Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jmemmgr.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jmemmgr.c | |
| 3 * | |
| 4 * Copyright (C) 1991-1997, Thomas G. Lane. | |
| 5 * Modified 2011-2019 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains the JPEG system-independent memory management | |
| 10 * routines. This code is usable across a wide variety of machines; most | |
| 11 * of the system dependencies have been isolated in a separate file. | |
| 12 * The major functions provided here are: | |
| 13 * * pool-based allocation and freeing of memory; | |
| 14 * * policy decisions about how to divide available memory among the | |
| 15 * virtual arrays; | |
| 16 * * control logic for swapping virtual arrays between main memory and | |
| 17 * backing storage. | |
| 18 * The separate system-dependent file provides the actual backing-storage | |
| 19 * access code, and it contains the policy decision about how much total | |
| 20 * main memory to use. | |
| 21 * This file is system-dependent in the sense that some of its functions | |
| 22 * are unnecessary in some systems. For example, if there is enough virtual | |
| 23 * memory so that backing storage will never be used, much of the virtual | |
| 24 * array control logic could be removed. (Of course, if you have that much | |
| 25 * memory then you shouldn't care about a little bit of unused code...) | |
| 26 */ | |
| 27 | |
| 28 #define JPEG_INTERNALS | |
| 29 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ | |
| 30 #include "jinclude.h" | |
| 31 #include "jpeglib.h" | |
| 32 #include "jmemsys.h" /* import the system-dependent declarations */ | |
| 33 | |
| 34 #ifndef NO_GETENV | |
| 35 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */ | |
| 36 extern char * getenv JPP((const char * name)); | |
| 37 #endif | |
| 38 #endif | |
| 39 | |
| 40 | |
| 41 /* | |
| 42 * Some important notes: | |
| 43 * The allocation routines provided here must never return NULL. | |
| 44 * They should exit to error_exit if unsuccessful. | |
| 45 * | |
| 46 * It's not a good idea to try to merge the sarray and barray routines, | |
| 47 * even though they are textually almost the same, because samples are | |
| 48 * usually stored as bytes while coefficients are shorts or ints. Thus, | |
| 49 * in machines where byte pointers have a different representation from | |
| 50 * word pointers, the resulting machine code could not be the same. | |
| 51 */ | |
| 52 | |
| 53 | |
| 54 /* | |
| 55 * Many machines require storage alignment: longs must start on 4-byte | |
| 56 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() | |
| 57 * always returns pointers that are multiples of the worst-case alignment | |
| 58 * requirement, and we had better do so too. | |
| 59 * There isn't any really portable way to determine the worst-case alignment | |
| 60 * requirement. This module assumes that the alignment requirement is | |
| 61 * multiples of sizeof(ALIGN_TYPE). | |
| 62 * By default, we define ALIGN_TYPE as double. This is necessary on some | |
| 63 * workstations (where doubles really do need 8-byte alignment) and will work | |
| 64 * fine on nearly everything. If your machine has lesser alignment needs, | |
| 65 * you can save a few bytes by making ALIGN_TYPE smaller. | |
| 66 * The only place I know of where this will NOT work is certain Macintosh | |
| 67 * 680x0 compilers that define double as a 10-byte IEEE extended float. | |
| 68 * Doing 10-byte alignment is counterproductive because longwords won't be | |
| 69 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have | |
| 70 * such a compiler. | |
| 71 */ | |
| 72 | |
| 73 #ifndef ALIGN_TYPE /* so can override from jconfig.h */ | |
| 74 #define ALIGN_TYPE double | |
| 75 #endif | |
| 76 | |
| 77 | |
| 78 /* | |
| 79 * We allocate objects from "pools", where each pool is gotten with a single | |
| 80 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object | |
| 81 * overhead within a pool, except for alignment padding. Each pool has a | |
| 82 * header with a link to the next pool of the same class. | |
| 83 * Small and large pool headers are identical except that the latter's | |
| 84 * link pointer must be FAR on 80x86 machines. | |
| 85 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE | |
| 86 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple | |
| 87 * of the alignment requirement of ALIGN_TYPE. | |
| 88 */ | |
| 89 | |
| 90 typedef union small_pool_struct * small_pool_ptr; | |
