Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/arch/intsimdmatrixsse.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /////////////////////////////////////////////////////////////////////// | |
| 2 // File: intsindmatrixsse.cpp | |
| 3 // Description: SSE implementation of 8-bit int SIMD matrix multiply. | |
| 4 // Author: Ray Smith | |
| 5 // | |
| 6 // (C) Copyright 2017, Google Inc. | |
| 7 // Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 // you may not use this file except in compliance with the License. | |
| 9 // You may obtain a copy of the License at | |
| 10 // http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 // Unless required by applicable law or agreed to in writing, software | |
| 12 // distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 // See the License for the specific language governing permissions and | |
| 15 // limitations under the License. | |
| 16 /////////////////////////////////////////////////////////////////////// | |
| 17 | |
| 18 #if !defined(__SSE4_1__) | |
| 19 # if defined(__i686__) || defined(__x86_64__) | |
| 20 # error Implementation only for SSE 4.1 capable architectures | |
| 21 # endif | |
| 22 #else | |
| 23 | |
| 24 # include "intsimdmatrix.h" | |
| 25 | |
| 26 # include <emmintrin.h> | |
| 27 # include <smmintrin.h> | |
| 28 # include <cstdint> | |
| 29 | |
| 30 namespace tesseract { | |
| 31 | |
| 32 // Computes and returns the dot product of the n-vectors u and v. | |
| 33 // Uses Intel SSE intrinsics to access the SIMD instruction set. | |
| 34 static int32_t IntDotProductSSE(const int8_t *u, const int8_t *v, int n) { | |
| 35 int max_offset = n - 8; | |
| 36 int offset = 0; | |
| 37 // Accumulate a set of 4 32-bit sums in sum, by loading 8 pairs of 8-bit | |
| 38 // values, extending to 16 bit, multiplying to make 32 bit results. | |
| 39 int32_t result = 0; | |
| 40 if (offset <= max_offset) { | |
| 41 offset = 8; | |
| 42 __m128i packed1 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(u)); | |
| 43 __m128i packed2 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(v)); | |
| 44 __m128i sum = _mm_cvtepi8_epi16(packed1); | |
| 45 packed2 = _mm_cvtepi8_epi16(packed2); | |
| 46 // The magic _mm_add_epi16 is perfect here. It multiplies 8 pairs of 16 bit | |
| 47 // ints to make 32 bit results, which are then horizontally added in pairs | |
| 48 // to make 4 32 bit results that still fit in a 128 bit register. | |
| 49 sum = _mm_madd_epi16(sum, packed2); | |
| 50 while (offset <= max_offset) { | |
| 51 packed1 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(u + offset)); | |
| 52 packed2 = _mm_loadl_epi64(reinterpret_cast<const __m128i *>(v + offset)); | |
| 53 offset += 8; | |
| 54 packed1 = _mm_cvtepi8_epi16(packed1); | |
| 55 packed2 = _mm_cvtepi8_epi16(packed2); | |
| 56 packed1 = _mm_madd_epi16(packed1, packed2); | |
| 57 sum = _mm_add_epi32(sum, packed1); | |
| 58 } | |
| 59 // Sum the 4 packed 32 bit sums and extract the low result. | |
| 60 sum = _mm_hadd_epi32(sum, sum); | |
| 61 sum = _mm_hadd_epi32(sum, sum); | |
| 62 result = _mm_cvtsi128_si32(sum); | |
| 63 } | |
| 64 while (offset < n) { | |
| 65 result += u[offset] * v[offset]; | |
| 66 ++offset; | |
| 67 } | |
| 68 return result; | |
| 69 } | |
| 70 | |
| 71 // Computes part of matrix.vector v = Wu. Computes 1 result. | |
| 72 static void PartialMatrixDotVector1(const int8_t *wi, const TFloat *scales, const int8_t *u, | |
| 73 int num_in, TFloat *v) { | |
| 74 TFloat total = IntDotProductSSE(u, wi, num_in); | |
| 75 // Add in the bias and correct for integer values. | |
| 76 *v = (total + wi[num_in] * INT8_MAX) * *scales; | |
| 77 } | |
| 78 | |
| 79 static void matrixDotVector(int dim1, int dim2, const int8_t *wi, const TFloat *scales, | |
| 80 const int8_t *u, TFloat *v) { | |
| 81 const int num_out = dim1; | |
| 82 const int num_in = dim2 - 1; | |
| 83 int output = 0; | |
| 84 | |
| 85 for (; output < num_out; output++) { | |
| 86 PartialMatrixDotVector1(wi, scales, u, num_in, v); | |
| 87 wi += dim2; | |
| 88 scales++; | |
| 89 v++; | |
| 90 } | |
| 91 } | |
| 92 | |
| 93 const IntSimdMatrix IntSimdMatrix::intSimdMatrixSSE = { | |
| 94 matrixDotVector, | |
| 95 // Number of 32 bit outputs held in each register. | |
| 96 1, | |
| 97 // Maximum number of registers that we will use to hold outputs. | |
| 98 1, | |
| 99 // Number of 8 bit inputs in the inputs register. | |
| 100 1, | |
| 101 // Number of inputs in each weight group. | |
| 102 1 | |
| 103 }; | |
| 104 | |
| 105 } // namespace tesseract. | |
| 106 | |
| 107 #endif |
