Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/ccstruct/matrix.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /****************************************************************************** | |
| 2 * File: matrix.h | |
| 3 * Description: Generic 2-d array/matrix and banded triangular matrix class. | |
| 4 * Author: Ray Smith | |
| 5 * TODO(rays) Separate from ratings matrix, which it also contains: | |
| 6 * | |
| 7 * Description: Ratings matrix class (specialization of banded matrix). | |
| 8 * Segmentation search matrix of lists of BLOB_CHOICE. | |
| 9 * Author: Mark Seaman, OCR Technology | |
| 10 * | |
| 11 * (c) Copyright 1990, Hewlett-Packard Company. | |
| 12 ** Licensed under the Apache License, Version 2.0 (the "License"); | |
| 13 ** you may not use this file except in compliance with the License. | |
| 14 ** You may obtain a copy of the License at | |
| 15 ** http://www.apache.org/licenses/LICENSE-2.0 | |
| 16 ** Unless required by applicable law or agreed to in writing, software | |
| 17 ** distributed under the License is distributed on an "AS IS" BASIS, | |
| 18 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 19 ** See the License for the specific language governing permissions and | |
| 20 ** limitations under the License. | |
| 21 * | |
| 22 *****************************************************************************/ | |
| 23 | |
| 24 #ifndef TESSERACT_CCSTRUCT_MATRIX_H_ | |
| 25 #define TESSERACT_CCSTRUCT_MATRIX_H_ | |
| 26 | |
| 27 #include "errcode.h" // for ASSERT_HOST | |
| 28 #include "helpers.h" // for ReverseN, ClipToRange | |
| 29 #include "kdpair.h" // for KDPairInc | |
| 30 #include "points.h" // for ICOORD | |
| 31 | |
| 32 #include "serialis.h" // for TFile | |
| 33 | |
| 34 #include <algorithm> // for max, min | |
| 35 #include <cmath> // for sqrt, fabs, isfinite | |
| 36 #include <cstdint> // for int32_t | |
| 37 #include <cstdio> // for FILE | |
| 38 #include <cstring> // for memcpy | |
| 39 | |
| 40 namespace tesseract { | |
| 41 | |
| 42 class BLOB_CHOICE_LIST; | |
| 43 class UNICHARSET; | |
| 44 | |
| 45 #define NOT_CLASSIFIED static_cast<BLOB_CHOICE_LIST *>(nullptr) | |
| 46 | |
| 47 // A generic class to hold a 2-D matrix with entries of type T, but can also | |
| 48 // act as a base class for other implementations, such as a triangular or | |
| 49 // banded matrix. | |
| 50 template <class T> | |
| 51 class GENERIC_2D_ARRAY { | |
| 52 public: | |
| 53 // Initializes the array size, and empty element, but cannot allocate memory | |
| 54 // for the subclasses or initialize because calls to the num_elements | |
| 55 // member will be routed to the base class implementation. Subclasses can | |
| 56 // either pass the memory in, or allocate after by calling Resize(). | |
| 57 GENERIC_2D_ARRAY(int dim1, int dim2, const T &empty, T *array) | |
| 58 : empty_(empty), dim1_(dim1), dim2_(dim2), array_(array) { | |
| 59 size_allocated_ = dim1 * dim2; | |
| 60 } | |
| 61 // Original constructor for a full rectangular matrix DOES allocate memory | |
| 62 // and initialize it to empty. | |
| 63 GENERIC_2D_ARRAY(int dim1, int dim2, const T &empty) : empty_(empty), dim1_(dim1), dim2_(dim2) { | |
| 64 int new_size = dim1 * dim2; | |
| 65 array_ = new T[new_size]; | |
| 66 size_allocated_ = new_size; | |
| 67 for (int i = 0; i < size_allocated_; ++i) { | |
| 68 array_[i] = empty_; | |
| 69 } | |
| 70 } | |
| 71 // Default constructor for array allocation. Use Resize to set the size. | |
| 72 GENERIC_2D_ARRAY() | |