| 91 | |
| 92 typedef union small_pool_struct { | |
| 93 struct { | |
| 94 small_pool_ptr next; /* next in list of pools */ | |
| 95 size_t bytes_used; /* how many bytes already used within pool */ | |
| 96 size_t bytes_left; /* bytes still available in this pool */ | |
| 97 } hdr; | |
| 98 ALIGN_TYPE dummy; /* included in union to ensure alignment */ | |
| 99 } small_pool_hdr; | |
| 100 | |
| 101 typedef union large_pool_struct FAR * large_pool_ptr; | |
| 102 | |
| 103 typedef union large_pool_struct { | |
| 104 struct { | |
| 105 large_pool_ptr next; /* next in list of pools */ | |
| 106 size_t bytes_used; /* how many bytes already used within pool */ | |
| 107 size_t bytes_left; /* bytes still available in this pool */ | |
| 108 } hdr; | |
| 109 ALIGN_TYPE dummy; /* included in union to ensure alignment */ | |
| 110 } large_pool_hdr; | |
| 111 | |
| 112 | |
| 113 /* | |
| 114 * Here is the full definition of a memory manager object. | |
| 115 */ | |
| 116 | |
| 117 typedef struct { | |
| 118 struct jpeg_memory_mgr pub; /* public fields */ | |
| 119 | |
| 120 /* Each pool identifier (lifetime class) names a linked list of pools. */ | |
| 121 small_pool_ptr small_list[JPOOL_NUMPOOLS]; | |
| 122 large_pool_ptr large_list[JPOOL_NUMPOOLS]; | |
| 123 | |
| 124 /* Since we only have one lifetime class of virtual arrays, only one | |
| 125 * linked list is necessary (for each datatype). Note that the virtual | |
| 126 * array control blocks being linked together are actually stored somewhere | |
| 127 * in the small-pool list. | |
| 128 */ | |
| 129 jvirt_sarray_ptr virt_sarray_list; | |
| 130 jvirt_barray_ptr virt_barray_list; | |
| 131 | |
| 132 /* This counts total space obtained from jpeg_get_small/large */ | |
| 133 size_t total_space_allocated; | |
| 134 | |
| 135 /* alloc_sarray and alloc_barray set this value for use by virtual | |
| 136 * array routines. | |
| 137 */ | |
| 138 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ | |
| 139 } my_memory_mgr; | |
| 140 | |
| 141 typedef my_memory_mgr * my_mem_ptr; | |
| 142 | |
| 143 | |
| 144 /* | |
| 145 * The control blocks for virtual arrays. | |
| 146 * Note that these blocks are allocated in the "small" pool area. | |
| 147 * System-dependent info for the associated backing store (if any) is hidden | |
| 148 * inside the backing_store_info struct. | |
| 149 */ | |
| 150 | |
| 151 struct jvirt_sarray_control { | |
| 152 JSAMPARRAY mem_buffer; /* => the in-memory buffer */ | |
| 153 JDIMENSION rows_in_array; /* total virtual array height */ | |
| 154 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ | |
| 155 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ | |
| 156 JDIMENSION rows_in_mem; /* height of memory buffer */ | |
| 157 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | |
| 158 JDIMENSION cur_start_row; /* first logical row # in the buffer */ | |
| 159 JDIMENSION first_undef_row; /* row # of first uninitialized row */ | |
| 160 boolean pre_zero; /* pre-zero mode requested? */ | |
| 161 boolean dirty; /* do current buffer contents need written? */ | |
| 162 boolean b_s_open; /* is backing-store data valid? */ | |
| 163 jvirt_sarray_ptr next; /* link to next virtual sarray control block */ | |
| 164 backing_store_info b_s_info; /* System-dependent control info */ | |
| 165 }; | |
| 166 | |
| 167 struct jvirt_barray_control { | |
| 168 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ | |
| 169 JDIMENSION rows_in_array; /* total virtual array height */ | |
| 170 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ | |
| 171 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ | |
| 172 JDIMENSION rows_in_mem; /* height of memory buffer */ | |
| 173 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | |
| 174 JDIMENSION cur_start_row; /* first logical row # in the buffer */ | |
| 175 JDIMENSION first_undef_row; /* row # of first uninitialized row */ | |
| 176 boolean pre_zero; /* pre-zero mode requested? */ | |
| 177 boolean dirty; /* do current buffer contents need written? */ | |
| 178 boolean b_s_open; /* is backing-store data valid? */ | |
| 179 jvirt_barray_ptr next; /* link to next virtual barray control block */ | |
| 180 backing_store_info b_s_info; /* System-dependent control info */ | |
| 181 }; | |
| 182 | |
| 183 | |
| 184 #ifdef MEM_STATS /* optional extra stuff for statistics */ | |
| 185 | |
| 186 LOCAL(void) | |
| 187 print_mem_stats (j_common_ptr cinfo, int pool_id) | |
| 188 { | |
