Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jquant2.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jquant2.c | |
| 3 * | |
| 4 * Copyright (C) 1991-1996, Thomas G. Lane. | |
| 5 * Modified 2011-2020 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains 2-pass color quantization (color mapping) routines. | |
| 10 * These routines provide selection of a custom color map for an image, | |
| 11 * followed by mapping of the image to that color map, with optional | |
| 12 * Floyd-Steinberg dithering. | |
| 13 * It is also possible to use just the second pass to map to an arbitrary | |
| 14 * externally-given color map. | |
| 15 * | |
| 16 * Note: ordered dithering is not supported, since there isn't any fast | |
| 17 * way to compute intercolor distances; it's unclear that ordered dither's | |
| 18 * fundamental assumptions even hold with an irregularly spaced color map. | |
| 19 */ | |
| 20 | |
| 21 #define JPEG_INTERNALS | |
| 22 #include "jinclude.h" | |
| 23 #include "jpeglib.h" | |
| 24 | |
| 25 #ifdef QUANT_2PASS_SUPPORTED | |
| 26 | |
| 27 | |
| 28 /* | |
| 29 * This module implements the well-known Heckbert paradigm for color | |
| 30 * quantization. Most of the ideas used here can be traced back to | |
| 31 * Heckbert's seminal paper | |
| 32 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", | |
| 33 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. | |
| 34 * | |
| 35 * In the first pass over the image, we accumulate a histogram showing the | |
| 36 * usage count of each possible color. To keep the histogram to a reasonable | |
| 37 * size, we reduce the precision of the input; typical practice is to retain | |
| 38 * 5 or 6 bits per color, so that 8 or 4 different input values are counted | |
| 39 * in the same histogram cell. | |
| 40 * | |
| 41 * Next, the color-selection step begins with a box representing the whole | |
| 42 * color space, and repeatedly splits the "largest" remaining box until we | |
| 43 * have as many boxes as desired colors. Then the mean color in each | |
| 44 * remaining box becomes one of the possible output colors. | |
| 45 * | |
| 46 * The second pass over the image maps each input pixel to the closest output | |
| 47 * color (optionally after applying a Floyd-Steinberg dithering correction). | |
| 48 * This mapping is logically trivial, but making it go fast enough requires | |
| 49 * considerable care. | |
| 50 * | |
| 51 * Heckbert-style quantizers vary a good deal in their policies for choosing | |
| 52 * the "largest" box and deciding where to cut it. The particular policies | |
| 53 * used here have proved out well in experimental comparisons, but better ones | |
| 54 * may yet be found. | |
| 55 * | |
| 56 * In earlier versions of the IJG code, this module quantized in YCbCr color | |
| 57 * space, processing the raw upsampled data without a color conversion step. | |
| 58 * This allowed the color conversion math to be done only once per colormap | |
| 59 * entry, not once per pixel. However, that optimization precluded other | |
| 60 * useful optimizations (such as merging color conversion with upsampling) | |
| 61 * and it also interfered with desired capabilities such as quantizing to an | |
| 62 * externally-supplied colormap. We have therefore abandoned that approach. | |
| 63 * The present code works in the post-conversion color space, typically RGB. | |
| 64 * | |
| 65 * To improve the visual quality of the results, we actually work in scaled | |
| 66 * RGB space, giving G distances more weight than R, and R in turn more than | |
| 67 * B. To do everything in integer math, we must use integer scale factors. | |
| 68 * The 2/3/1 scale factors used here correspond loosely to the relative | |
| 69 * weights of the colors in the NTSC grayscale equation. | |
| 70 * If you want to use this code to quantize a non-RGB color space, you'll | |
| 71 * probably need to change these scale factors. | |
| 72 */ | |
| 73 | |
| 74 #define R_SCALE 2 /* scale R distances by this much */ | |
| 75 #define G_SCALE 3 /* scale G distances by this much */ | |
| 76 #define B_SCALE 1 /* and B by this much */ | |
| 77 | |
| 78 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined | |
| 79 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B | |
| 80 * and B,G,R orders. If you define some other weird order in jmorecfg.h, | |
| 81 * you'll get compile errors until you extend this logic. In that case | |
| 82 * you'll probably want to tweak the histogram sizes too. | |
| 83 */ | |
| 84 | |
| 85 #if RGB_RED == 0 | |
| 86 #define C0_SCALE R_SCALE | |
| 87 #endif | |
| 88 #if RGB_BLUE == 0 | |
| 89 #define C0_SCALE B_SCALE | |
| 90 #endif | |
| 91 #if RGB_GREEN == 1 | |
| 92 #define C1_SCALE G_SCALE | |
| 93 #endif | |
| 94 #if RGB_RED == 2 | |
| 95 #define C2_SCALE R_SCALE | |
| 96 #endif | |
| 97 #if RGB_BLUE == 2 | |
| 98 #define C2_SCALE B_SCALE | |
| 99 #endif | |
| 100 | |
| 101 | |
| 102 /* | |
| 103 * First we have the histogram data structure and routines for creating it. | |
| 104 * | |
| 105 * The number of bits of precision can be adjusted by changing these symbols. | |
| 106 * We recommend keeping 6 bits for G and 5 each for R and B. | |
| 107 * If you have plenty of memory and cycles, 6 bits all around gives marginally | |
| 108 * better results; if you are short of memory, 5 bits all around will save | |
| 109 * some space but degrade the results. | |
| 110 * To maintain a fully accurate histogram, we'd need to allocate a "long" | |
| 111 * (preferably unsigned long) for each cell. In practice this is overkill; | |
| 112 * we can get by with 16 bits per cell. Few of the cell counts will overflow, | |
| 113 * and clamping those that do overflow to the maximum value will give close- | |
| 114 * enough results. This reduces the recommended histogram size from 256Kb | |
| 115 * to 128Kb, which is a useful savings on PC-class machines. | |
| 116 * (In the second pass the histogram space is re-used for pixel mapping data; | |
| 117 * in that capacity, each cell must be able to store zero to the number of | |
| 118 * desired colors. 16 bits/cell is plenty for that too.) | |
| 119 * Since the JPEG code is intended to run in small memory model on 80x86 | |
| 120 * machines, we can't just allocate the histogram in one chunk. Instead | |
| 121 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each | |
| 122 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and | |
| 123 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that | |
| 124 * on 80x86 machines, the pointer row is in near memory but the actual | |
| 125 * arrays are in far memory (same arrangement as we use for image arrays). | |
| 126 */ | |
| 127 | |
| 128 #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ | |
| 129 | |
| 130 /* These will do the right thing for either R,G,B or B,G,R color order, | |
| 131 * but you may not like the results for other color orders. | |
| 132 */ | |
| 133 #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ | |
| 134 #define HIST_C1_BITS 6 /* bits of precision in G histogram */ | |
| 135 #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ | |
| 136 | |
| 137 /* Number of elements along histogram axes. */ | |
