, name, ni, no), cached_x_scale_(1) {} | |
| 32 Input::Input(const std::string &name, const StaticShape &shape) | |
| 33 : Network(NT_INPUT, name, shape.height(), shape.depth()), shape_(shape), cached_x_scale_(1) { | |
| 34 if (shape.height() == 1) { | |
| 35 ni_ = shape.depth(); | |
| 36 } | |
| 37 } | |
| 38 | |
| 39 // Writes to the given file. Returns false in case of error. | |
| 40 bool Input::Serialize(TFile *fp) const { | |
| 41 return Network::Serialize(fp) && shape_.Serialize(fp); | |
| 42 } | |
| 43 | |
| 44 // Reads from the given file. Returns false in case of error. | |
| 45 bool Input::DeSerialize(TFile *fp) { | |
| 46 return shape_.DeSerialize(fp); | |
| 47 } | |
| 48 | |
| 49 // Returns an integer reduction factor that the network applies to the | |
| 50 // time sequence. Assumes that any 2-d is already eliminated. Used for | |
| 51 // scaling bounding boxes of truth data. | |
| 52 int Input::XScaleFactor() const { | |
| 53 return 1; | |
| 54 } | |
| 55 | |
| 56 // Provides the (minimum) x scale factor to the network (of interest only to | |
| 57 // input units) so they can determine how to scale bounding boxes. | |
| 58 void Input::CacheXScaleFactor(int factor) { | |
| 59 cached_x_scale_ = factor; | |
| 60 } | |
| 61 | |
| 62 // Runs forward propagation of activations on the input line. | |
| 63 // See Network for a detailed discussion of the arguments. | |
| 64 void Input::Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, | |
| 65 NetworkScratch *scratch, NetworkIO *output) { | |
| 66 *output = input; | |
| 67 } | |
| 68 | |
| 69 // Runs backward propagation of errors on the deltas line. | |
| 70 // See NetworkCpp for a detailed discussion of the arguments. | |
| 71 bool Input::Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, | |
| 72 NetworkIO *back_deltas) { | |
| 73 tprintf("Input::Backward should not be called!!\n"); | |
| 74 return false; | |
| 75 } | |
| 76 | |
| 77 // Creates and returns a Pix of appropriate size for the network from the | |
| 78 // image_data. If non-null, *image_scale returns the image scale factor used. | |
| 79 // Returns nullptr on error. | |
| 80 /* static */ | |
| 81 Image Input::PrepareLSTMInputs(const ImageData &image_data, const Network *network, int min_width, | |
| 82 TRand *randomizer, float *image_scale) { | |
| 83 // Note that NumInputs() is defined as input image height. | |
| 84 int target_height = network->NumInputs(); | |
| 85 int width, height; | |
| 86 Image pix = | |
| 87 image_data.PreScale(target_height, kMaxInputHeight, image_scale, &width, &height, nullptr); | |
| 88 if (pix == nullptr) { | |
| 89 tprintf("Bad pix from ImageData!\n"); | |
| 90 return nullptr; | |
| 91 } | |
| 92 if (width < min_width || height < min_width) { | |
| 93 tprintf("Image too small to scale!! (%dx%d vs min width of %d)\n", width, height, min_width); | |
| 94 pix.destroy(); | |
| 95 return nullptr; | |
| 96 } | |
| 97 return pix; | |
| 98 } | |
| 99 | |
| 100 // Converts the given pix to a NetworkIO of height and depth appropriate to the | |
| 101 // given StaticShape: | |
| 102 // If depth == 3, convert to 24 bit color, otherwise normalized grey. | |
| 103 // Scale to target height, if the shape's height is > 1, or its depth if the | |
| 104 // height == 1. If height == 0 then no scaling. | |
| 105 // NOTE: It isn't safe for multiple threads to call this on the same pix. | |
| 106 /* static */ | |
| 107 void Input::PreparePixInput(const StaticShape &shape, const Image pix, TRand *randomizer, | |
| 108 NetworkIO *input) { | |
| 109 bool color = shape.depth() == 3; | |
| 110 Image var_pix = pix; | |
| 111 int depth = pixGetDepth(var_pix); | |
| 112 Image normed_pix = nullptr; | |
| 113 // On input to BaseAPI, an image is forced to be 1, 8 or 24 bit, without | |
| 114 // colormap, so we just have to deal with depth conversion here. | |
| 115 if (color) { | |
| 116 // Force RGB. | |
| 117 if (depth == 32) { | |
| 118 normed_pix = var_pix.clone(); | |
| 119 } else { | |
| 120 normed_pix = pixConvertTo32(var_pix); | |
| 121 } | |
| 122 } else { | |
| 123 // Convert non-8-bit images to 8 bit. | |
| 124 if (depth == 8) { | |
| 125 normed_pix = var_pix.clone(); | |
| 126 } else { | |
| 127 normed_pix = pixConvertTo8(var_pix, false); | |
| 128 } | |
| 129 } | |
| 130 int height = pixGetHeight(normed_pix); | |
| 131 int target_height = shape.height(); | |
| 132 if (target_height == 1) { | |
| 133 target_height = shape.depth(); | |
| 134 } | |
| 135 if (target_height != 0 && target_height != height) { | |
| 136 // Get the scaled image. | |
| 137 float im_factor = static_cast<float>(target_height) / height; | |
| 138 Image scaled_pix = pixScale(normed_pix, im_factor, im_factor); | |
| 139 normed_pix.destroy(); | |
| 140 normed_pix = scaled_pix; | |
| 141 } | |
| 142 input->FromPix(shape, normed_pix, randomizer); | |
| 143 normed_pix.destroy(); | |
| 144 } | |
| 145 | |
| 146 } // namespace tesseract. |