| 189 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 190 small_pool_ptr shdr_ptr; | |
| 191 large_pool_ptr lhdr_ptr; | |
| 192 | |
| 193 /* Since this is only a debugging stub, we can cheat a little by using | |
| 194 * fprintf directly rather than going through the trace message code. | |
| 195 * This is helpful because message parm array can't handle longs. | |
| 196 */ | |
| 197 fprintf(stderr, "Freeing pool %d, total space = %ld\n", | |
| 198 pool_id, (long) mem->total_space_allocated); | |
| 199 | |
| 200 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; | |
| 201 lhdr_ptr = lhdr_ptr->hdr.next) { | |
| 202 fprintf(stderr, " Large chunk used %ld\n", | |
| 203 (long) lhdr_ptr->hdr.bytes_used); | |
| 204 } | |
| 205 | |
| 206 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; | |
| 207 shdr_ptr = shdr_ptr->hdr.next) { | |
| 208 fprintf(stderr, " Small chunk used %ld free %ld\n", | |
| 209 (long) shdr_ptr->hdr.bytes_used, | |
| 210 (long) shdr_ptr->hdr.bytes_left); | |
| 211 } | |
| 212 } | |
| 213 | |
| 214 #endif /* MEM_STATS */ | |
| 215 | |
| 216 | |
| 217 LOCAL(noreturn_t) | |
| 218 out_of_memory (j_common_ptr cinfo, int which) | |
| 219 /* Report an out-of-memory error and stop execution */ | |
| 220 /* If we compiled MEM_STATS support, report alloc requests before dying */ | |
| 221 { | |
| 222 #ifdef MEM_STATS | |
| 223 cinfo->err->trace_level = 2; /* force self_destruct to report stats */ | |
| 224 #endif | |
| 225 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); | |
| 226 } | |
| 227 | |
| 228 | |
| 229 /* | |
| 230 * Allocation of "small" objects. | |
| 231 * | |
| 232 * For these, we use pooled storage. When a new pool must be created, | |
| 233 * we try to get enough space for the current request plus a "slop" factor, | |
| 234 * where the slop will be the amount of leftover space in the new pool. | |
| 235 * The speed vs. space tradeoff is largely determined by the slop values. | |
| 236 * A different slop value is provided for each pool class (lifetime), | |
| 237 * and we also distinguish the first pool of a class from later ones. | |
| 238 * NOTE: the values given work fairly well on both 16- and 32-bit-int | |
| 239 * machines, but may be too small if longs are 64 bits or more. | |
| 240 */ | |
| 241 | |
| 242 static const size_t first_pool_slop[JPOOL_NUMPOOLS] = | |
| 243 { | |
| 244 1600, /* first PERMANENT pool */ | |
| 245 16000 /* first IMAGE pool */ | |
| 246 }; | |
| 247 | |
| 248 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = | |
| 249 { | |
| 250 0, /* additional PERMANENT pools */ | |
| 251 5000 /* additional IMAGE pools */ | |
| 252 }; | |
| 253 | |
| 254 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ | |
| 255 | |
| 256 | |
| 257 METHODDEF(void *) | |
| 258 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | |
| 259 /* Allocate a "small" object */ | |
| 260 { | |
| 261 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 262 small_pool_ptr hdr_ptr, prev_hdr_ptr; | |
| 263 size_t odd_bytes, min_request, slop; | |
| 264 char * data_ptr; | |
| 265 | |
| 266 /* Check for unsatisfiable request (do now to ensure no overflow below) */ | |
| 267 if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(small_pool_hdr)) | |
| 268 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ | |
| 269 | |
| 270 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | |
| 271 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); | |
| 272 if (odd_bytes > 0) | |
| 273 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; | |
| 274 | |
| 275 /* See if space is available in any existing pool */ | |
| 276 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
| 277 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
| 278 prev_hdr_ptr = NULL; | |
| 279 hdr_ptr = mem->small_list[pool_id]; | |
| 280 while (hdr_ptr != NULL) { | |
| 281 if (hdr_ptr->hdr.bytes_left >= sizeofobject) | |
| 282 break; /* found pool with enough space */ | |
| 283 prev_hdr_ptr = hdr_ptr; | |
| 284 hdr_ptr = hdr_ptr->hdr.next; | |
| 285 } | |
| 286 | |
| 287 /* Time to make a new pool? */ | |
| 288 if (hdr_ptr == NULL) { | |
| 289 /* min_request is what we need now, slop is what will be leftover */ | |
| 290 min_request = sizeofobject + SIZEOF(small_pool_hdr); | |
| 291 if (prev_hdr_ptr == NULL) /* first pool in class? */ | |
| 292 slop = first_pool_slop[pool_id]; | |
| 293 else | |
| 294 slop = extra_pool_slop[pool_id]; | |
| 295 /* Don't ask for more than MAX_ALLOC_CHUNK */ | |
| 296 if (slop > (size_t) MAX_ALLOC_CHUNK - min_request) | |
