Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/classify/picofeat.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /****************************************************************************** | |
| 2 ** Filename: picofeat.c | |
| 3 ** Purpose: Definition of pico-features. | |
| 4 ** Author: Dan Johnson | |
| 5 ** | |
| 6 ** (c) Copyright Hewlett-Packard Company, 1988. | |
| 7 ** Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 ** you may not use this file except in compliance with the License. | |
| 9 ** You may obtain a copy of the License at | |
| 10 ** http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 ** Unless required by applicable law or agreed to in writing, software | |
| 12 ** distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 ** See the License for the specific language governing permissions and | |
| 15 ** limitations under the License. | |
| 16 ******************************************************************************/ | |
| 17 | |
| 18 #include "picofeat.h" | |
| 19 | |
| 20 #include "classify.h" | |
| 21 #include "featdefs.h" | |
| 22 #include "fpoint.h" | |
| 23 #include "mfoutline.h" | |
| 24 #include "ocrfeatures.h" | |
| 25 #include "params.h" | |
| 26 #include "trainingsample.h" | |
| 27 | |
| 28 #include <cmath> | |
| 29 #include <cstdio> | |
| 30 | |
| 31 namespace tesseract { | |
| 32 | |
| 33 /*--------------------------------------------------------------------------- | |
| 34 Variables | |
| 35 ----------------------------------------------------------------------------*/ | |
| 36 | |
| 37 double_VAR(classify_pico_feature_length, 0.05, "Pico Feature Length"); | |
| 38 | |
| 39 /*--------------------------------------------------------------------------- | |
| 40 Private Function Prototypes | |
| 41 ----------------------------------------------------------------------------*/ | |
| 42 void ConvertSegmentToPicoFeat(FPOINT *Start, FPOINT *End, FEATURE_SET FeatureSet); | |
| 43 | |
| 44 void ConvertToPicoFeatures2(MFOUTLINE Outline, FEATURE_SET FeatureSet); | |
| 45 | |
| 46 void NormalizePicoX(FEATURE_SET FeatureSet); | |
| 47 | |
| 48 /*---------------------------------------------------------------------------- | |
| 49 Public Code | |
| 50 ----------------------------------------------------------------------------*/ | |
| 51 /*---------------------------------------------------------------------------*/ | |
| 52 /** | |
| 53 * Operation: Dummy for now. | |
| 54 * | |
| 55 * Globals: | |
| 56 * - classify_norm_method normalization method currently specified | |
| 57 * @param Blob blob to extract pico-features from | |
| 58 * @return Pico-features for Blob. | |
| 59 */ | |
| 60 FEATURE_SET Classify::ExtractPicoFeatures(TBLOB *Blob) { | |
| 61 auto FeatureSet = new FEATURE_SET_STRUCT(MAX_PICO_FEATURES); | |
| 62 auto Outlines = ConvertBlob(Blob); | |
| 63 float XScale, YScale; | |
| 64 NormalizeOutlines(Outlines, &XScale, &YScale); | |
| 65 auto RemainingOutlines = Outlines; | |
| 66 iterate(RemainingOutlines) { | |
| 67 auto Outline = static_cast<MFOUTLINE>(RemainingOutlines->first_node()); | |
| 68 ConvertToPicoFeatures2(Outline, FeatureSet); | |
| 69 } | |
| 70 if (classify_norm_method == baseline) { | |
| 71 NormalizePicoX(FeatureSet); | |
| 72 } | |
| 73 FreeOutlines(Outlines); | |
| 74 return (FeatureSet); | |
| 75 | |
| 76 } /* ExtractPicoFeatures */ | |
| 77 | |
| 78 /*---------------------------------------------------------------------------- | |
| 79 Private Code | |
| 80 ----------------------------------------------------------------------------*/ | |
| 81 /*---------------------------------------------------------------------------*/ | |
