comparison mupdf-source/thirdparty/tesseract/src/lstm/functions.h @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
comparison
equal deleted inserted replaced
1:1d09e1dec1d9 2:b50eed0cc0ef
1 ///////////////////////////////////////////////////////////////////////
2 // File: functions.h
3 // Description: Collection of function-objects used by the network layers.
4 // Author: Ray Smith
5 //
6 // (C) Copyright 2014, Google Inc.
7 // Licensed under the Apache License, Version 2.0 (the "License");
8 // you may not use this file except in compliance with the License.
9 // You may obtain a copy of the License at
10 // http://www.apache.org/licenses/LICENSE-2.0
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS,
13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 // See the License for the specific language governing permissions and
15 // limitations under the License.
16 ///////////////////////////////////////////////////////////////////////
17
18 #ifndef TESSERACT_LSTM_FUNCTIONS_H_
19 #define TESSERACT_LSTM_FUNCTIONS_H_
20
21 #include "helpers.h"
22 #include "tesstypes.h"
23
24 // Setting this to 1 or more causes massive dumps of debug data: weights,
25 // updates, internal calculations etc, and reduces the number of test iterations
26 // to a small number, so outputs can be diffed.
27 #define DEBUG_DETAIL 0
28 #if DEBUG_DETAIL > 0
29 # undef _OPENMP // Disable open mp to get the outputs in sync.
30 #endif
31
32 namespace tesseract {
33
34 // Size of static tables.
35 constexpr int kTableSize = 4096;
36 // Scale factor for float arg to int index.
37 constexpr TFloat kScaleFactor = 256.0;
38
39 // Generated lookup tables.
40 extern const TFloat TanhTable[];
41 extern const TFloat LogisticTable[];
42
43 // Non-linearity (sigmoid) functions with cache tables and clipping.
44 inline TFloat Tanh(TFloat x) {
45 if (x < 0) {
46 return -Tanh(-x);
47 }
48 x *= kScaleFactor;
49 auto index = static_cast<unsigned>(x);
50 if (index >= (kTableSize - 1)) {
51 return 1;
52 }
53 TFloat tanh_i0 = TanhTable[index];
54 TFloat tanh_i1 = TanhTable[index + 1];
55 // Linear interpolation.
56 return tanh_i0 + (tanh_i1 - tanh_i0) * (x - index);
57 }
58
59 inline TFloat Logistic(TFloat x) {
60 if (x < 0) {
61 return 1 - Logistic(-x);
62 }
63 x *= kScaleFactor;
64 auto index = static_cast<unsigned>(x);
65 if (index >= (kTableSize - 1)) {
66 return 1;
67 }
68 TFloat l0 = LogisticTable[index];
69 TFloat l1 = LogisticTable[index + 1];
70 // Linear interpolation.
71 return l0 + (l1 - l0) * (x - index);
72 }
73
74 // Non-linearity (sigmoid) functions and their derivatives.
75 struct FFunc {
76 inline TFloat operator()(TFloat x) const {
77 return Logistic(x);
78 }
79 };
80 struct FPrime {
81 inline TFloat operator()(TFloat y) const {
82 return y * (1 - y);
83 }
84 };
85 struct ClipFFunc {
86 inline TFloat operator()(TFloat x) const {
87 if (x <= 0) {
88 return 0;
89 }
90 if (x >= 1) {
91 return 1;
92 }
93 return x;
94 }
95 };
96 struct ClipFPrime {
97 inline TFloat operator()(TFloat y) const {
98 return 0 < y && y < 1 ? 1 : 0;
99 }
100 };
101 struct Relu {
102 inline TFloat operator()(TFloat x) const {
103 if (x <= 0) {
104 return 0;
105 }
106 return x;
107 }
108 };
109 struct ReluPrime {
110 inline TFloat operator()(TFloat y) const {
111 return 0 < y ? 1 : 0;
112 }
113 };
114 struct GFunc {
115 inline TFloat operator()(TFloat x) const {
116 return Tanh(x);
117 }
118 };
119 struct GPrime {
120 inline TFloat operator()(TFloat y) const {
121 return 1 - y * y;
122 }
123 };
124 struct ClipGFunc {
125 inline TFloat operator()(TFloat x) const {
126 if (x <= -1) {
127 return -1;
128 }
129 if (x >= 1) {
130 return 1;
131 }
132 return x;
133 }
134 };
135 struct ClipGPrime {
136 inline TFloat operator()(TFloat y) const {
137 return -1 < y && y < 1 ? 1 : 0;
138 }
139 };
140 struct HFunc {
141 inline TFloat operator()(TFloat x) const {
142 return Tanh(x);
143 }
144 };
145 struct HPrime {
146 inline TFloat operator()(TFloat y) const {
147 TFloat u = Tanh(y);
148 return 1 - u * u;
149 }
150 };
151 struct UnityFunc {
152 inline TFloat operator()(TFloat /*x*/) const {
153 return 1.0;
154 }
155 };
156 struct IdentityFunc {
157 inline TFloat operator()(TFloat x) const {
158 return x;
159 }
160 };
161
162 // Applies Func in-place to inout, of size n.