| 138 #define HIST_C0_ELEMS (1<<HIST_C0_BITS) | |
| 139 #define HIST_C1_ELEMS (1<<HIST_C1_BITS) | |
| 140 #define HIST_C2_ELEMS (1<<HIST_C2_BITS) | |
| 141 | |
| 142 /* These are the amounts to shift an input value to get a histogram index. */ | |
| 143 #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) | |
| 144 #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) | |
| 145 #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) | |
| 146 | |
| 147 | |
| 148 typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ | |
| 149 | |
| 150 typedef histcell FAR * histptr; /* for pointers to histogram cells */ | |
| 151 | |
| 152 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ | |
| 153 typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ | |
| 154 typedef hist2d * hist3d; /* type for top-level pointer */ | |
| 155 | |
| 156 | |
| 157 /* Declarations for Floyd-Steinberg dithering. | |
| 158 * | |
| 159 * Errors are accumulated into the array fserrors[], at a resolution of | |
| 160 * 1/16th of a pixel count. The error at a given pixel is propagated | |
| 161 * to its not-yet-processed neighbors using the standard F-S fractions, | |
| 162 * ... (here) 7/16 | |
| 163 * 3/16 5/16 1/16 | |
| 164 * We work left-to-right on even rows, right-to-left on odd rows. | |
| 165 * | |
| 166 * We can get away with a single array (holding one row's worth of errors) | |
| 167 * by using it to store the current row's errors at pixel columns not yet | |
| 168 * processed, but the next row's errors at columns already processed. We | |
| 169 * need only a few extra variables to hold the errors immediately around the | |
| 170 * current column. (If we are lucky, those variables are in registers, but | |
| 171 * even if not, they're probably cheaper to access than array elements are.) | |
| 172 * | |
| 173 * The fserrors[] array has (#columns + 2) entries; the extra entry at | |
| 174 * each end saves us from special-casing the first and last pixels. | |
| 175 * Each entry is three values long, one value for each color component. | |
| 176 * | |
| 177 * Note: on a wide image, we might not have enough room in a PC's near data | |
| 178 * segment to hold the error array; so it is allocated with alloc_large. | |
| 179 */ | |
| 180 | |
| 181 #if BITS_IN_JSAMPLE == 8 | |
| 182 typedef INT16 FSERROR; /* 16 bits should be enough */ | |
| 183 typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |
| 184 #else | |
| 185 typedef INT32 FSERROR; /* may need more than 16 bits */ | |
| 186 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |
| 187 #endif | |
| 188 | |
| 189 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ | |
| 190 | |
| 191 | |
| 192 /* Private subobject */ | |
| 193 | |
| 194 typedef struct { | |
| 195 struct jpeg_color_quantizer pub; /* public fields */ | |
| 196 | |
| 197 /* Space for the eventually created colormap is stashed here */ | |
| 198 JSAMPARRAY sv_colormap; /* colormap allocated at init time */ | |
| 199 int desired; /* desired # of colors = size of colormap */ | |
| 200 | |
| 201 /* Variables for accumulating image statistics */ | |
| 202 hist3d histogram; /* pointer to the histogram */ | |
| 203 | |
| 204 boolean needs_zeroed; /* TRUE if next pass must zero histogram */ | |
| 205 | |
| 206 /* Variables for Floyd-Steinberg dithering */ | |
| 207 FSERRPTR fserrors; /* accumulated errors */ | |
| 208 boolean on_odd_row; /* flag to remember which row we are on */ | |
| 209 int * error_limiter; /* table for clamping the applied error */ | |
| 210 } my_cquantizer; | |
| 211 | |
| 212 typedef my_cquantizer * my_cquantize_ptr; | |
| 213 | |
| 214 | |
| 215 /* | |
| 216 * Prescan some rows of pixels. | |
| 217 * In this module the prescan simply updates the histogram, which has been | |
| 218 * initialized to zeroes by start_pass. | |
| 219 * An output_buf parameter is required by the method signature, but no data | |
| 220 * is actually output (in fact the buffer controller is probably passing a | |
| 221 * NULL pointer). | |
| 222 */ | |
| 223 | |
| 224 METHODDEF(void) | |
| 225 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
| 226 JSAMPARRAY output_buf, int num_rows) | |
| 227 { | |
| 228 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 229 register JSAMPROW ptr; | |
| 230 register histptr histp; | |
| 231 register hist3d histogram = cquantize->histogram; | |
| 232 int row; | |
| 233 JDIMENSION col; | |
| 234 JDIMENSION width = cinfo->output_width; | |
| 235 | |
| 236 for (row = 0; row < num_rows; row++) { | |
| 237 ptr = input_buf[row]; | |
| 238 for (col = width; col > 0; col--) { | |
| 239 /* get pixel value and index into the histogram */ | |
| 240 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] | |
| 241 [GETJSAMPLE(ptr[1]) >> C1_SHIFT] | |
| 242 [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; | |
| 243 /* increment, check for overflow and undo increment if so. */ | |
| 244 if (++(*histp) <= 0) | |
| 245 (*histp)--; | |
| 246 ptr += 3; | |
| 247 } | |
| 248 } | |
| 249 } | |
| 250 | |
| 251 | |
| 252 /* | |
| 253 * Next we have the really interesting routines: selection of a colormap | |
| 254 * given the completed histogram. | |
| 255 * These routines work with a list of "boxes", each representing a rectangular | |
| 256 * subset of the input color space (to histogram precision). | |
| 257 */ | |
| 258 | |
| 259 typedef struct { | |
| 260 /* The bounds of the box (inclusive); expressed as histogram indexes */ | |
| 261 int c0min, c0max; | |
| 262 int c1min, c1max; | |
| 263 int c2min, c2max; | |
| 264 /* The volume (actually 2-norm) of the box */ | |
| 265 INT32 volume; | |
| 266 /* The number of nonzero histogram cells within this box */ | |
| 267 long colorcount; | |
| 268 } box; | |
| 269 | |
| 270 typedef box * boxptr; | |
| 271 | |
| 272 | |
| 273 LOCAL(boxptr) | |
| 274 find_biggest_color_pop (boxptr boxlist, int numboxes) | |
| 275 /* Find the splittable box with the largest color population */ | |
| 276 /* Returns NULL if no splittable boxes remain */ | |
| 277 { | |
| 278 register boxptr boxp; | |
| 279 register int i; | |
| 280 register long maxc = 0; | |
| 281 boxptr which = NULL; | |
| 282 | |
| 283 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
| 284 if (boxp->colorcount > maxc && boxp->volume > 0) { | |
| 285 which = boxp; | |
| 286 maxc = boxp->colorcount; | |
| 287 } | |
| 288 } | |
| 289 return which; | |
| 290 } | |
| 291 | |
| 292 | |
| 293 LOCAL(boxptr) | |
| 294 find_biggest_volume (boxptr boxlist, int numboxes) | |
| 295 /* Find the splittable box with the largest (scaled) volume */ | |
| 296 /* Returns NULL if no splittable boxes remain */ | |
| 297 { | |
| 298 register boxptr boxp; | |
| 299 register int i; | |
| 300 register INT32 maxv = 0; | |
| 301 boxptr which = NULL; | |
| 302 | |
| 303 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
| 304 if (boxp->volume > maxv) { | |
| 305 which = boxp; | |
| 306 maxv = boxp->volume; | |
| 307 } | |
| 308 } | |
| 309 return which; | |
| 310 } | |
| 311 | |
| 312 | |
| 313 LOCAL(void) | |
| 314 update_box (j_decompress_ptr cinfo, boxptr boxp) | |
| 315 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ | |
| 316 /* and recompute its volume and population */ | |