| 82 /** | |
| 83 * This routine converts an entire segment of an outline | |
| 84 * into a set of pico features which are added to | |
| 85 * FeatureSet. The length of the segment is rounded to the | |
| 86 * nearest whole number of pico-features. The pico-features | |
| 87 * are spaced evenly over the entire segment. | |
| 88 * Results are placed in FeatureSet. | |
| 89 * Globals: | |
| 90 * - classify_pico_feature_length length of a single pico-feature | |
| 91 * @param Start starting point of pico-feature | |
| 92 * @param End ending point of pico-feature | |
| 93 * @param FeatureSet set to add pico-feature to | |
| 94 */ | |
| 95 void ConvertSegmentToPicoFeat(FPOINT *Start, FPOINT *End, FEATURE_SET FeatureSet) { | |
| 96 float Angle; | |
| 97 float Length; | |
| 98 int NumFeatures; | |
| 99 FPOINT Center; | |
| 100 FPOINT Delta; | |
| 101 int i; | |
| 102 | |
| 103 Angle = NormalizedAngleFrom(Start, End, 1.0); | |
| 104 Length = DistanceBetween(*Start, *End); | |
| 105 NumFeatures = static_cast<int>(floor(Length / classify_pico_feature_length + 0.5)); | |
| 106 if (NumFeatures < 1) { | |
| 107 NumFeatures = 1; | |
| 108 } | |
| 109 | |
| 110 /* compute vector for one pico feature */ | |
| 111 Delta.x = XDelta(*Start, *End) / NumFeatures; | |
| 112 Delta.y = YDelta(*Start, *End) / NumFeatures; | |
| 113 | |
| 114 /* compute position of first pico feature */ | |
| 115 Center.x = Start->x + Delta.x / 2.0; | |
| 116 Center.y = Start->y + Delta.y / 2.0; | |
| 117 | |
| 118 /* compute each pico feature in segment and add to feature set */ | |
| 119 for (i = 0; i < NumFeatures; i++) { | |
| 120 auto Feature = new FEATURE_STRUCT(&PicoFeatDesc); | |
| 121 Feature->Params[PicoFeatDir] = Angle; | |
| 122 Feature->Params[PicoFeatX] = Center.x; | |
| 123 Feature->Params[PicoFeatY] = Center.y; | |
| 124 AddFeature(FeatureSet, Feature); | |
| 125 | |
| 126 Center.x += Delta.x; | |
| 127 Center.y += Delta.y; | |
| 128 } | |
| 129 } /* ConvertSegmentToPicoFeat */ | |
| 130 | |
| 131 /*---------------------------------------------------------------------------*/ | |
| 132 /** | |
| 133 * This routine steps through the specified outline and cuts it | |
| 134 * up into pieces of equal length. These pieces become the | |
| 135 * desired pico-features. Each segment in the outline | |
| 136 * is converted into an integral number of pico-features. | |
| 137 * Results are returned in FeatureSet. | |
| 138 * | |
| 139 * Globals: | |
| 140 * - classify_pico_feature_length length of features to be extracted | |
| 141 * @param Outline outline to extract micro-features from | |
| 142 * @param FeatureSet set of features to add pico-features to | |
| 143 */ | |
| 144 void ConvertToPicoFeatures2(MFOUTLINE Outline, FEATURE_SET FeatureSet) { | |
| 145 MFOUTLINE Next; | |
| 146 MFOUTLINE First; | |
| 147 MFOUTLINE Current; | |
| 148 | |
| 149 if (DegenerateOutline(Outline)) { | |
| 150 return; | |
| 151 } | |
| 152 | |
| 153 First = Outline; | |
| 154 Current = First; | |
| 155 Next = NextPointAfter(Current); | |
| 156 do { | |
| 157 /* note that an edge is hidden if the ending point of the edge is | |
| 158 marked as hidden. This situation happens because the order of | |
| 159 the outlines is reversed when they are converted from the old | |
| 160 format. In the old format, a hidden edge is marked by the | |
| 161 starting point for that edge. */ | |
| 162 if (!(PointAt(Next)->Hidden)) { | |
| 163 ConvertSegmentToPicoFeat(&(PointAt(Current)->Point), &(PointAt(Next)->Point), FeatureSet); | |
| 164 } | |
| 165 | |
| 166 Current = Next; | |
| 167 Next = NextPointAfter(Current); | |