| 297 slop = (size_t) MAX_ALLOC_CHUNK - min_request; | |
| 298 /* Try to get space, if fail reduce slop and try again */ | |
| 299 for (;;) { | |
| 300 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); | |
| 301 if (hdr_ptr != NULL) | |
| 302 break; | |
| 303 slop /= 2; | |
| 304 if (slop < MIN_SLOP) /* give up when it gets real small */ | |
| 305 out_of_memory(cinfo, 2); /* jpeg_get_small failed */ | |
| 306 } | |
| 307 mem->total_space_allocated += min_request + slop; | |
| 308 /* Success, initialize the new pool header and add to end of list */ | |
| 309 hdr_ptr->hdr.next = NULL; | |
| 310 hdr_ptr->hdr.bytes_used = 0; | |
| 311 hdr_ptr->hdr.bytes_left = sizeofobject + slop; | |
| 312 if (prev_hdr_ptr == NULL) /* first pool in class? */ | |
| 313 mem->small_list[pool_id] = hdr_ptr; | |
| 314 else | |
| 315 prev_hdr_ptr->hdr.next = hdr_ptr; | |
| 316 } | |
| 317 | |
| 318 /* OK, allocate the object from the current pool */ | |
| 319 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ | |
| 320 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ | |
| 321 hdr_ptr->hdr.bytes_used += sizeofobject; | |
| 322 hdr_ptr->hdr.bytes_left -= sizeofobject; | |
| 323 | |
| 324 return (void *) data_ptr; | |
| 325 } | |
| 326 | |
| 327 | |
| 328 /* | |
| 329 * Allocation of "large" objects. | |
| 330 * | |
| 331 * The external semantics of these are the same as "small" objects, | |
| 332 * except that FAR pointers are used on 80x86. However the pool | |
| 333 * management heuristics are quite different. We assume that each | |
| 334 * request is large enough that it may as well be passed directly to | |
| 335 * jpeg_get_large; the pool management just links everything together | |
| 336 * so that we can free it all on demand. | |
| 337 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY | |
| 338 * structures. The routines that create these structures (see below) | |
| 339 * deliberately bunch rows together to ensure a large request size. | |
| 340 */ | |
| 341 | |
| 342 METHODDEF(void FAR *) | |
| 343 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | |
| 344 /* Allocate a "large" object */ | |
| 345 { | |
| 346 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 347 large_pool_ptr hdr_ptr; | |
| 348 size_t odd_bytes; | |
| 349 | |
| 350 /* Check for unsatisfiable request (do now to ensure no overflow below) */ | |
| 351 if (sizeofobject > (size_t) MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) | |
| 352 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ | |
| 353 | |
| 354 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | |
| 355 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); | |
| 356 if (odd_bytes > 0) | |
| 357 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; | |
| 358 | |
| 359 /* Always make a new pool */ | |
| 360 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
| 361 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
| 362 | |
| 363 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + | |
| 364 SIZEOF(large_pool_hdr)); | |
| 365 if (hdr_ptr == NULL) | |
| 366 out_of_memory(cinfo, 4); /* jpeg_get_large failed */ | |
| 367 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); | |
| 368 | |
| 369 /* Success, initialize the new pool header and add to list */ | |
| 370 hdr_ptr->hdr.next = mem->large_list[pool_id]; | |
| 371 /* We maintain space counts in each pool header for statistical purposes, | |
| 372 * even though they are not needed for allocation. | |
| 373 */ | |
| 374 hdr_ptr->hdr.bytes_used = sizeofobject; | |
| 375 hdr_ptr->hdr.bytes_left = 0; | |
| 376 mem->large_list[pool_id] = hdr_ptr; | |
| 377 | |
| 378 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ | |
| 379 } | |
| 380 | |
| 381 | |
| 382 /* | |
| 383 * Creation of 2-D sample arrays. | |
| 384 * The pointers are in near heap, the samples themselves in FAR heap. | |
| 385 * | |
| 386 * To minimize allocation overhead and to allow I/O of large contiguous | |
| 387 * blocks, we allocate the sample rows in groups of as many rows as possible | |
| 388 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. | |
| 389 * NB: the virtual array control routines, later in this file, know about | |
| 390 * this chunking of rows. The rowsperchunk value is left in the mem manager | |
| 391 * object so that it can be saved away if this sarray is the workspace for | |
| 392 * a virtual array. | |
| 393 */ | |
| 394 | |
| 395 METHODDEF(JSAMPARRAY) | |
| 396 alloc_sarray (j_common_ptr cinfo, int pool_id, | |