| 317 { | |
| 318 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 319 hist3d histogram = cquantize->histogram; | |
| 320 histptr histp; | |
| 321 int c0,c1,c2; | |
| 322 int c0min,c0max,c1min,c1max,c2min,c2max; | |
| 323 INT32 dist0,dist1,dist2; | |
| 324 long ccount; | |
| 325 | |
| 326 c0min = boxp->c0min; c0max = boxp->c0max; | |
| 327 c1min = boxp->c1min; c1max = boxp->c1max; | |
| 328 c2min = boxp->c2min; c2max = boxp->c2max; | |
| 329 | |
| 330 if (c0max > c0min) | |
| 331 for (c0 = c0min; c0 <= c0max; c0++) | |
| 332 for (c1 = c1min; c1 <= c1max; c1++) { | |
| 333 histp = & histogram[c0][c1][c2min]; | |
| 334 for (c2 = c2min; c2 <= c2max; c2++) | |
| 335 if (*histp++ != 0) { | |
| 336 boxp->c0min = c0min = c0; | |
| 337 goto have_c0min; | |
| 338 } | |
| 339 } | |
| 340 have_c0min: | |
| 341 if (c0max > c0min) | |
| 342 for (c0 = c0max; c0 >= c0min; c0--) | |
| 343 for (c1 = c1min; c1 <= c1max; c1++) { | |
| 344 histp = & histogram[c0][c1][c2min]; | |
| 345 for (c2 = c2min; c2 <= c2max; c2++) | |
| 346 if (*histp++ != 0) { | |
| 347 boxp->c0max = c0max = c0; | |
| 348 goto have_c0max; | |
| 349 } | |
| 350 } | |
| 351 have_c0max: | |
| 352 if (c1max > c1min) | |
| 353 for (c1 = c1min; c1 <= c1max; c1++) | |
| 354 for (c0 = c0min; c0 <= c0max; c0++) { | |
| 355 histp = & histogram[c0][c1][c2min]; | |
| 356 for (c2 = c2min; c2 <= c2max; c2++) | |
| 357 if (*histp++ != 0) { | |
| 358 boxp->c1min = c1min = c1; | |
| 359 goto have_c1min; | |
| 360 } | |
| 361 } | |
| 362 have_c1min: | |
| 363 if (c1max > c1min) | |
| 364 for (c1 = c1max; c1 >= c1min; c1--) | |
| 365 for (c0 = c0min; c0 <= c0max; c0++) { | |
| 366 histp = & histogram[c0][c1][c2min]; | |
| 367 for (c2 = c2min; c2 <= c2max; c2++) | |
| 368 if (*histp++ != 0) { | |
| 369 boxp->c1max = c1max = c1; | |
| 370 goto have_c1max; | |
| 371 } | |
| 372 } | |
| 373 have_c1max: | |
| 374 if (c2max > c2min) | |
| 375 for (c2 = c2min; c2 <= c2max; c2++) | |
| 376 for (c0 = c0min; c0 <= c0max; c0++) { | |
| 377 histp = & histogram[c0][c1min][c2]; | |
| 378 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
| 379 if (*histp != 0) { | |
| 380 boxp->c2min = c2min = c2; | |
| 381 goto have_c2min; | |
| 382 } | |
| 383 } | |
| 384 have_c2min: | |
| 385 if (c2max > c2min) | |
| 386 for (c2 = c2max; c2 >= c2min; c2--) | |
| 387 for (c0 = c0min; c0 <= c0max; c0++) { | |
| 388 histp = & histogram[c0][c1min][c2]; | |
| 389 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
| 390 if (*histp != 0) { | |
| 391 boxp->c2max = c2max = c2; | |
| 392 goto have_c2max; | |
| 393 } | |
| 394 } | |
| 395 have_c2max: | |
| 396 | |
| 397 /* Update box volume. | |
| 398 * We use 2-norm rather than real volume here; this biases the method | |
| 399 * against making long narrow boxes, and it has the side benefit that | |
| 400 * a box is splittable iff norm > 0. | |
| 401 * Since the differences are expressed in histogram-cell units, | |
| 402 * we have to shift back to JSAMPLE units to get consistent distances; | |
| 403 * after which, we scale according to the selected distance scale factors. | |
| 404 */ | |
| 405 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; | |
| 406 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; | |
| 407 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; | |
| 408 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; | |
| 409 | |
| 410 /* Now scan remaining volume of box and compute population */ | |
| 411 ccount = 0; | |
| 412 for (c0 = c0min; c0 <= c0max; c0++) | |
| 413 for (c1 = c1min; c1 <= c1max; c1++) { | |
| 414 histp = & histogram[c0][c1][c2min]; | |
| 415 for (c2 = c2min; c2 <= c2max; c2++, histp++) | |
| 416 if (*histp != 0) { | |
| 417 ccount++; | |
| 418 } | |
| 419 } | |
| 420 boxp->colorcount = ccount; | |
| 421 } | |
| 422 | |
| 423 | |
| 424 LOCAL(int) | |
| 425 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, | |
| 426 int desired_colors) | |
| 427 /* Repeatedly select and split the largest box until we have enough boxes */ | |
| 428 { | |
| 429 int n,lb; | |
| 430 int c0,c1,c2,cmax; | |
| 431 register boxptr b1,b2; | |
| 432 | |
| 433 while (numboxes < desired_colors) { | |
| 434 /* Select box to split. | |
| 435 * Current algorithm: by population for first half, then by volume. | |
| 436 */ | |
| 437 if (numboxes*2 <= desired_colors) { | |
| 438 b1 = find_biggest_color_pop(boxlist, numboxes); | |
| 439 } else { | |
| 440 b1 = find_biggest_volume(boxlist, numboxes); | |
| 441 } | |
| 442 if (b1 == NULL) /* no splittable boxes left! */ | |
| 443 break; | |
| 444 b2 = &boxlist[numboxes]; /* where new box will go */ | |
| 445 /* Copy the color bounds to the new box. */ | |
| 446 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; | |
| 447 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; | |
| 448 /* Choose which axis to split the box on. | |
| 449 * Current algorithm: longest scaled axis. | |
| 450 * See notes in update_box about scaling distances. | |
| 451 */ | |
| 452 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; | |
| 453 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; | |
| 454 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; | |
| 455 /* We want to break any ties in favor of green, then red, blue last. | |
| 456 * This code does the right thing for R,G,B or B,G,R color orders only. | |
| 457 */ | |
| 458 #if RGB_RED == 0 | |
| 459 cmax = c1; n = 1; | |
| 460 if (c0 > cmax) { cmax = c0; n = 0; } | |
| 461 if (c2 > cmax) { n = 2; } | |
| 462 #else | |
| 463 cmax = c1; n = 1; | |
| 464 if (c2 > cmax) { cmax = c2; n = 2; } | |
| 465 if (c0 > cmax) { n = 0; } | |
| 466 #endif | |
| 467 /* Choose split point along selected axis, and update box bounds. | |
| 468 * Current algorithm: split at halfway point. | |
| 469 * (Since the box has been shrunk to minimum volume, | |
| 470 * any split will produce two nonempty subboxes.) | |
| 471 * Note that lb value is max for lower box, so must be < old max. | |
| 472 */ | |
| 473 switch (n) { | |
| 474 case 0: | |
| 475 lb = (b1->c0max + b1->c0min) / 2; | |
| 476 b1->c0max = lb; | |
| 477 b2->c0min = lb+1; | |
| 478 break; | |
| 479 case 1: | |
| 480 lb = (b1->c1max + b1->c1min) / 2; | |
| 481 b1->c1max = lb; | |
| 482 b2->c1min = lb+1; | |
| 483 break; | |
| 484 case 2: | |
| 485 lb = (b1->c2max + b1->c2min) / 2; | |
| 486 b1->c2max = lb; | |
| 487 b2->c2min = lb+1; | |
| 488 break; | |
| 489 } | |
| 490 /* Update stats for boxes */ | |
| 491 update_box(cinfo, b1); | |
| 492 update_box(cinfo, b2); | |
| 493 numboxes++; | |
| 494 } | |
| 495 return numboxes; | |
| 496 } | |
| 497 | |
| 498 | |
| 499 LOCAL(void) | |
| 500 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) | |
| 501 /* Compute representative color for a box, put it in colormap[icolor] */ | |
| 502 { | |
| 503 /* Current algorithm: mean weighted by pixels (not colors) */ | |
| 504 /* Note it is important to get the rounding correct! */ | |
| 505 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 506 hist3d histogram = cquantize->histogram; | |
| 507 histptr histp; | |
| 508 int c0,c1,c2; | |
| 509 int c0min,c0max,c1min,c1max,c2min,c2max; | |
| 510 long count; | |
| 511 long total = 0; | |
| 512 long c0total = 0; | |
| 513 long c1total = 0; | |