| 73 : array_(nullptr), empty_(static_cast<T>(0)), dim1_(0), dim2_(0), size_allocated_(0) {} | |
| 74 GENERIC_2D_ARRAY(const GENERIC_2D_ARRAY<T> &src) | |
| 75 : array_(nullptr), empty_(static_cast<T>(0)), dim1_(0), dim2_(0), size_allocated_(0) { | |
| 76 *this = src; | |
| 77 } | |
| 78 virtual ~GENERIC_2D_ARRAY() { | |
| 79 delete[] array_; | |
| 80 } | |
| 81 | |
| 82 void operator=(const GENERIC_2D_ARRAY<T> &src) { | |
| 83 ResizeNoInit(src.dim1(), src.dim2()); | |
| 84 int size = num_elements(); | |
| 85 if (size > 0) { | |
| 86 memcpy(array_, src.array_, size * sizeof(array_[0])); | |
| 87 } | |
| 88 } | |
| 89 | |
| 90 // Reallocates the array to the given size. Does not keep old data, but does | |
| 91 // not initialize the array either. | |
| 92 // The allocated memory is expanded on the end by pad, allowing deliberate | |
| 93 // access beyond the bounds of the array. | |
| 94 void ResizeNoInit(int size1, int size2, int pad = 0) { | |
| 95 int new_size = size1 * size2 + pad; | |
| 96 if (new_size > size_allocated_) { | |
| 97 delete[] array_; | |
| 98 array_ = new T[new_size]; | |
| 99 size_allocated_ = new_size; | |
| 100 } | |
| 101 dim1_ = size1; | |
| 102 dim2_ = size2; | |
| 103 // Fill the padding data so it isn't uninitialized. | |
| 104 for (int i = size1 * size2; i < new_size; ++i) { | |
| 105 array_[i] = empty_; | |
| 106 } | |
| 107 } | |
| 108 | |
| 109 // Reallocate the array to the given size. Does not keep old data. | |
| 110 void Resize(int size1, int size2, const T &empty) { | |
| 111 empty_ = empty; | |
| 112 ResizeNoInit(size1, size2); | |
| 113 Clear(); | |
| 114 } | |
| 115 | |
| 116 // Reallocate the array to the given size, keeping old data. | |
| 117 void ResizeWithCopy(int size1, int size2) { | |
| 118 if (size1 != dim1_ || size2 != dim2_) { | |
| 119 int new_size = size1 * size2; | |
| 120 T *new_array = new T[new_size]; | |
| 121 for (int col = 0; col < size1; ++col) { | |
| 122 for (int row = 0; row < size2; ++row) { | |
| 123 int old_index = col * dim2() + row; | |
| 124 int new_index = col * size2 + row; | |
| 125 if (col < dim1_ && row < dim2_) { | |
| 126 new_array[new_index] = array_[old_index]; | |
| 127 } else { | |
| 128 new_array[new_index] = empty_; | |
| 129 } | |
| 130 } | |
| 131 } | |
| 132 delete[] array_; | |
| 133 array_ = new_array; | |
| 134 dim1_ = size1; | |
| 135 dim2_ = size2; | |
| 136 size_allocated_ = new_size; | |
| 137 } | |
| 138 } | |
| 139 | |
| 140 // Sets all the elements of the array to the empty value. | |
| 141 void Clear() { | |
| 142 int total_size = num_elements(); | |
| 143 for (int i = 0; i < total_size; ++i) { | |
| 144 array_[i] = empty_; | |
| 145 } | |
| 146 } | |
| 147 | |
| 148 // Writes to the given file. Returns false in case of error. | |
| 149 // Only works with bitwise-serializeable types! | |
| 150 bool Serialize(FILE *fp) const { | |
| 151 if (!SerializeSize(fp)) { | |
| 152 return false; | |
| 153 } | |
| 154 if (!tesseract::Serialize(fp, &empty_)) { | |
| 155 return false; | |
| 156 } | |
| 157 int size = num_elements(); | |
| 158 return tesseract::Serialize(fp, &array_[0], size); | |
| 159 } | |
| 160 | |
| 161 bool Serialize(TFile *fp) const { | |
| 162 if (!SerializeSize(fp)) { | |
| 163 return false; | |
| 164 } | |
| 165 if (!fp->Serialize(&empty_)) { | |
| 166 return false; | |
| 167 } | |
| 168 int size = num_elements(); | |
| 169 return fp->Serialize(&array_[0], size); | |
| 170 } | |
| 171 | |
| 172 // Reads from the given file. Returns false in case of error. | |
| 173 // Only works with bitwise-serializeable types! | |