| 397 JDIMENSION samplesperrow, JDIMENSION numrows) | |
| 398 /* Allocate a 2-D sample array */ | |
| 399 { | |
| 400 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 401 JSAMPARRAY result; | |
| 402 JSAMPROW workspace; | |
| 403 JDIMENSION rowsperchunk, currow, i; | |
| 404 long ltemp; | |
| 405 | |
| 406 /* Calculate max # of rows allowed in one allocation chunk */ | |
| 407 ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) / | |
| 408 ((long) samplesperrow * SIZEOF(JSAMPLE)); | |
| 409 if (ltemp <= 0) | |
| 410 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
| 411 if (ltemp < (long) numrows) | |
| 412 rowsperchunk = (JDIMENSION) ltemp; | |
| 413 else | |
| 414 rowsperchunk = numrows; | |
| 415 mem->last_rowsperchunk = rowsperchunk; | |
| 416 | |
| 417 /* Get space for row pointers (small object) */ | |
| 418 result = (JSAMPARRAY) alloc_small(cinfo, pool_id, | |
| 419 (size_t) numrows * SIZEOF(JSAMPROW)); | |
| 420 | |
| 421 /* Get the rows themselves (large objects) */ | |
| 422 currow = 0; | |
| 423 while (currow < numrows) { | |
| 424 rowsperchunk = MIN(rowsperchunk, numrows - currow); | |
| 425 workspace = (JSAMPROW) alloc_large(cinfo, pool_id, | |
| 426 (size_t) rowsperchunk * (size_t) samplesperrow * SIZEOF(JSAMPLE)); | |
| 427 for (i = rowsperchunk; i > 0; i--) { | |
| 428 result[currow++] = workspace; | |
| 429 workspace += samplesperrow; | |
| 430 } | |
| 431 } | |
| 432 | |
| 433 return result; | |
| 434 } | |
| 435 | |
| 436 | |
| 437 /* | |
| 438 * Creation of 2-D coefficient-block arrays. | |
| 439 * This is essentially the same as the code for sample arrays, above. | |
| 440 */ | |
| 441 | |
| 442 METHODDEF(JBLOCKARRAY) | |
| 443 alloc_barray (j_common_ptr cinfo, int pool_id, | |
| 444 JDIMENSION blocksperrow, JDIMENSION numrows) | |
| 445 /* Allocate a 2-D coefficient-block array */ | |
| 446 { | |
| 447 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 448 JBLOCKARRAY result; | |
| 449 JBLOCKROW workspace; | |
| 450 JDIMENSION rowsperchunk, currow, i; | |
| 451 long ltemp; | |
| 452 | |
| 453 /* Calculate max # of rows allowed in one allocation chunk */ | |
| 454 ltemp = (MAX_ALLOC_CHUNK - SIZEOF(large_pool_hdr)) / | |
| 455 ((long) blocksperrow * SIZEOF(JBLOCK)); | |
| 456 if (ltemp <= 0) | |
| 457 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
| 458 if (ltemp < (long) numrows) | |
| 459 rowsperchunk = (JDIMENSION) ltemp; | |
| 460 else | |
| 461 rowsperchunk = numrows; | |
| 462 mem->last_rowsperchunk = rowsperchunk; | |
| 463 | |
| 464 /* Get space for row pointers (small object) */ | |
| 465 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, | |
| 466 (size_t) numrows * SIZEOF(JBLOCKROW)); | |
| 467 | |
| 468 /* Get the rows themselves (large objects) */ | |
| 469 currow = 0; | |
| 470 while (currow < numrows) { | |
| 471 rowsperchunk = MIN(rowsperchunk, numrows - currow); | |
| 472 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, | |
| 473 (size_t) rowsperchunk * (size_t) blocksperrow * SIZEOF(JBLOCK)); | |
| 474 for (i = rowsperchunk; i > 0; i--) { | |
| 475 result[currow++] = workspace; | |
| 476 workspace += blocksperrow; | |
| 477 } | |
| 478 } | |
| 479 | |
| 480 return result; | |
| 481 } | |
| 482 | |
| 483 | |
| 484 /* | |
| 485 * About virtual array management: | |
| 486 * | |
| 487 * The above "normal" array routines are only used to allocate strip buffers | |
| 488 * (as wide as the image, but just a few rows high). Full-image-sized buffers | |
| 489 * are handled as "virtual" arrays. The array is still accessed a strip at a | |
| 490 * time, but the memory manager must save the whole array for repeated | |
| 491 * accesses. The intended implementation is that there is a strip buffer in | |
| 492 * memory (as high as is possible given the desired memory limit), plus a | |
| 493 * backing file that holds the rest of the array. | |
| 494 * | |
| 495 * The request_virt_array routines are told the total size of the image and | |
| 496 * the maximum number of rows that will be accessed at once. The in-memory | |
| 497 * buffer must be at least as large as the maxaccess value. | |
| 498 * | |
| 499 * The request routines create control blocks but not the in-memory buffers. | |
| 500 * That is postponed until realize_virt_arrays is called. At that time the | |
| 501 * total amount of space needed is known (approximately, anyway), so free | |
| 502 * memory can be divided up fairly. | |
| 503 * | |