| 514 long c2total = 0; | |
| 515 | |
| 516 c0min = boxp->c0min; c0max = boxp->c0max; | |
| 517 c1min = boxp->c1min; c1max = boxp->c1max; | |
| 518 c2min = boxp->c2min; c2max = boxp->c2max; | |
| 519 | |
| 520 for (c0 = c0min; c0 <= c0max; c0++) | |
| 521 for (c1 = c1min; c1 <= c1max; c1++) { | |
| 522 histp = & histogram[c0][c1][c2min]; | |
| 523 for (c2 = c2min; c2 <= c2max; c2++) { | |
| 524 if ((count = *histp++) != 0) { | |
| 525 total += count; | |
| 526 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; | |
| 527 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; | |
| 528 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; | |
| 529 } | |
| 530 } | |
| 531 } | |
| 532 | |
| 533 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); | |
| 534 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); | |
| 535 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); | |
| 536 } | |
| 537 | |
| 538 | |
| 539 LOCAL(void) | |
| 540 select_colors (j_decompress_ptr cinfo, int desired_colors) | |
| 541 /* Master routine for color selection */ | |
| 542 { | |
| 543 boxptr boxlist; | |
| 544 int numboxes; | |
| 545 int i; | |
| 546 | |
| 547 /* Allocate workspace for box list */ | |
| 548 boxlist = (boxptr) (*cinfo->mem->alloc_small) | |
| 549 ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); | |
| 550 /* Initialize one box containing whole space */ | |
| 551 numboxes = 1; | |
| 552 boxlist[0].c0min = 0; | |
| 553 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; | |
| 554 boxlist[0].c1min = 0; | |
| 555 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; | |
| 556 boxlist[0].c2min = 0; | |
| 557 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; | |
| 558 /* Shrink it to actually-used volume and set its statistics */ | |
| 559 update_box(cinfo, & boxlist[0]); | |
| 560 /* Perform median-cut to produce final box list */ | |
| 561 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); | |
| 562 /* Compute the representative color for each box, fill colormap */ | |
| 563 for (i = 0; i < numboxes; i++) | |
| 564 compute_color(cinfo, & boxlist[i], i); | |
| 565 cinfo->actual_number_of_colors = numboxes; | |
| 566 TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); | |
| 567 } | |
| 568 | |
| 569 | |
| 570 /* | |
| 571 * These routines are concerned with the time-critical task of mapping input | |
| 572 * colors to the nearest color in the selected colormap. | |
| 573 * | |
| 574 * We re-use the histogram space as an "inverse color map", essentially a | |
| 575 * cache for the results of nearest-color searches. All colors within a | |
| 576 * histogram cell will be mapped to the same colormap entry, namely the one | |
| 577 * closest to the cell's center. This may not be quite the closest entry to | |
| 578 * the actual input color, but it's almost as good. A zero in the cache | |
| 579 * indicates we haven't found the nearest color for that cell yet; the array | |
| 580 * is cleared to zeroes before starting the mapping pass. When we find the | |
| 581 * nearest color for a cell, its colormap index plus one is recorded in the | |
| 582 * cache for future use. The pass2 scanning routines call fill_inverse_cmap | |
| 583 * when they need to use an unfilled entry in the cache. | |
| 584 * | |
| 585 * Our method of efficiently finding nearest colors is based on the "locally | |
| 586 * sorted search" idea described by Heckbert and on the incremental distance | |
| 587 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics | |
| 588 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that | |
| 589 * the distances from a given colormap entry to each cell of the histogram can | |
| 590 * be computed quickly using an incremental method: the differences between | |
| 591 * distances to adjacent cells themselves differ by a constant. This allows a | |
| 592 * fairly fast implementation of the "brute force" approach of computing the | |
| 593 * distance from every colormap entry to every histogram cell. Unfortunately, | |
| 594 * it needs a work array to hold the best-distance-so-far for each histogram | |
| 595 * cell (because the inner loop has to be over cells, not colormap entries). | |
| 596 * The work array elements have to be INT32s, so the work array would need | |
| 597 * 256Kb at our recommended precision. This is not feasible in DOS machines. | |
| 598 * | |
| 599 * To get around these problems, we apply Thomas' method to compute the | |
| 600 * nearest colors for only the cells within a small subbox of the histogram. | |
| 601 * The work array need be only as big as the subbox, so the memory usage | |
| 602 * problem is solved. Furthermore, we need not fill subboxes that are never | |
| 603 * referenced in pass2; many images use only part of the color gamut, so a | |
| 604 * fair amount of work is saved. An additional advantage of this | |
| 605 * approach is that we can apply Heckbert's locality criterion to quickly | |
| 606 * eliminate colormap entries that are far away from the subbox; typically | |
| 607 * three-fourths of the colormap entries are rejected by Heckbert's criterion, | |
| 608 * and we need not compute their distances to individual cells in the subbox. | |
| 609 * The speed of this approach is heavily influenced by the subbox size: too | |
| 610 * small means too much overhead, too big loses because Heckbert's criterion | |
| 611 * can't eliminate as many colormap entries. Empirically the best subbox | |
| 612 * size seems to be about 1/512th of the histogram (1/8th in each direction). | |
| 613 * | |
| 614 * Thomas' article also describes a refined method which is asymptotically | |
| 615 * faster than the brute-force method, but it is also far more complex and | |
| 616 * cannot efficiently be applied to small subboxes. It is therefore not | |
| 617 * useful for programs intended to be portable to DOS machines. On machines | |
| 618 * with plenty of memory, filling the whole histogram in one shot with Thomas' | |
| 619 * refined method might be faster than the present code --- but then again, | |
| 620 * it might not be any faster, and it's certainly more complicated. | |
| 621 */ | |
| 622 | |
| 623 | |
| 624 /* log2(histogram cells in update box) for each axis; this can be adjusted */ | |
| 625 #define BOX_C0_LOG (HIST_C0_BITS-3) | |
| 626 #define BOX_C1_LOG (HIST_C1_BITS-3) | |
| 627 #define BOX_C2_LOG (HIST_C2_BITS-3) | |
| 628 | |
| 629 #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ | |
| 630 #define BOX_C1_ELEMS (1<<BOX_C1_LOG) | |
| 631 #define BOX_C2_ELEMS (1<<BOX_C2_LOG) | |
| 632 | |
| 633 #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) | |
| 634 #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) | |
| 635 #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) | |
| 636 | |
| 637 | |
| 638 /* | |
| 639 * The next three routines implement inverse colormap filling. They could | |
| 640 * all be folded into one big routine, but splitting them up this way saves | |
| 641 * some stack space (the mindist[] and bestdist[] arrays need not coexist) | |
| 642 * and may allow some compilers to produce better code by registerizing more | |
| 643 * inner-loop variables. | |
| 644 */ | |
| 645 | |