| 174 // If swap is true, assumes a big/little-endian swap is needed. | |
| 175 bool DeSerialize(bool swap, FILE *fp) { | |
| 176 if (!DeSerializeSize(swap, fp)) { | |
| 177 return false; | |
| 178 } | |
| 179 if (!tesseract::DeSerialize(fp, &empty_)) { | |
| 180 return false; | |
| 181 } | |
| 182 if (swap) { | |
| 183 ReverseN(&empty_, sizeof(empty_)); | |
| 184 } | |
| 185 int size = num_elements(); | |
| 186 if (!tesseract::DeSerialize(fp, &array_[0], size)) { | |
| 187 return false; | |
| 188 } | |
| 189 if (swap) { | |
| 190 for (int i = 0; i < size; ++i) { | |
| 191 ReverseN(&array_[i], sizeof(array_[i])); | |
| 192 } | |
| 193 } | |
| 194 return true; | |
| 195 } | |
| 196 | |
| 197 bool DeSerialize(TFile *fp) { | |
| 198 return DeSerializeSize(fp) && fp->DeSerialize(&empty_) && | |
| 199 fp->DeSerialize(&array_[0], num_elements()); | |
| 200 } | |
| 201 | |
| 202 // Writes to the given file. Returns false in case of error. | |
| 203 // Assumes a T::Serialize(FILE*) const function. | |
| 204 bool SerializeClasses(FILE *fp) const { | |
| 205 if (!SerializeSize(fp)) { | |
| 206 return false; | |
| 207 } | |
| 208 if (!empty_.Serialize(fp)) { | |
| 209 return false; | |
| 210 } | |
| 211 int size = num_elements(); | |
| 212 for (int i = 0; i < size; ++i) { | |
| 213 if (!array_[i].Serialize(fp)) { | |
| 214 return false; | |
| 215 } | |
| 216 } | |
| 217 return true; | |
| 218 } | |
| 219 | |
| 220 // Reads from the given file. Returns false in case of error. | |
| 221 // Assumes a T::DeSerialize(bool swap, FILE*) function. | |
| 222 // If swap is true, assumes a big/little-endian swap is needed. | |
| 223 bool DeSerializeClasses(bool swap, FILE *fp) { | |
| 224 if (!DeSerializeSize(swap, fp)) { | |
| 225 return false; | |
| 226 } | |
| 227 if (!empty_.DeSerialize(swap, fp)) { | |
| 228 return false; | |
| 229 } | |
| 230 int size = num_elements(); | |
| 231 for (int i = 0; i < size; ++i) { | |
| 232 if (!array_[i].DeSerialize(swap, fp)) { | |
| 233 return false; | |
| 234 } | |
| 235 } | |
| 236 return true; | |
| 237 } | |
| 238 | |
| 239 // Provide the dimensions of this rectangular matrix. | |
| 240 int dim1() const { | |
| 241 return dim1_; | |
| 242 } | |
| 243 int dim2() const { | |
| 244 return dim2_; | |
| 245 } | |
| 246 // Returns the number of elements in the array. | |
| 247 // Banded/triangular matrices may override. | |
| 248 virtual int num_elements() const { | |
| 249 return dim1_ * dim2_; | |
| 250 } | |
| 251 | |
| 252 // Expression to select a specific location in the matrix. The matrix is | |
| 253 // stored COLUMN-major, so the left-most index is the most significant. | |
| 254 // This allows [][] access to use indices in the same order as (,). | |
| 255 virtual int index(int column, int row) const { | |
| 256 return (column * dim2_ + row); | |
| 257 } | |
| 258 | |
| 259 // Put a list element into the matrix at a specific location. | |
| 260 void put(ICOORD pos, const T &thing) { | |
| 261 array_[this->index(pos.x(), pos.y())] = thing; | |
| 262 } | |
| 263 void put(int column, int row, const T &thing) { | |
| 264 array_[this->index(column, row)] = thing; | |
| 265 } | |
| 266 | |
| 267 // Get the item at a specified location from the matrix. | |
| 268 T get(ICOORD pos) const { | |
| 269 return array_[this->index(pos.x(), pos.y())]; | |
| 270 } | |
| 271 T get(int column, int row) const { | |
| 272 return array_[this->index(column, row)]; | |
| 273 } | |
| 274 // Return a reference to the element at the specified location. | |
| 275 const T &operator()(int column, int row) const { | |
