Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/arch/intsimdmatrix.cpp @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /////////////////////////////////////////////////////////////////////// | |
| 2 // File: intsimdmatrix.cpp | |
| 3 // Description: Base class for 8-bit int SIMD matrix multipliers. | |
| 4 // Author: Ray Smith | |
| 5 // | |
| 6 // (C) Copyright 2017, Google Inc. | |
| 7 // Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 // you may not use this file except in compliance with the License. | |
| 9 // You may obtain a copy of the License at | |
| 10 // http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 // Unless required by applicable law or agreed to in writing, software | |
| 12 // distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 // See the License for the specific language governing permissions and | |
| 15 // limitations under the License. | |
| 16 /////////////////////////////////////////////////////////////////////// | |
| 17 | |
| 18 #include "intsimdmatrix.h" | |
| 19 #include "matrix.h" // for GENERIC_2D_ARRAY | |
| 20 #include "simddetect.h" // for SIMDDetect | |
| 21 | |
| 22 namespace tesseract { | |
| 23 | |
| 24 const IntSimdMatrix *IntSimdMatrix::intSimdMatrix = nullptr; | |
| 25 | |
| 26 // Computes a reshaped copy of the weight matrix w. | |
| 27 void IntSimdMatrix::Init(const GENERIC_2D_ARRAY<int8_t> &w, std::vector<int8_t> &shaped_w, | |
| 28 int32_t &rounded_num_out) const { | |
| 29 const int num_out = w.dim1(); | |
| 30 const int num_in = w.dim2() - 1; | |
| 31 // The rounded-up sizes of the reshaped weight matrix, excluding biases. | |
| 32 int rounded_num_in = Roundup(num_in, num_inputs_per_group_); | |
| 33 rounded_num_out = RoundOutputs(num_out); | |
| 34 // Add the bias and compute the required size. | |
| 35 shaped_w.resize((rounded_num_in + 1) * rounded_num_out, 0); | |
| 36 int shaped_index = 0; | |
| 37 int output = 0; | |
| 38 // Each number of registers needs a different format! Iterates over the | |
| 39 // different numbers of registers (each a power of 2). | |
| 40 for (int num_registers = max_output_registers_; num_registers >= 1; num_registers /= 2) { | |
| 41 // The number of outputs that we will generate with this many registers. | |
| 42 int num_outputs_per_register_set = num_registers * num_outputs_per_register_; | |
| 43 // Use the max number of registers until we have to go fewer. | |
| 44 while (output + num_outputs_per_register_set <= rounded_num_out) { | |
| 45 // Accumulating outputs in registers saves iterating over the inputs, so | |
| 46 // we only have to do it once per output register set. | |
| 47 for (int input = 0; input < num_in; input += num_inputs_per_group_) { | |
| 48 // Iterate over the number of outputs in a register set. | |
| 49 for (int j = 0; j < num_outputs_per_register_set; ++j) { | |
| 50 // Inner-most loop corresponds to the number of inputs in an input | |
| 51 // group. | |
| 52 for (int i = 0; i < num_inputs_per_group_; ++i) { | |
| 53 int8_t weight = 0; | |
| 54 if (output + j < num_out && input + i < num_in) { | |
| 55 weight = w(output + j, input + i); | |
| 56 } | |
| 57 shaped_w[shaped_index++] = weight; | |
| 58 } | |
| 59 } | |
| 60 } | |
| 61 // Append the bias weights for the register set. | |
| 62 for (int j = 0; j < num_outputs_per_register_set; ++j) { | |
| 63 int8_t weight = 0; | |
| 64 if (output + j < num_out) { | |
| 65 weight = w(output + j, num_in); | |
| 66 } | |
| 67 shaped_w[shaped_index++] = weight; | |
| 68 } | |
| 69 output += num_outputs_per_register_set; | |
| 70 } | |
| 71 } | |
| 72 } | |
| 73 | |
| 74 // Computes matrix.vector v = Wu. | |
| 75 // u is of size W.dim2() - 1 and the output v is of size W.dim1(). | |
| 76 // u is imagined to have an extra element at the end with value 1, to | |
| 77 // implement the bias, but it doesn't actually have it. | |
| 78 void IntSimdMatrix::MatrixDotVector(const GENERIC_2D_ARRAY<int8_t> &w, | |
| 79 const std::vector<TFloat> &scales, const int8_t *u, TFloat *v) { | |
| 80 int num_out = w.dim1(); | |
| 81 int num_in = w.dim2() - 1; | |
| 82 // Base implementation. | |
| 83 int i; | |
| 84 // Break up into chunks of four to facilitate vectorization | |
| 85 for (i = 0; i < (num_out / 4) * 4; i += 4) { | |
| 86 const int8_t *wi0 = w[i + 0]; | |
| 87 const int8_t *wi1 = w[i + 1]; | |
| 88 const int8_t *wi2 = w[i + 2]; | |
| 89 const int8_t *wi3 = w[i + 3]; | |
| 90 int total0 = 0; | |
| 91 int total1 = 0; | |
| 92 int total2 = 0; | |
| 93 int total3 = 0; | |
| 94 for (int j = 0; j < num_in; ++j) { | |
| 95 total0 += wi0[j] * u[j]; | |
| 96 total1 += wi1[j] * u[j]; | |
| 97 total2 += wi2[j] * u[j]; | |
| 98 total3 += wi3[j] * u[j]; | |
| 99 } | |
| 100 // Add in the bias and correct for integer values. | |
| 101 v[i + 0] = (total0 + wi0[num_in] * INT8_MAX) * scales[i + 0]; | |
| 102 v[i + 1] = (total1 + wi1[num_in] * INT8_MAX) * scales[i + 1]; | |
| 103 v[i + 2] = (total2 + wi2[num_in] * INT8_MAX) * scales[i + 2]; | |
| 104 v[i + 3] = (total3 + wi3[num_in] * INT8_MAX) * scales[i + 3]; | |
| 105 } | |
| 106 | |
| 107 // Capture the remainder mod four | |
| 108 for (; i < num_out; ++i) { | |
| 109 const int8_t *wi = w[i]; | |
| 110 int total = 0; | |
| 111 for (int j = 0; j < num_in; ++j) { | |
| 112 total += wi[j] * u[j]; | |
| 113 } | |
| 114 // Add in the bias and correct for integer values. | |
| 115 v[i] = (total + wi[num_in] * INT8_MAX) * scales[i]; | |
| 116 } | |
| 117 } | |
| 118 | |
| 119 } // namespace tesseract |