| 646 LOCAL(int) | |
| 647 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
| 648 JSAMPLE colorlist[]) | |
| 649 /* Locate the colormap entries close enough to an update box to be candidates | |
| 650 * for the nearest entry to some cell(s) in the update box. The update box | |
| 651 * is specified by the center coordinates of its first cell. The number of | |
| 652 * candidate colormap entries is returned, and their colormap indexes are | |
| 653 * placed in colorlist[]. | |
| 654 * This routine uses Heckbert's "locally sorted search" criterion to select | |
| 655 * the colors that need further consideration. | |
| 656 */ | |
| 657 { | |
| 658 int numcolors = cinfo->actual_number_of_colors; | |
| 659 int maxc0, maxc1, maxc2; | |
| 660 int centerc0, centerc1, centerc2; | |
| 661 int i, x, ncolors; | |
| 662 INT32 minmaxdist, min_dist, max_dist, tdist; | |
| 663 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ | |
| 664 | |
| 665 /* Compute true coordinates of update box's upper corner and center. | |
| 666 * Actually we compute the coordinates of the center of the upper-corner | |
| 667 * histogram cell, which are the upper bounds of the volume we care about. | |
| 668 * Note that since ">>" rounds down, the "center" values may be closer to | |
| 669 * min than to max; hence comparisons to them must be "<=", not "<". | |
| 670 */ | |
| 671 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); | |
| 672 centerc0 = (minc0 + maxc0) >> 1; | |
| 673 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); | |
| 674 centerc1 = (minc1 + maxc1) >> 1; | |
| 675 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); | |
| 676 centerc2 = (minc2 + maxc2) >> 1; | |
| 677 | |
| 678 /* For each color in colormap, find: | |
| 679 * 1. its minimum squared-distance to any point in the update box | |
| 680 * (zero if color is within update box); | |
| 681 * 2. its maximum squared-distance to any point in the update box. | |
| 682 * Both of these can be found by considering only the corners of the box. | |
| 683 * We save the minimum distance for each color in mindist[]; | |
| 684 * only the smallest maximum distance is of interest. | |
| 685 */ | |
| 686 minmaxdist = 0x7FFFFFFFL; | |
| 687 | |
| 688 for (i = 0; i < numcolors; i++) { | |
| 689 /* We compute the squared-c0-distance term, then add in the other two. */ | |
| 690 x = GETJSAMPLE(cinfo->colormap[0][i]); | |
| 691 if (x < minc0) { | |
| 692 tdist = (x - minc0) * C0_SCALE; | |
| 693 min_dist = tdist*tdist; | |
| 694 tdist = (x - maxc0) * C0_SCALE; | |
| 695 max_dist = tdist*tdist; | |
| 696 } else if (x > maxc0) { | |
| 697 tdist = (x - maxc0) * C0_SCALE; | |
| 698 min_dist = tdist*tdist; | |
| 699 tdist = (x - minc0) * C0_SCALE; | |
| 700 max_dist = tdist*tdist; | |
| 701 } else { | |
| 702 /* within cell range so no contribution to min_dist */ | |
| 703 min_dist = 0; | |
| 704 if (x <= centerc0) { | |
| 705 tdist = (x - maxc0) * C0_SCALE; | |
| 706 max_dist = tdist*tdist; | |
| 707 } else { | |
| 708 tdist = (x - minc0) * C0_SCALE; | |
| 709 max_dist = tdist*tdist; | |
| 710 } | |
| 711 } | |
| 712 | |
| 713 x = GETJSAMPLE(cinfo->colormap[1][i]); | |
| 714 if (x < minc1) { | |
| 715 tdist = (x - minc1) * C1_SCALE; | |
| 716 min_dist += tdist*tdist; | |
| 717 tdist = (x - maxc1) * C1_SCALE; | |
| 718 max_dist += tdist*tdist; | |
| 719 } else if (x > maxc1) { | |
| 720 tdist = (x - maxc1) * C1_SCALE; | |
| 721 min_dist += tdist*tdist; | |
| 722 tdist = (x - minc1) * C1_SCALE; | |
| 723 max_dist += tdist*tdist; | |
| 724 } else { | |
| 725 /* within cell range so no contribution to min_dist */ | |
| 726 if (x <= centerc1) { | |
| 727 tdist = (x - maxc1) * C1_SCALE; | |
| 728 max_dist += tdist*tdist; | |
| 729 } else { | |
| 730 tdist = (x - minc1) * C1_SCALE; | |
| 731 max_dist += tdist*tdist; | |
| 732 } | |
| 733 } | |
| 734 | |
| 735 x = GETJSAMPLE(cinfo->colormap[2][i]); | |
| 736 if (x < minc2) { | |
| 737 tdist = (x - minc2) * C2_SCALE; | |
| 738 min_dist += tdist*tdist; | |
| 739 tdist = (x - maxc2) * C2_SCALE; | |
| 740 max_dist += tdist*tdist; | |
| 741 } else if (x > maxc2) { | |
| 742 tdist = (x - maxc2) * C2_SCALE; | |
| 743 min_dist += tdist*tdist; | |
| 744 tdist = (x - minc2) * C2_SCALE; | |
| 745 max_dist += tdist*tdist; | |
| 746 } else { | |
| 747 /* within cell range so no contribution to min_dist */ | |
| 748 if (x <= centerc2) { | |
| 749 tdist = (x - maxc2) * C2_SCALE; | |
| 750 max_dist += tdist*tdist; | |
| 751 } else { | |
| 752 tdist = (x - minc2) * C2_SCALE; | |
| 753 max_dist += tdist*tdist; | |
| 754 } | |
| 755 } | |
| 756 | |
| 757 mindist[i] = min_dist; /* save away the results */ | |
| 758 if (max_dist < minmaxdist) | |
| 759 minmaxdist = max_dist; | |
| 760 } | |
| 761 | |
| 762 /* Now we know that no cell in the update box is more than minmaxdist | |
| 763 * away from some colormap entry. Therefore, only colors that are | |
| 764 * within minmaxdist of some part of the box need be considered. | |
| 765 */ | |
| 766 ncolors = 0; | |
| 767 for (i = 0; i < numcolors; i++) { | |
| 768 if (mindist[i] <= minmaxdist) | |
| 769 colorlist[ncolors++] = (JSAMPLE) i; | |
| 770 } | |
| 771 return ncolors; | |
| 772 } | |
| 773 | |
| 774 | |
| 775 LOCAL(void) | |
| 776 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
| 777 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) | |
| 778 /* Find the closest colormap entry for each cell in the update box, | |
| 779 * given the list of candidate colors prepared by find_nearby_colors. | |
| 780 * Return the indexes of the closest entries in the bestcolor[] array. | |
| 781 * This routine uses Thomas' incremental distance calculation method to | |
| 782 * find the distance from a colormap entry to successive cells in the box. | |
| 783 */ | |
| 784 { | |
| 785 int ic0, ic1, ic2; | |
| 786 int i, icolor; | |
| 787 register INT32 * bptr; /* pointer into bestdist[] array */ | |
| 788 JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
| 789 INT32 dist0, dist1; /* initial distance values */ | |
| 790 register INT32 dist2; /* current distance in inner loop */ | |
| 791 INT32 xx0, xx1; /* distance increments */ | |
| 792 register INT32 xx2; | |
| 793 INT32 inc0, inc1, inc2; /* initial values for increments */ | |
| 794 /* This array holds the distance to the nearest-so-far color for each cell */ | |
| 795 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
| 796 | |
| 797 /* Initialize best-distance for each cell of the update box */ | |
| 798 bptr = bestdist; | |
| 799 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) | |
| 800 *bptr++ = 0x7FFFFFFFL; | |
| 801 | |
| 802 /* For each color selected by find_nearby_colors, | |
| 803 * compute its distance to the center of each cell in the box. | |
| 804 * If that's less than best-so-far, update best distance and color number. | |
| 805 */ | |
| 806 | |
| 807 /* Nominal steps between cell centers ("x" in Thomas article) */ | |
| 808 #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) | |
| 809 #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) | |
| 810 #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) | |
| 811 | |
| 812 for (i = 0; i < numcolors; i++) { | |
| 813 icolor = GETJSAMPLE(colorlist[i]); | |