| 276 return array_[this->index(column, row)]; | |
| 277 } | |
| 278 T &operator()(int column, int row) { | |
| 279 return array_[this->index(column, row)]; | |
| 280 } | |
| 281 // Allow access using array[column][row]. NOTE that the indices are | |
| 282 // in the same left-to-right order as the () indexing. | |
| 283 T *operator[](int column) { | |
| 284 return &array_[this->index(column, 0)]; | |
| 285 } | |
| 286 const T *operator[](int column) const { | |
| 287 return &array_[this->index(column, 0)]; | |
| 288 } | |
| 289 | |
| 290 // Adds addend to *this, element-by-element. | |
| 291 void operator+=(const GENERIC_2D_ARRAY<T> &addend) { | |
| 292 if (dim2_ == addend.dim2_) { | |
| 293 // Faster if equal size in the major dimension. | |
| 294 int size = std::min(num_elements(), addend.num_elements()); | |
| 295 for (int i = 0; i < size; ++i) { | |
| 296 array_[i] += addend.array_[i]; | |
| 297 } | |
| 298 } else { | |
| 299 for (int x = 0; x < dim1_; x++) { | |
| 300 for (int y = 0; y < dim2_; y++) { | |
| 301 (*this)(x, y) += addend(x, y); | |
| 302 } | |
| 303 } | |
| 304 } | |
| 305 } | |
| 306 // Subtracts minuend from *this, element-by-element. | |
| 307 void operator-=(const GENERIC_2D_ARRAY<T> &minuend) { | |
| 308 if (dim2_ == minuend.dim2_) { | |
| 309 // Faster if equal size in the major dimension. | |
| 310 int size = std::min(num_elements(), minuend.num_elements()); | |
| 311 for (int i = 0; i < size; ++i) { | |
| 312 array_[i] -= minuend.array_[i]; | |
| 313 } | |
| 314 } else { | |
| 315 for (int x = 0; x < dim1_; x++) { | |
| 316 for (int y = 0; y < dim2_; y++) { | |
| 317 (*this)(x, y) -= minuend(x, y); | |
| 318 } | |
| 319 } | |
| 320 } | |
| 321 } | |
| 322 // Adds addend to all elements. | |
| 323 void operator+=(const T &addend) { | |
| 324 int size = num_elements(); | |
| 325 for (int i = 0; i < size; ++i) { | |
| 326 array_[i] += addend; | |
| 327 } | |
| 328 } | |
| 329 // Multiplies *this by factor, element-by-element. | |
| 330 void operator*=(const T &factor) { | |
| 331 int size = num_elements(); | |
| 332 for (int i = 0; i < size; ++i) { | |
| 333 array_[i] *= factor; | |
| 334 } | |
| 335 } | |
| 336 // Clips *this to the given range. | |
| 337 void Clip(const T &rangemin, const T &rangemax) { | |
| 338 int size = num_elements(); | |
| 339 for (int i = 0; i < size; ++i) { | |
| 340 array_[i] = ClipToRange(array_[i], rangemin, rangemax); | |
| 341 } | |
| 342 } | |
| 343 // Returns true if all elements of *this are within the given range. | |
| 344 // Only uses operator< | |
| 345 bool WithinBounds(const T &rangemin, const T &rangemax) const { | |
| 346 int size = num_elements(); | |
| 347 for (int i = 0; i < size; ++i) { | |
| 348 const T &value = array_[i]; | |
| 349 if (value < rangemin || rangemax < value) { | |
| 350 return false; | |
| 351 } | |
| 352 } | |
| 353 return true; | |
| 354 } | |
| 355 // Normalize the whole array. | |
| 356 double Normalize() { | |
| 357 int size = num_elements(); | |
| 358 if (size <= 0) { | |
| 359 return 0.0; | |
| 360 } | |
| 361 // Compute the mean. | |
| 362 double mean = 0.0; | |
| 363 for (int i = 0; i < size; ++i) { | |
| 364 mean += array_[i]; | |
| 365 } | |
| 366 mean /= size; | |
| 367 // Subtract the mean and compute the standard deviation. | |
| 368 double sd = 0.0; | |
| 369 for (int i = 0; i < size; ++i) { | |
| 370 double normed = array_[i] - mean; | |
| 371 array_[i] = normed; | |
| 372 sd += normed * normed; | |
| 373 } | |
| 374 sd = sqrt(sd / size); | |
| 375 if (sd > 0.0) { | |
| 376 // Divide by the sd. | |