| 504 * The access_virt_array routines are responsible for making a specific strip | |
| 505 * area accessible (after reading or writing the backing file, if necessary). | |
| 506 * Note that the access routines are told whether the caller intends to modify | |
| 507 * the accessed strip; during a read-only pass this saves having to rewrite | |
| 508 * data to disk. The access routines are also responsible for pre-zeroing | |
| 509 * any newly accessed rows, if pre-zeroing was requested. | |
| 510 * | |
| 511 * In current usage, the access requests are usually for nonoverlapping | |
| 512 * strips; that is, successive access start_row numbers differ by exactly | |
| 513 * num_rows = maxaccess. This means we can get good performance with simple | |
| 514 * buffer dump/reload logic, by making the in-memory buffer be a multiple | |
| 515 * of the access height; then there will never be accesses across bufferload | |
| 516 * boundaries. The code will still work with overlapping access requests, | |
| 517 * but it doesn't handle bufferload overlaps very efficiently. | |
| 518 */ | |
| 519 | |
| 520 | |
| 521 METHODDEF(jvirt_sarray_ptr) | |
| 522 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | |
| 523 JDIMENSION samplesperrow, JDIMENSION numrows, | |
| 524 JDIMENSION maxaccess) | |
| 525 /* Request a virtual 2-D sample array */ | |
| 526 { | |
| 527 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 528 jvirt_sarray_ptr result; | |
| 529 | |
| 530 /* Only IMAGE-lifetime virtual arrays are currently supported */ | |
| 531 if (pool_id != JPOOL_IMAGE) | |
| 532 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
| 533 | |
| 534 /* get control block */ | |
| 535 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, | |
| 536 SIZEOF(struct jvirt_sarray_control)); | |
| 537 | |
| 538 result->mem_buffer = NULL; /* marks array not yet realized */ | |
| 539 result->rows_in_array = numrows; | |
| 540 result->samplesperrow = samplesperrow; | |
| 541 result->maxaccess = maxaccess; | |
| 542 result->pre_zero = pre_zero; | |
| 543 result->b_s_open = FALSE; /* no associated backing-store object */ | |
| 544 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ | |
| 545 mem->virt_sarray_list = result; | |
| 546 | |
| 547 return result; | |
| 548 } | |
| 549 | |
| 550 | |
| 551 METHODDEF(jvirt_barray_ptr) | |
| 552 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | |
| 553 JDIMENSION blocksperrow, JDIMENSION numrows, | |
| 554 JDIMENSION maxaccess) | |
| 555 /* Request a virtual 2-D coefficient-block array */ | |
| 556 { | |
| 557 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 558 jvirt_barray_ptr result; | |
| 559 | |
| 560 /* Only IMAGE-lifetime virtual arrays are currently supported */ | |
| 561 if (pool_id != JPOOL_IMAGE) | |
| 562 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
| 563 | |
| 564 /* get control block */ | |
| 565 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, | |
| 566 SIZEOF(struct jvirt_barray_control)); | |
| 567 | |
| 568 result->mem_buffer = NULL; /* marks array not yet realized */ | |
| 569 result->rows_in_array = numrows; | |
| 570 result->blocksperrow = blocksperrow; | |
| 571 result->maxaccess = maxaccess; | |
| 572 result->pre_zero = pre_zero; | |
| 573 result->b_s_open = FALSE; /* no associated backing-store object */ | |
| 574 result->next = mem->virt_barray_list; /* add to list of virtual arrays */ | |
| 575 mem->virt_barray_list = result; | |
| 576 | |
| 577 return result; | |
| 578 } | |
| 579 | |
| 580 | |
| 581 METHODDEF(void) | |
| 582 realize_virt_arrays (j_common_ptr cinfo) | |
| 583 /* Allocate the in-memory buffers for any unrealized virtual arrays */ | |
| 584 { | |
| 585 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 586 long bytesperrow, space_per_minheight, maximum_space; | |
| 587 long avail_mem, minheights, max_minheights; | |
| 588 jvirt_sarray_ptr sptr; | |
| 589 jvirt_barray_ptr bptr; | |
| 590 | |
| 591 /* Compute the minimum space needed (maxaccess rows in each buffer) | |
| 592 * and the maximum space needed (full image height in each buffer). | |
| 593 * These may be of use to the system-dependent jpeg_mem_available routine. | |
| 594 */ | |
| 595 space_per_minheight = 0; | |
| 596 maximum_space = 0; | |
| 597 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
| 598 if (sptr->mem_buffer == NULL) { /* if not realized yet */ | |
| 599 bytesperrow = (long) sptr->samplesperrow * SIZEOF(JSAMPLE); | |
| 600 space_per_minheight += (long) sptr->maxaccess * bytesperrow; | |