| 814 /* Compute (square of) distance from minc0/c1/c2 to this color */ | |
| 815 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; | |
| 816 dist0 = inc0*inc0; | |
| 817 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; | |
| 818 dist0 += inc1*inc1; | |
| 819 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; | |
| 820 dist0 += inc2*inc2; | |
| 821 /* Form the initial difference increments */ | |
| 822 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; | |
| 823 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; | |
| 824 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; | |
| 825 /* Now loop over all cells in box, updating distance per Thomas method */ | |
| 826 bptr = bestdist; | |
| 827 cptr = bestcolor; | |
| 828 xx0 = inc0; | |
| 829 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { | |
| 830 dist1 = dist0; | |
| 831 xx1 = inc1; | |
| 832 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { | |
| 833 dist2 = dist1; | |
| 834 xx2 = inc2; | |
| 835 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { | |
| 836 if (dist2 < *bptr) { | |
| 837 *bptr = dist2; | |
| 838 *cptr = (JSAMPLE) icolor; | |
| 839 } | |
| 840 dist2 += xx2; | |
| 841 xx2 += 2 * STEP_C2 * STEP_C2; | |
| 842 bptr++; | |
| 843 cptr++; | |
| 844 } | |
| 845 dist1 += xx1; | |
| 846 xx1 += 2 * STEP_C1 * STEP_C1; | |
| 847 } | |
| 848 dist0 += xx0; | |
| 849 xx0 += 2 * STEP_C0 * STEP_C0; | |
| 850 } | |
| 851 } | |
| 852 } | |
| 853 | |
| 854 | |
| 855 LOCAL(void) | |
| 856 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) | |
| 857 /* Fill the inverse-colormap entries in the update box that contains */ | |
| 858 /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ | |
| 859 /* we can fill as many others as we wish.) */ | |
| 860 { | |
| 861 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 862 hist3d histogram = cquantize->histogram; | |
| 863 int minc0, minc1, minc2; /* lower left corner of update box */ | |
| 864 int ic0, ic1, ic2; | |
| 865 register JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
| 866 register histptr cachep; /* pointer into main cache array */ | |
| 867 /* This array lists the candidate colormap indexes. */ | |
| 868 JSAMPLE colorlist[MAXNUMCOLORS]; | |
| 869 int numcolors; /* number of candidate colors */ | |
| 870 /* This array holds the actually closest colormap index for each cell. */ | |
| 871 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
| 872 | |
| 873 /* Convert cell coordinates to update box ID */ | |
| 874 c0 >>= BOX_C0_LOG; | |
| 875 c1 >>= BOX_C1_LOG; | |
| 876 c2 >>= BOX_C2_LOG; | |
| 877 | |
| 878 /* Compute true coordinates of update box's origin corner. | |
| 879 * Actually we compute the coordinates of the center of the corner | |
| 880 * histogram cell, which are the lower bounds of the volume we care about. | |
| 881 */ | |
| 882 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); | |
| 883 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); | |
| 884 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); | |
| 885 | |
| 886 /* Determine which colormap entries are close enough to be candidates | |
| 887 * for the nearest entry to some cell in the update box. | |
| 888 */ | |
| 889 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); | |
| 890 | |
| 891 /* Determine the actually nearest colors. */ | |
| 892 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, | |
| 893 bestcolor); | |
| 894 | |
| 895 /* Save the best color numbers (plus 1) in the main cache array */ | |
| 896 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ | |
| 897 c1 <<= BOX_C1_LOG; | |
| 898 c2 <<= BOX_C2_LOG; | |
| 899 cptr = bestcolor; | |
| 900 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { | |
| 901 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { | |
| 902 cachep = & histogram[c0+ic0][c1+ic1][c2]; | |
| 903 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { | |
| 904 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); | |
| 905 } | |
| 906 } | |
| 907 } | |
| 908 } | |
| 909 | |
| 910 | |
| 911 /* | |
| 912 * Map some rows of pixels to the output colormapped representation. | |
| 913 */ | |
| 914 | |
| 915 METHODDEF(void) | |
| 916 pass2_no_dither (j_decompress_ptr cinfo, | |
| 917 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
| 918 /* This version performs no dithering */ | |
| 919 { | |
| 920 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 921 hist3d histogram = cquantize->histogram; | |
| 922 register JSAMPROW inptr, outptr; | |
| 923 register histptr cachep; | |
| 924 register int c0, c1, c2; | |
| 925 int row; | |
| 926 JDIMENSION col; | |
| 927 JDIMENSION width = cinfo->output_width; | |
| 928 | |
| 929 for (row = 0; row < num_rows; row++) { | |
| 930 inptr = input_buf[row]; | |
| 931 outptr = output_buf[row]; | |
| 932 for (col = width; col > 0; col--) { | |
| 933 /* get pixel value and index into the cache */ | |
| 934 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; | |
| 935 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; | |
| 936 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; | |
| 937 cachep = & histogram[c0][c1][c2]; | |
| 938 /* If we have not seen this color before, find nearest colormap entry */ | |
| 939 /* and update the cache */ | |
| 940 if (*cachep == 0) | |
| 941 fill_inverse_cmap(cinfo, c0,c1,c2); | |
| 942 /* Now emit the colormap index for this cell */ | |
| 943 *outptr++ = (JSAMPLE) (*cachep - 1); | |
| 944 } | |
| 945 } | |
| 946 } | |
| 947 | |
| 948 | |
| 949 METHODDEF(void) | |
| 950 pass2_fs_dither (j_decompress_ptr cinfo, | |
| 951 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
| 952 /* This version performs Floyd-Steinberg dithering */ | |
| 953 { | |
| 954 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 955 hist3d histogram = cquantize->histogram; | |
| 956 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ | |
| 957 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ | |
| 958 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ | |
| 959 register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |
| 960 JSAMPROW inptr; /* => current input pixel */ | |
| 961 JSAMPROW outptr; /* => current output pixel */ | |
| 962 histptr cachep; | |
| 963 int dir; /* +1 or -1 depending on direction */ | |
| 964 int dir3; /* 3*dir, for advancing inptr & errorptr */ | |
| 965 int row; | |
| 966 JDIMENSION col; | |
| 967 JDIMENSION width = cinfo->output_width; | |
| 968 JSAMPLE *range_limit = cinfo->sample_range_limit; | |
| 969 int *error_limit = cquantize->error_limiter; | |
| 970 JSAMPROW colormap0 = cinfo->colormap[0]; | |
| 971 JSAMPROW colormap1 = cinfo->colormap[1]; | |
| 972 JSAMPROW colormap2 = cinfo->colormap[2]; | |
| 973 SHIFT_TEMPS | |
| 974 | |
| 975 for (row = 0; row < num_rows; row++) { | |
| 976 inptr = input_buf[row]; | |
| 977 outptr = output_buf[row]; | |
| 978 if (cquantize->on_odd_row) { | |
| 979 /* work right to left in this row */ | |
| 980 inptr += (width-1) * 3; /* so point to rightmost pixel */ | |
| 981 outptr += width-1; | |
| 982 dir = -1; | |
| 983 dir3 = -3; | |
| 984 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ | |
| 985 cquantize->on_odd_row = FALSE; /* flip for next time */ | |