| 377 for (int i = 0; i < size; ++i) { | |
| 378 array_[i] /= sd; | |
| 379 } | |
| 380 } | |
| 381 return sd; | |
| 382 } | |
| 383 | |
| 384 // Returns the maximum value of the array. | |
| 385 T Max() const { | |
| 386 int size = num_elements(); | |
| 387 if (size <= 0) { | |
| 388 return empty_; | |
| 389 } | |
| 390 // Compute the max. | |
| 391 T max_value = array_[0]; | |
| 392 for (int i = 1; i < size; ++i) { | |
| 393 const T &value = array_[i]; | |
| 394 if (value > max_value) { | |
| 395 max_value = value; | |
| 396 } | |
| 397 } | |
| 398 return max_value; | |
| 399 } | |
| 400 | |
| 401 // Returns the maximum absolute value of the array. | |
| 402 T MaxAbs() const { | |
| 403 int size = num_elements(); | |
| 404 if (size <= 0) { | |
| 405 return empty_; | |
| 406 } | |
| 407 // Compute the max. | |
| 408 T max_abs = static_cast<T>(0); | |
| 409 for (int i = 0; i < size; ++i) { | |
| 410 T value = static_cast<T>(fabs(array_[i])); | |
| 411 if (value > max_abs) { | |
| 412 max_abs = value; | |
| 413 } | |
| 414 } | |
| 415 return max_abs; | |
| 416 } | |
| 417 | |
| 418 // Accumulates the element-wise sums of squares of src into *this. | |
| 419 void SumSquares(const GENERIC_2D_ARRAY<T> &src, const T &decay_factor) { | |
| 420 T update_factor = 1 - decay_factor; | |
| 421 int size = num_elements(); | |
| 422 for (int i = 0; i < size; ++i) { | |
| 423 array_[i] = array_[i] * decay_factor + update_factor * src.array_[i] * src.array_[i]; | |
| 424 } | |
| 425 } | |
| 426 | |
| 427 // Scales each element using the adam algorithm, ie array_[i] by | |
| 428 // sqrt(sqsum[i] + epsilon)). | |
| 429 void AdamUpdate(const GENERIC_2D_ARRAY<T> &sum, const GENERIC_2D_ARRAY<T> &sqsum, | |
| 430 const T &epsilon) { | |
| 431 int size = num_elements(); | |
| 432 for (int i = 0; i < size; ++i) { | |
| 433 array_[i] += sum.array_[i] / (sqrt(sqsum.array_[i]) + epsilon); | |
| 434 } | |
| 435 } | |
| 436 | |
| 437 void AssertFinite() const { | |
| 438 int size = num_elements(); | |
| 439 for (int i = 0; i < size; ++i) { | |
| 440 ASSERT_HOST(isfinite(array_[i])); | |
| 441 } | |
| 442 } | |
| 443 | |
| 444 // REGARDLESS OF THE CURRENT DIMENSIONS, treats the data as a | |
| 445 // num_dims-dimensional array/tensor with dimensions given by dims, (ordered | |
| 446 // from most significant to least significant, the same as standard C arrays) | |
| 447 // and moves src_dim to dest_dim, with the initial dest_dim and any dimensions | |
| 448 // in between shifted towards the hole left by src_dim. Example: | |
| 449 // Current data content: array_=[0, 1, 2, ....119] | |
| 450 // perhaps *this may be of dim[40, 3], with values [[0, 1, 2][3, 4, 5]... | |
| 451 // but the current dimensions are irrelevant. | |
| 452 // num_dims = 4, dims=[5, 4, 3, 2] | |
| 453 // src_dim=3, dest_dim=1 | |
| 454 // tensor=[[[[0, 1][2, 3][4, 5]] | |
| 455 // [[6, 7][8, 9][10, 11]] | |
| 456 // [[12, 13][14, 15][16, 17]] | |
| 457 // [[18, 19][20, 21][22, 23]]] | |
| 458 // [[[24, 25]... | |
| 459 // output dims =[5, 2, 4, 3] | |
| 460 // output tensor=[[[[0, 2, 4][6, 8, 10][12, 14, 16][18, 20, 22]] | |
| 461 // [[1, 3, 5][7, 9, 11][13, 15, 17][19, 21, 23]]] | |
| 462 // [[[24, 26, 28]... | |
| 463 // which is stored in the array_ as: | |
| 464 // [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 1, 3, 5, 7, 9, 11, 13...] | |
| 465 // NOTE: the 2 stored matrix dimensions are simply copied from *this. To | |
| 466 // change the dimensions after the transpose, use ResizeNoInit. | |
| 467 // Higher dimensions above 2 are strictly the responsibility of the caller. | |