| 168 } while (Current != First); | |
| 169 | |
| 170 } /* ConvertToPicoFeatures2 */ | |
| 171 | |
| 172 /*---------------------------------------------------------------------------*/ | |
| 173 /** | |
| 174 * This routine computes the average x position over all | |
| 175 * of the pico-features in FeatureSet and then renormalizes | |
| 176 * the pico-features to force this average to be the x origin | |
| 177 * (i.e. x=0). | |
| 178 * FeatureSet is changed. | |
| 179 * @param FeatureSet pico-features to be normalized | |
| 180 */ | |
| 181 void NormalizePicoX(FEATURE_SET FeatureSet) { | |
| 182 int i; | |
| 183 FEATURE Feature; | |
| 184 float Origin = 0.0; | |
| 185 | |
| 186 for (i = 0; i < FeatureSet->NumFeatures; i++) { | |
| 187 Feature = FeatureSet->Features[i]; | |
| 188 Origin += Feature->Params[PicoFeatX]; | |
| 189 } | |
| 190 Origin /= FeatureSet->NumFeatures; | |
| 191 | |
| 192 for (i = 0; i < FeatureSet->NumFeatures; i++) { | |
| 193 Feature = FeatureSet->Features[i]; | |
| 194 Feature->Params[PicoFeatX] -= Origin; | |
| 195 } | |
| 196 } /* NormalizePicoX */ | |
| 197 | |
| 198 /*---------------------------------------------------------------------------*/ | |
| 199 /** | |
| 200 * @param blob blob to extract features from | |
| 201 * @param fx_info | |
| 202 * @return Integer character-normalized features for blob. | |
| 203 */ | |
| 204 FEATURE_SET Classify::ExtractIntCNFeatures(const TBLOB &blob, const INT_FX_RESULT_STRUCT &fx_info) { | |
| 205 INT_FX_RESULT_STRUCT local_fx_info(fx_info); | |
| 206 std::vector<INT_FEATURE_STRUCT> bl_features; | |
| 207 tesseract::TrainingSample *sample = | |
| 208 tesseract::BlobToTrainingSample(blob, false, &local_fx_info, &bl_features); | |
| 209 if (sample == nullptr) { | |
| 210 return nullptr; | |
| 211 } | |
| 212 | |
| 213 uint32_t num_features = sample->num_features(); | |
| 214 const INT_FEATURE_STRUCT *features = sample->features(); | |
| 215 auto feature_set = new FEATURE_SET_STRUCT(num_features); | |
| 216 for (uint32_t f = 0; f < num_features; ++f) { | |
| 217 auto feature = new FEATURE_STRUCT(&IntFeatDesc); | |
| 218 feature->Params[IntX] = features[f].X; | |
| 219 feature->Params[IntY] = features[f].Y; | |
| 220 feature->Params[IntDir] = features[f].Theta; | |
| 221 AddFeature(feature_set, feature); | |
| 222 } | |
| 223 delete sample; | |
| 224 | |
| 225 return feature_set; | |
| 226 } /* ExtractIntCNFeatures */ | |
| 227 | |
| 228 /*---------------------------------------------------------------------------*/ | |
| 229 /** | |
| 230 * @param blob blob to extract features from | |
| 231 * @param fx_info | |
| 232 * @return Geometric (top/bottom/width) features for blob. | |
| 233 */ | |
| 234 FEATURE_SET Classify::ExtractIntGeoFeatures(const TBLOB &blob, | |
| 235 const INT_FX_RESULT_STRUCT &fx_info) { | |
| 236 INT_FX_RESULT_STRUCT local_fx_info(fx_info); | |
| 237 std::vector<INT_FEATURE_STRUCT> bl_features; | |
| 238 tesseract::TrainingSample *sample = | |
| 239 tesseract::BlobToTrainingSample(blob, false, &local_fx_info, &bl_features); | |
| 240 if (sample == nullptr) { | |
| 241 return nullptr; | |
| 242 } | |
| 243 | |
| 244 auto feature_set = new FEATURE_SET_STRUCT(1); | |
| 245 auto feature = new FEATURE_STRUCT(&IntFeatDesc); | |
| 246 | |
| 247 feature->Params[GeoBottom] = sample->geo_feature(GeoBottom); | |
| 248 feature->Params[GeoTop] = sample->geo_feature(GeoTop); | |
| 249 feature->Params[GeoWidth] = sample->geo_feature(GeoWidth); | |
| 250 AddFeature(feature_set, feature); | |
| 251 delete sample; | |
| 252 | |
| 253 return feature_set; | |
| 254 } /* ExtractIntGeoFeatures */ | |
| 255 | |
| 256 } // namespace tesseract. |