| 986 } else { | |
| 987 /* work left to right in this row */ | |
| 988 dir = 1; | |
| 989 dir3 = 3; | |
| 990 errorptr = cquantize->fserrors; /* => entry before first real column */ | |
| 991 cquantize->on_odd_row = TRUE; /* flip for next time */ | |
| 992 } | |
| 993 /* Preset error values: no error propagated to first pixel from left */ | |
| 994 cur0 = cur1 = cur2 = 0; | |
| 995 /* and no error propagated to row below yet */ | |
| 996 belowerr0 = belowerr1 = belowerr2 = 0; | |
| 997 bpreverr0 = bpreverr1 = bpreverr2 = 0; | |
| 998 | |
| 999 for (col = width; col > 0; col--) { | |
| 1000 /* curN holds the error propagated from the previous pixel on the | |
| 1001 * current line. Add the error propagated from the previous line | |
| 1002 * to form the complete error correction term for this pixel, and | |
| 1003 * round the error term (which is expressed * 16) to an integer. | |
| 1004 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |
| 1005 * for either sign of the error value. | |
| 1006 * Note: errorptr points to *previous* column's array entry. | |
| 1007 */ | |
| 1008 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); | |
| 1009 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); | |
| 1010 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); | |
| 1011 /* Limit the error using transfer function set by init_error_limit. | |
| 1012 * See comments with init_error_limit for rationale. | |
| 1013 */ | |
| 1014 cur0 = error_limit[cur0]; | |
| 1015 cur1 = error_limit[cur1]; | |
| 1016 cur2 = error_limit[cur2]; | |
| 1017 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |
| 1018 * The maximum error is +- MAXJSAMPLE (or less with error limiting); | |
| 1019 * this sets the required size of the range_limit array. | |
| 1020 */ | |
| 1021 cur0 += GETJSAMPLE(inptr[0]); | |
| 1022 cur1 += GETJSAMPLE(inptr[1]); | |
| 1023 cur2 += GETJSAMPLE(inptr[2]); | |
| 1024 cur0 = GETJSAMPLE(range_limit[cur0]); | |
| 1025 cur1 = GETJSAMPLE(range_limit[cur1]); | |
| 1026 cur2 = GETJSAMPLE(range_limit[cur2]); | |
| 1027 /* Index into the cache with adjusted pixel value */ | |
| 1028 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; | |
| 1029 /* If we have not seen this color before, find nearest colormap */ | |
| 1030 /* entry and update the cache */ | |
| 1031 if (*cachep == 0) | |
| 1032 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); | |
| 1033 /* Now emit the colormap index for this cell */ | |
| 1034 { register int pixcode = *cachep - 1; | |
| 1035 *outptr = (JSAMPLE) pixcode; | |
| 1036 /* Compute representation error for this pixel */ | |
| 1037 cur0 -= GETJSAMPLE(colormap0[pixcode]); | |
| 1038 cur1 -= GETJSAMPLE(colormap1[pixcode]); | |
| 1039 cur2 -= GETJSAMPLE(colormap2[pixcode]); | |
| 1040 } | |
| 1041 /* Compute error fractions to be propagated to adjacent pixels. | |
| 1042 * Add these into the running sums, and simultaneously shift the | |
| 1043 * next-line error sums left by 1 column. | |
| 1044 */ | |
| 1045 { register LOCFSERROR bnexterr, delta; | |
| 1046 | |
| 1047 bnexterr = cur0; /* Process component 0 */ | |
| 1048 delta = cur0 * 2; | |
| 1049 cur0 += delta; /* form error * 3 */ | |
| 1050 errorptr[0] = (FSERROR) (bpreverr0 + cur0); | |
| 1051 cur0 += delta; /* form error * 5 */ | |
| 1052 bpreverr0 = belowerr0 + cur0; | |
| 1053 belowerr0 = bnexterr; | |
| 1054 cur0 += delta; /* form error * 7 */ | |
| 1055 bnexterr = cur1; /* Process component 1 */ | |
| 1056 delta = cur1 * 2; | |
| 1057 cur1 += delta; /* form error * 3 */ | |
| 1058 errorptr[1] = (FSERROR) (bpreverr1 + cur1); | |
| 1059 cur1 += delta; /* form error * 5 */ | |
| 1060 bpreverr1 = belowerr1 + cur1; | |
| 1061 belowerr1 = bnexterr; | |
| 1062 cur1 += delta; /* form error * 7 */ | |
| 1063 bnexterr = cur2; /* Process component 2 */ | |
| 1064 delta = cur2 * 2; | |
| 1065 cur2 += delta; /* form error * 3 */ | |
| 1066 errorptr[2] = (FSERROR) (bpreverr2 + cur2); | |
| 1067 cur2 += delta; /* form error * 5 */ | |
| 1068 bpreverr2 = belowerr2 + cur2; | |
| 1069 belowerr2 = bnexterr; | |
| 1070 cur2 += delta; /* form error * 7 */ | |
| 1071 } | |
| 1072 /* At this point curN contains the 7/16 error value to be propagated | |
| 1073 * to the next pixel on the current line, and all the errors for the | |
| 1074 * next line have been shifted over. We are therefore ready to move on. | |
| 1075 */ | |
| 1076 inptr += dir3; /* Advance pixel pointers to next column */ | |
| 1077 outptr += dir; | |
| 1078 errorptr += dir3; /* advance errorptr to current column */ | |
| 1079 } | |
| 1080 /* Post-loop cleanup: we must unload the final error values into the | |
| 1081 * final fserrors[] entry. Note we need not unload belowerrN because | |
| 1082 * it is for the dummy column before or after the actual array. | |
| 1083 */ | |
| 1084 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ | |
| 1085 errorptr[1] = (FSERROR) bpreverr1; | |
| 1086 errorptr[2] = (FSERROR) bpreverr2; | |
| 1087 } | |
| 1088 } | |
| 1089 | |
| 1090 | |
| 1091 /* | |
| 1092 * Initialize the error-limiting transfer function (lookup table). | |
| 1093 * The raw F-S error computation can potentially compute error values of up to | |
| 1094 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be | |
| 1095 * much less, otherwise obviously wrong pixels will be created. (Typical | |
| 1096 * effects include weird fringes at color-area boundaries, isolated bright | |
| 1097 * pixels in a dark area, etc.) The standard advice for avoiding this problem | |
| 1098 * is to ensure that the "corners" of the color cube are allocated as output | |
| 1099 * colors; then repeated errors in the same direction cannot cause cascading | |
| 1100 * error buildup. However, that only prevents the error from getting | |
| 1101 * completely out of hand; Aaron Giles reports that error limiting improves | |
| 1102 * the results even with corner colors allocated. | |
| 1103 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty | |
| 1104 * well, but the smoother transfer function used below is even better. Thanks | |
| 1105 * to Aaron Giles for this idea. | |
| 1106 */ | |
| 1107 | |
| 1108 LOCAL(void) | |
| 1109 init_error_limit (j_decompress_ptr cinfo) | |
| 1110 /* Allocate and fill in the error_limiter table */ | |
| 1111 { | |
| 1112 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 1113 int * table; | |
| 1114 int in, out; | |
| 1115 | |
| 1116 table = (int *) (*cinfo->mem->alloc_small) | |
| 1117 ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); | |
| 1118 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ | |
| 1119 cquantize->error_limiter = table; | |
| 1120 | |
| 1121 #define STEPSIZE ((MAXJSAMPLE+1)/16) | |
| 1122 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ | |
| 1123 out = 0; | |
| 1124 for (in = 0; in < STEPSIZE; in++, out++) { | |
| 1125 table[in] = out; table[-in] = -out; | |
| 1126 } | |
| 1127 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ | |
| 1128 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { | |
| 1129 table[in] = out; table[-in] = -out; | |
| 1130 } | |
| 1131 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ | |
| 1132 for (; in <= MAXJSAMPLE; in++) { | |