| 468 void RotatingTranspose(const int *dims, int num_dims, int src_dim, int dest_dim, | |
| 469 GENERIC_2D_ARRAY<T> *result) const { | |
| 470 int max_d = std::max(src_dim, dest_dim); | |
| 471 int min_d = std::min(src_dim, dest_dim); | |
| 472 // In a tensor of shape [d0, d1... min_d, ... max_d, ... dn-2, dn-1], the | |
| 473 // ends outside of min_d and max_d are unaffected, with [max_d +1, dn-1] | |
| 474 // being contiguous blocks of data that will move together, and | |
| 475 // [d0, min_d -1] being replicas of the transpose operation. | |
| 476 // num_replicas represents the large dimensions unchanged by the operation. | |
| 477 // move_size represents the small dimensions unchanged by the operation. | |
| 478 // src_step represents the stride in the src between each adjacent group | |
| 479 // in the destination. | |
| 480 int num_replicas = 1, move_size = 1, src_step = 1; | |
| 481 for (int d = 0; d < min_d; ++d) { | |
| 482 num_replicas *= dims[d]; | |
| 483 } | |
| 484 for (int d = max_d + 1; d < num_dims; ++d) { | |
| 485 move_size *= dims[d]; | |
| 486 } | |
| 487 for (int d = src_dim + 1; d < num_dims; ++d) { | |
| 488 src_step *= dims[d]; | |
| 489 } | |
| 490 if (src_dim > dest_dim) { | |
| 491 src_step *= dims[src_dim]; | |
| 492 } | |
| 493 // wrap_size is the size of a single replica, being the amount that is | |
| 494 // handled num_replicas times. | |
| 495 int wrap_size = move_size; | |
| 496 for (int d = min_d; d <= max_d; ++d) { | |
| 497 wrap_size *= dims[d]; | |
| 498 } | |
| 499 result->ResizeNoInit(dim1_, dim2_); | |
| 500 result->empty_ = empty_; | |
| 501 const T *src = array_; | |
| 502 T *dest = result->array_; | |
| 503 for (int replica = 0; replica < num_replicas; ++replica) { | |
| 504 for (int start = 0; start < src_step; start += move_size) { | |
| 505 for (int pos = start; pos < wrap_size; pos += src_step) { | |
| 506 memcpy(dest, src + pos, sizeof(*dest) * move_size); | |
| 507 dest += move_size; | |
| 508 } | |
| 509 } | |
| 510 src += wrap_size; | |
| 511 } | |
| 512 } | |
| 513 | |
| 514 // Delete objects pointed to by array_[i]. | |
| 515 void delete_matrix_pointers() { | |
| 516 int size = num_elements(); | |
| 517 for (int i = 0; i < size; ++i) { | |
| 518 T matrix_cell = array_[i]; | |
| 519 if (matrix_cell != empty_) { | |
| 520 delete matrix_cell; | |
| 521 } | |
| 522 } | |
| 523 } | |
| 524 | |
| 525 protected: | |
| 526 // Factored helper to serialize the size. | |
| 527 bool SerializeSize(FILE *fp) const { | |
| 528 uint32_t size = dim1_; | |
| 529 if (!tesseract::Serialize(fp, &size)) { | |
| 530 return false; | |
| 531 } | |
| 532 size = dim2_; | |
| 533 return tesseract::Serialize(fp, &size); | |
| 534 } | |
| 535 bool SerializeSize(TFile *fp) const { | |
| 536 uint32_t size = dim1_; | |
| 537 if (!fp->Serialize(&size)) { | |
| 538 return false; | |
| 539 } | |
| 540 size = dim2_; | |
| 541 return fp->Serialize(&size); | |
| 542 } | |
| 543 // Factored helper to deserialize the size. | |
| 544 // If swap is true, assumes a big/little-endian swap is needed. | |
| 545 bool DeSerializeSize(bool swap, FILE *fp) { | |
| 546 uint32_t size1, size2; | |
| 547 if (!tesseract::DeSerialize(fp, &size1)) { | |
| 548 return false; | |
| 549 } | |
| 550 if (!tesseract::DeSerialize(fp, &size2)) { | |
| 551 return false; | |
| 552 } | |
| 553 if (swap) { | |
| 554 ReverseN(&size1, sizeof(size1)); | |
| 555 ReverseN(&size2, sizeof(size2)); | |
| 556 } | |
| 557 // Arbitrarily limit the number of elements to protect against bad data. | |