163 template <class Func>
164 inline void FuncInplace(int n, TFloat *inout) {
165 Func f;
166 for (int i = 0; i < n; ++i) {
167 inout[i] = f(inout[i]);
168 }
169 }
170 // Applies Func to u and multiplies the result by v component-wise,
171 // putting the product in out, all of size n.
172 template <class Func>
173 inline void FuncMultiply(const TFloat *u, const TFloat *v, int n, TFloat *out) {
174 Func f;
175 for (int i = 0; i < n; ++i) {
176 out[i] = f(u[i]) * v[i];
177 }
178 }
179 // Applies the Softmax function in-place to inout, of size n.
180 template <typename T>
181 inline void SoftmaxInPlace(int n, T *inout) {
182 if (n <= 0) {
183 return;
184 }
185 // A limit on the negative range input to exp to guarantee non-zero output.
186 const T kMaxSoftmaxActivation = 86;
187
188 T max_output = inout[0];
189 for (int i = 1; i < n; i++) {
190 T output = inout[i];
191 if (output > max_output) {
192 max_output = output;
193 }
194 }
195 T prob_total = 0;
196 for (int i = 0; i < n; i++) {
197 T prob = inout[i] - max_output;
198 prob = std::exp(ClipToRange(prob, -kMaxSoftmaxActivation, static_cast<T>(0)));
199 prob_total += prob;
200 inout[i] = prob;
201 }
202 if (prob_total > 0) {
203 for (int i = 0; i < n; i++) {
204 inout[i] /= prob_total;
205 }
206 }
207 }
208
209 // Copies n values of the given src vector to dest.
210 inline void CopyVector(unsigned n, const TFloat *src, TFloat *dest) {
211 memcpy(dest, src, n * sizeof(dest[0]));
212 }
213
214 // Adds n values of the given src vector to dest.
215 inline void AccumulateVector(int n, const TFloat *src, TFloat *dest) {
216 for (int i = 0; i < n; ++i) {
217 dest[i] += src[i];
218 }
219 }
220
221 // Multiplies n values of inout in-place element-wise by the given src vector.
222 inline void MultiplyVectorsInPlace(int n, const TFloat *src, TFloat *inout) {
223 for (int i = 0; i < n; ++i) {
224 inout[i] *= src[i];
225 }
226 }
227
228 // Multiplies n values of u by v, element-wise, accumulating to out.
229 inline void MultiplyAccumulate(int n, const TFloat *u, const TFloat *v, TFloat *out) {
230 for (int i = 0; i < n; i++) {
231 out[i] += u[i] * v[i];
232 }
233 }
234
235 // Sums the given 5 n-vectors putting the result into sum.
236 inline void SumVectors(int n, const TFloat *v1, const TFloat *v2, const TFloat *v3,
237 const TFloat *v4, const TFloat *v5, TFloat *sum) {
238 for (int i = 0; i < n; ++i) {
239 sum[i] = v1[i] + v2[i] + v3[i] + v4[i] + v5[i];
240 }
241 }
242
243 // Sets the given n-vector vec to 0.
244 template <typename T>
245 inline void ZeroVector(unsigned n, T *vec) {
246 memset(vec, 0, n * sizeof(*vec));
247 }
248
249 // Clips the given vector vec, of size n to [lower, upper].
250 template <typename T>
251 inline void ClipVector(int n, T lower, T upper, T *vec) {
252 for (int i = 0; i < n; ++i) {
253 vec[i] = ClipToRange(vec[i], lower, upper);
254 }
255 }
256
257 // Converts the given n-vector to a binary encoding of the maximum value,
258 // encoded as vector of nf binary values.
259 inline void CodeInBinary(int n, int nf, TFloat *vec) {
260 if (nf <= 0 || n < nf) {
261 return;
262 }
263 int index = 0;
264 TFloat best_score = vec[0];
265 for (int i = 1; i < n; ++i) {
266 if (vec[i] > best_score) {
267 best_score = vec[i];
268 index = i;
269 }
270 }
271 int mask = 1;
272 for (int i = 0; i < nf; ++i, mask *= 2) {
273 vec[i] = (index & mask) ? 1.0 : 0.0;
274 }
275 }
276
277 } // namespace tesseract.
278
279 #endif // TESSERACT_LSTM_FUNCTIONS_H_