| 1133 table[in] = out; table[-in] = -out; | |
| 1134 } | |
| 1135 #undef STEPSIZE | |
| 1136 } | |
| 1137 | |
| 1138 | |
| 1139 /* | |
| 1140 * Finish up at the end of each pass. | |
| 1141 */ | |
| 1142 | |
| 1143 METHODDEF(void) | |
| 1144 finish_pass1 (j_decompress_ptr cinfo) | |
| 1145 { | |
| 1146 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 1147 | |
| 1148 /* Select the representative colors and fill in cinfo->colormap */ | |
| 1149 cinfo->colormap = cquantize->sv_colormap; | |
| 1150 select_colors(cinfo, cquantize->desired); | |
| 1151 /* Force next pass to zero the color index table */ | |
| 1152 cquantize->needs_zeroed = TRUE; | |
| 1153 } | |
| 1154 | |
| 1155 | |
| 1156 METHODDEF(void) | |
| 1157 finish_pass2 (j_decompress_ptr cinfo) | |
| 1158 { | |
| 1159 /* no work */ | |
| 1160 } | |
| 1161 | |
| 1162 | |
| 1163 /* | |
| 1164 * Initialize for each processing pass. | |
| 1165 */ | |
| 1166 | |
| 1167 METHODDEF(void) | |
| 1168 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | |
| 1169 { | |
| 1170 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 1171 hist3d histogram = cquantize->histogram; | |
| 1172 int i; | |
| 1173 | |
| 1174 /* Only F-S dithering or no dithering is supported. */ | |
| 1175 /* If user asks for ordered dither, give him F-S. */ | |
| 1176 if (cinfo->dither_mode != JDITHER_NONE) | |
| 1177 cinfo->dither_mode = JDITHER_FS; | |
| 1178 | |
| 1179 if (is_pre_scan) { | |
| 1180 /* Set up method pointers */ | |
| 1181 cquantize->pub.color_quantize = prescan_quantize; | |
| 1182 cquantize->pub.finish_pass = finish_pass1; | |
| 1183 cquantize->needs_zeroed = TRUE; /* Always zero histogram */ | |
| 1184 } else { | |
| 1185 /* Set up method pointers */ | |
| 1186 if (cinfo->dither_mode == JDITHER_FS) | |
| 1187 cquantize->pub.color_quantize = pass2_fs_dither; | |
| 1188 else | |
| 1189 cquantize->pub.color_quantize = pass2_no_dither; | |
| 1190 cquantize->pub.finish_pass = finish_pass2; | |
| 1191 | |
| 1192 /* Make sure color count is acceptable */ | |
| 1193 i = cinfo->actual_number_of_colors; | |
| 1194 if (i < 1) | |
| 1195 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); | |
| 1196 if (i > MAXNUMCOLORS) | |
| 1197 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); | |
| 1198 | |
| 1199 if (cinfo->dither_mode == JDITHER_FS) { | |
| 1200 size_t arraysize = ((size_t) cinfo->output_width + (size_t) 2) | |
| 1201 * (3 * SIZEOF(FSERROR)); | |
| 1202 /* Allocate Floyd-Steinberg workspace if we didn't already. */ | |
| 1203 if (cquantize->fserrors == NULL) | |
| 1204 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | |
| 1205 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | |
| 1206 /* Initialize the propagated errors to zero. */ | |
| 1207 FMEMZERO((void FAR *) cquantize->fserrors, arraysize); | |
| 1208 /* Make the error-limit table if we didn't already. */ | |
| 1209 if (cquantize->error_limiter == NULL) | |
| 1210 init_error_limit(cinfo); | |
| 1211 cquantize->on_odd_row = FALSE; | |
| 1212 } | |
| 1213 | |
| 1214 } | |
| 1215 /* Zero the histogram or inverse color map, if necessary */ | |
| 1216 if (cquantize->needs_zeroed) { | |
| 1217 for (i = 0; i < HIST_C0_ELEMS; i++) { | |
| 1218 FMEMZERO((void FAR *) histogram[i], | |
| 1219 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); | |
| 1220 } | |
| 1221 cquantize->needs_zeroed = FALSE; | |
| 1222 } | |
| 1223 } | |
| 1224 | |
| 1225 | |
| 1226 /* | |
| 1227 * Switch to a new external colormap between output passes. | |
| 1228 */ | |
| 1229 | |
| 1230 METHODDEF(void) | |
| 1231 new_color_map_2_quant (j_decompress_ptr cinfo) | |
| 1232 { | |
| 1233 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 1234 | |
| 1235 /* Reset the inverse color map */ | |
| 1236 cquantize->needs_zeroed = TRUE; | |
| 1237 } | |
| 1238 | |
| 1239 | |
| 1240 /* | |
| 1241 * Module initialization routine for 2-pass color quantization. | |
| 1242 */ | |
| 1243 | |
| 1244 GLOBAL(void) | |
| 1245 jinit_2pass_quantizer (j_decompress_ptr cinfo) | |
| 1246 { | |
| 1247 my_cquantize_ptr cquantize; | |
| 1248 int i; | |
| 1249 | |
| 1250 cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) | |
| 1251 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer)); | |
| 1252 cinfo->cquantize = &cquantize->pub; | |
| 1253 cquantize->pub.start_pass = start_pass_2_quant; | |
| 1254 cquantize->pub.new_color_map = new_color_map_2_quant; | |
| 1255 cquantize->fserrors = NULL; /* flag optional arrays not allocated */ | |
| 1256 cquantize->error_limiter = NULL; | |
| 1257 | |
| 1258 /* Make sure jdmaster didn't give me a case I can't handle */ | |
| 1259 if (cinfo->out_color_components != 3) | |
| 1260 ERREXIT(cinfo, JERR_NOTIMPL); | |
| 1261 | |
| 1262 /* Allocate the histogram/inverse colormap storage */ | |
| 1263 cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) | |
| 1264 ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); | |
| 1265 for (i = 0; i < HIST_C0_ELEMS; i++) { | |
| 1266 cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) | |
| 1267 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 1268 HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); | |
| 1269 } | |
| 1270 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ | |
| 1271 | |
| 1272 /* Allocate storage for the completed colormap, if required. | |
| 1273 * We do this now since it is FAR storage and may affect | |
| 1274 * the memory manager's space calculations. | |
| 1275 */ | |
| 1276 if (cinfo->enable_2pass_quant) { | |
| 1277 /* Make sure color count is acceptable */ | |
| 1278 int desired = cinfo->desired_number_of_colors; | |
| 1279 /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ | |
| 1280 if (desired < 8) | |
| 1281 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); | |
| 1282 /* Make sure colormap indexes can be represented by JSAMPLEs */ | |
| 1283 if (desired > MAXNUMCOLORS) | |
| 1284 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); | |
| 1285 cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) | |
| 1286 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 1287 (JDIMENSION) desired, (JDIMENSION) 3); | |
| 1288 cquantize->desired = desired; | |
| 1289 } else | |
| 1290 cquantize->sv_colormap = NULL; | |
| 1291 | |
| 1292 /* Only F-S dithering or no dithering is supported. */ | |
| 1293 /* If user asks for ordered dither, give him F-S. */ | |
| 1294 if (cinfo->dither_mode != JDITHER_NONE) | |
| 1295 cinfo->dither_mode = JDITHER_FS; | |
| 1296 | |
| 1297 /* Allocate Floyd-Steinberg workspace if necessary. | |
| 1298 * This isn't really needed until pass 2, but again it is FAR storage. | |
| 1299 * Although we will cope with a later change in dither_mode, | |
| 1300 * we do not promise to honor max_memory_to_use if dither_mode changes. | |
| 1301 */ | |
| 1302 if (cinfo->dither_mode == JDITHER_FS) { | |
| 1303 cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | |
| 1304 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 1305 ((size_t) cinfo->output_width + (size_t) 2) * (3 * SIZEOF(FSERROR))); | |
| 1306 /* Might as well create the error-limiting table too. */ | |
| 1307 init_error_limit(cinfo); | |
| 1308 } | |
| 1309 } | |
| 1310 | |
| 1311 #endif /* QUANT_2PASS_SUPPORTED */ |