| 558 if (size1 > UINT16_MAX) { | |
| 559 return false; | |
| 560 } | |
| 561 if (size2 > UINT16_MAX) { | |
| 562 return false; | |
| 563 } | |
| 564 Resize(size1, size2, empty_); | |
| 565 return true; | |
| 566 } | |
| 567 bool DeSerializeSize(TFile *fp) { | |
| 568 int32_t size1, size2; | |
| 569 if (!fp->DeSerialize(&size1)) { | |
| 570 return false; | |
| 571 } | |
| 572 if (!fp->DeSerialize(&size2)) { | |
| 573 return false; | |
| 574 } | |
| 575 // Arbitrarily limit the number of elements to protect against bad data. | |
| 576 if (size1 > UINT16_MAX) { | |
| 577 return false; | |
| 578 } | |
| 579 if (size2 > UINT16_MAX) { | |
| 580 return false; | |
| 581 } | |
| 582 Resize(size1, size2, empty_); | |
| 583 return true; | |
| 584 } | |
| 585 | |
| 586 T *array_; | |
| 587 T empty_; // The unused cell. | |
| 588 int dim1_; // Size of the 1st dimension in indexing functions. | |
| 589 int dim2_; // Size of the 2nd dimension in indexing functions. | |
| 590 // The total size to which the array can be expanded before a realloc is | |
| 591 // needed. If Resize is used, memory is retained so it can be re-expanded | |
| 592 // without a further alloc, and this stores the allocated size. | |
| 593 int size_allocated_; | |
| 594 }; | |
| 595 | |
| 596 // A generic class to store a banded triangular matrix with entries of type T. | |
| 597 // In this array, the nominally square matrix is dim1_ x dim1_, and dim2_ is | |
| 598 // the number of bands, INCLUDING the diagonal. The storage is thus of size | |
| 599 // dim1_ * dim2_ and index(col, row) = col * dim2_ + row - col, and an | |
| 600 // assert will fail if row < col or row - col >= dim2. | |
| 601 template <class T> | |
| 602 class BandTriMatrix : public GENERIC_2D_ARRAY<T> { | |
| 603 public: | |
| 604 // Allocate a piece of memory to hold a 2d-array of the given dimension. | |
| 605 // Initialize all the elements of the array to empty instead of assuming | |
| 606 // that a default constructor can be used. | |
| 607 BandTriMatrix(int dim1, int dim2, const T &empty) : GENERIC_2D_ARRAY<T>(dim1, dim2, empty) {} | |
| 608 // The default destructor will do. | |
| 609 | |
| 610 // Provide the dimensions of this matrix. | |
| 611 // dimension is the size of the nominally square matrix. | |
| 612 int dimension() const { | |
| 613 return this->dim1_; | |
| 614 } | |
| 615 // bandwidth is the number of bands in the matrix, INCLUDING the diagonal. | |
| 616 int bandwidth() const { | |
| 617 return this->dim2_; | |
| 618 } | |
| 619 | |
| 620 // Expression to select a specific location in the matrix. The matrix is | |
| 621 // stored COLUMN-major, so the left-most index is the most significant. | |
| 622 // This allows [][] access to use indices in the same order as (,). | |
| 623 int index(int column, int row) const override { | |
| 624 ASSERT_HOST(row >= column); | |
| 625 ASSERT_HOST(row - column < this->dim2_); | |
| 626 return column * this->dim2_ + row - column; | |
| 627 } | |
| 628 | |
| 629 // Appends array2 corner-to-corner to *this, making an array of dimension | |
| 630 // equal to the sum of the individual dimensions. | |
| 631 // array2 is not destroyed, but is left empty, as all elements are moved | |
| 632 // to *this. | |
| 633 void AttachOnCorner(BandTriMatrix<T> *array2) { | |
| 634 int new_dim1 = this->dim1_ + array2->dim1_; | |
| 635 int new_dim2 = std::max(this->dim2_, array2->dim2_); | |
| 636 T *new_array = new T[new_dim1 * new_dim2]; | |
| 637 for (int col = 0; col < new_dim1; ++col) { | |
| 638 for (int j = 0; j < new_dim2; ++j) { | |
| 639 int new_index = col * new_dim2 + j; | |
| 640 if (col < this->dim1_ && j < this->dim2_) { | |
| 641 new_array[new_index] = this->get(col, col + j); | |
| 642 } else if (col >= this->dim1_ && j < array2->dim2_) { | |
| 643 new_array[new_index] = array2->get(col - this->dim1_, col - this->dim1_ + j); | |
| 644 array2->put(col - this->dim1_, col - this->dim1_ + j, nullptr); | |
| 645 } else { | |
| 646 new_array[new_index] = this->empty_; | |
| 647 } | |
| 648 } | |
| 649 } | |
| 650 delete[] this->array_; | |
| 651 this->array_ = new_array; | |
| 652 this->dim1_ = new_dim1; | |
| 653 this->dim2_ = new_dim2; | |
| 654 } | |
| 655 }; | |
| 656 | |
| 657 class MATRIX : public BandTriMatrix<BLOB_CHOICE_LIST *> { | |
| 658 public: | |
| 659 MATRIX(int dimension, int bandwidth) | |
| 660 : BandTriMatrix<BLOB_CHOICE_LIST *>(dimension, bandwidth, NOT_CLASSIFIED) {} | |
| 661 | |
| 662 ~MATRIX() override; | |
| 663 | |
| 664 // Returns true if there are any real classification results. | |
| 665 bool Classified(int col, int row, int wildcard_id) const; | |
| 666 | |
| 667 // Expands the existing matrix in-place to make the band wider, without | |
| 668 // losing any existing data. | |
| 669 void IncreaseBandSize(int bandwidth); | |
| 670 | |
| 671 // Returns a bigger MATRIX with a new column and row in the matrix in order | |
| 672 // to split the blob at the given (ind,ind) diagonal location. | |
| 673 // Entries are relocated to the new MATRIX using the transformation defined | |
| 674 // by MATRIX_COORD::MapForSplit. | |
| 675 // Transfers the pointer data to the new MATRIX and deletes *this. | |
| 676 MATRIX *ConsumeAndMakeBigger(int ind); | |
| 677 | |
| 678 // Makes and returns a deep copy of *this, including all the BLOB_CHOICEs | |
| 679 // on the lists, but not any LanguageModelState that may be attached to the | |
| 680 // BLOB_CHOICEs. | |
| 681 MATRIX *DeepCopy() const; | |
| 682 | |
| 683 // Print a shortened version of the contents of the matrix. | |
| 684 void print(const UNICHARSET &unicharset) const; | |
| 685 }; | |
| 686 | |
| 687 struct MATRIX_COORD { | |
| 688 static void Delete(void *arg) { | |
| 689 auto *c = static_cast<MATRIX_COORD *>(arg); | |
| 690 delete c; | |
| 691 } | |
| 692 // Default constructor required by GenericHeap. | |
| 693 MATRIX_COORD() : col(0), row(0) {} | |
| 694 MATRIX_COORD(int c, int r) : col(c), row(r) {} | |
| 695 ~MATRIX_COORD() = default; | |
| 696 | |
| 697 bool Valid(const MATRIX &m) const { | |
| 698 return 0 <= col && col < m.dimension() && col <= row && row < col + m.bandwidth() && | |
| 699 row < m.dimension(); | |
| 700 } | |
| 701 | |
| 702 // Remaps the col,row pair to split the blob at the given (ind,ind) diagonal | |
| 703 // location. | |
| 704 // Entries at (i,j) for i in [0,ind] and j in [ind,dim) move to (i,j+1), | |
| 705 // making a new row at ind. | |
| 706 // Entries at (i,j) for i in [ind+1,dim) and j in [i,dim) move to (i+i,j+1), | |
| 707 // making a new column at ind+1. | |
| 708 void MapForSplit(int ind) { | |
| 709 ASSERT_HOST(row >= col); | |
| 710 if (col > ind) { | |
| 711 ++col; | |
| 712 } | |
| 713 if (row >= ind) { | |
| 714 ++row; | |
| 715 } | |
| 716 ASSERT_HOST(row >= col); | |
| 717 } | |
| 718 | |
| 719 int col; | |
| 720 int row; | |
| 721 }; | |
| 722 | |
| 723 // The MatrixCoordPair contains a MATRIX_COORD and its priority. | |
| 724 using MatrixCoordPair = KDPairInc<float, MATRIX_COORD>; | |
| 725 | |
| 726 } // namespace tesseract | |
| 727 | |
| 728 #endif // TESSERACT_CCSTRUCT_MATRIX_H_ |