| 601 maximum_space += (long) sptr->rows_in_array * bytesperrow; | |
| 602 } | |
| 603 } | |
| 604 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
| 605 if (bptr->mem_buffer == NULL) { /* if not realized yet */ | |
| 606 bytesperrow = (long) bptr->blocksperrow * SIZEOF(JBLOCK); | |
| 607 space_per_minheight += (long) bptr->maxaccess * bytesperrow; | |
| 608 maximum_space += (long) bptr->rows_in_array * bytesperrow; | |
| 609 } | |
| 610 } | |
| 611 | |
| 612 if (space_per_minheight <= 0) | |
| 613 return; /* no unrealized arrays, no work */ | |
| 614 | |
| 615 /* Determine amount of memory to actually use; this is system-dependent. */ | |
| 616 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, | |
| 617 (long) mem->total_space_allocated); | |
| 618 | |
| 619 /* If the maximum space needed is available, make all the buffers full | |
| 620 * height; otherwise parcel it out with the same number of minheights | |
| 621 * in each buffer. | |
| 622 */ | |
| 623 if (avail_mem >= maximum_space) | |
| 624 max_minheights = 1000000000L; | |
| 625 else { | |
| 626 max_minheights = avail_mem / space_per_minheight; | |
| 627 /* If there doesn't seem to be enough space, try to get the minimum | |
| 628 * anyway. This allows a "stub" implementation of jpeg_mem_available(). | |
| 629 */ | |
| 630 if (max_minheights <= 0) | |
| 631 max_minheights = 1; | |
| 632 } | |
| 633 | |
| 634 /* Allocate the in-memory buffers and initialize backing store as needed. */ | |
| 635 | |
| 636 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
| 637 if (sptr->mem_buffer == NULL) { /* if not realized yet */ | |
| 638 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; | |
| 639 if (minheights <= max_minheights) { | |
| 640 /* This buffer fits in memory */ | |
| 641 sptr->rows_in_mem = sptr->rows_in_array; | |
| 642 } else { | |
| 643 /* It doesn't fit in memory, create backing store. */ | |
| 644 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); | |
| 645 jpeg_open_backing_store(cinfo, & sptr->b_s_info, | |
| 646 (long) sptr->rows_in_array * | |
| 647 (long) sptr->samplesperrow * | |
| 648 (long) SIZEOF(JSAMPLE)); | |
| 649 sptr->b_s_open = TRUE; | |
| 650 } | |
| 651 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, | |
| 652 sptr->samplesperrow, sptr->rows_in_mem); | |
| 653 sptr->rowsperchunk = mem->last_rowsperchunk; | |
| 654 sptr->cur_start_row = 0; | |
| 655 sptr->first_undef_row = 0; | |
| 656 sptr->dirty = FALSE; | |
| 657 } | |
| 658 } | |
| 659 | |
| 660 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
| 661 if (bptr->mem_buffer == NULL) { /* if not realized yet */ | |
| 662 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; | |
| 663 if (minheights <= max_minheights) { | |
| 664 /* This buffer fits in memory */ | |
| 665 bptr->rows_in_mem = bptr->rows_in_array; | |
| 666 } else { | |
| 667 /* It doesn't fit in memory, create backing store. */ | |
| 668 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); | |
| 669 jpeg_open_backing_store(cinfo, & bptr->b_s_info, | |
| 670 (long) bptr->rows_in_array * | |
| 671 (long) bptr->blocksperrow * | |
| 672 (long) SIZEOF(JBLOCK)); | |
| 673 bptr->b_s_open = TRUE; | |
| 674 } | |
| 675 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, | |
| 676 bptr->blocksperrow, bptr->rows_in_mem); | |
| 677 bptr->rowsperchunk = mem->last_rowsperchunk; | |
| 678 bptr->cur_start_row = 0; | |
| 679 bptr->first_undef_row = 0; | |
| 680 bptr->dirty = FALSE; | |
| 681 } | |
| 682 } | |
| 683 } | |
| 684 | |
| 685 | |
| 686 LOCAL(void) | |
| 687 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) | |
| 688 /* Do backing store read or write of a virtual sample array */ | |
| 689 { | |
| 690 long bytesperrow, file_offset, byte_count, rows, thisrow, i; | |
| 691 | |
| 692 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); | |
| 693 file_offset = (long) ptr->cur_start_row * bytesperrow; | |
| 694 /* Loop to read or write each allocation chunk in mem_buffer */ | |
| 695 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | |
| 696 /* One chunk, but check for short chunk at end of buffer */ | |
| 697 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | |
| 698 /* Transfer no more than is currently defined */ | |
| 699 thisrow = (long) ptr->cur_start_row + i; | |
| 700 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | |
| 701 /* Transfer no more than fits in file */ | |
| 702 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | |
| 703 if (rows <= 0) /* this chunk might be past end of file! */ | |
| 704 break; | |
| 705 byte_count = rows * bytesperrow; | |
| 706 if (writing) | |
| 707 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | |
| 708 (void FAR *) ptr->mem_buffer[i], | |
| 709 file_offset, byte_count); | |
| 710 else | |
| 711 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | |
| 712 (void FAR *) ptr->mem_buffer[i], | |
| 713 file_offset, byte_count); | |
| 714 file_offset += byte_count; | |
| 715 } | |
| 716 } | |
| 717 | |
| 718 | |
| 719 LOCAL(void) | |
| 720 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) | |
| 721 /* Do backing store read or write of a virtual coefficient-block array */ | |
| 722 { | |
| 723 long bytesperrow, file_offset, byte_count, rows, thisrow, i; | |
| 724 | |
| 725 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); | |
| 726 file_offset = (long) ptr->cur_start_row * bytesperrow; | |
| 727 /* Loop to read or write each allocation chunk in mem_buffer */ | |
| 728 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | |
| 729 /* One chunk, but check for short chunk at end of buffer */ | |
| 730 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | |
| 731 /* Transfer no more than is currently defined */ | |
| 732 thisrow = (long) ptr->cur_start_row + i; | |
| 733 rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | |
| 734 /* Transfer no more than fits in file */ | |
| 735 rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | |
| 736 if (rows <= 0) /* this chunk might be past end of file! */ | |
| 737 break; | |
| 738 byte_count = rows * bytesperrow; | |
| 739 if (writing) | |
| 740 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | |
| 741 (void FAR *) ptr->mem_buffer[i], | |
| 742 file_offset, byte_count); | |
| 743 else | |
| 744 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | |
| 745 (void FAR *) ptr->mem_buffer[i], | |
| 746 file_offset, byte_count); | |
| 747 file_offset += byte_count; | |
| 748 } | |
| 749 } | |
| 750 | |
| 751 | |
| 752 METHODDEF(JSAMPARRAY) | |
| 753 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, | |
| 754 JDIMENSION start_row, JDIMENSION num_rows, | |
| 755 boolean writable) | |
| 756 /* Access the part of a virtual sample array starting at start_row */ | |
| 757 /* and extending for num_rows rows. writable is true if */ | |
| 758 /* caller intends to modify the accessed area. */ | |
| 759 { | |
| 760 JDIMENSION end_row = start_row + num_rows; | |
| 761 JDIMENSION undef_row; | |
| 762 | |
| 763 /* debugging check */ | |
| 764 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | |
| 765 ptr->mem_buffer == NULL) | |
| 766 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
| 767 | |
| 768 /* Make the desired part of the virtual array accessible */ | |
| 769 if (start_row < ptr->cur_start_row || | |
| 770 end_row > ptr->cur_start_row + ptr->rows_in_mem) { | |
| 771 if (! ptr->b_s_open) | |
| 772 ERREXIT(cinfo, JERR_VIRTUAL_BUG); | |
| 773 /* Flush old buffer contents if necessary */ | |
| 774 if (ptr->dirty) { | |
| 775 do_sarray_io(cinfo, ptr, TRUE); | |
| 776 ptr->dirty = FALSE; | |
| 777 } | |
| 778 /* Decide what part of virtual array to access. | |
| 779 * Algorithm: if target address > current window, assume forward scan, | |
| 780 * load starting at target address. If target address < current window, | |
| 781 * assume backward scan, load so that target area is top of window. | |
| 782 * Note that when switching from forward write to forward read, will have | |
| 783 * start_row = 0, so the limiting case applies and we load from 0 anyway. | |
| 784 */ | |
| 785 if (start_row > ptr->cur_start_row) { | |
| 786 ptr->cur_start_row = start_row; | |
| 787 } else { | |
| 788 /* use long arithmetic here to avoid overflow & unsigned problems */ | |
| 789 long ltemp; | |
| 790 | |
| 791 ltemp = (long) end_row - (long) ptr->rows_in_mem; | |
| 792 if (ltemp < 0) | |
| 793 ltemp = 0; /* don't fall off front end of file */ | |
| 794 ptr->cur_start_row = (JDIMENSION) ltemp; | |
| 795 } | |
| 796 /* Read in the selected part of the array. | |
| 797 * During the initial write pass, we will do no actual read | |
| 798 * because the selected part is all undefined. | |
| 799 */ | |
| 800 do_sarray_io(cinfo, ptr, FALSE); | |
| 801 } | |
| 802 /* Ensure the accessed part of the array is defined; prezero if needed. | |
| 803 * To improve locality of access, we only prezero the part of the array | |
| 804 * that the caller is about to access, not the entire in-memory array. | |
| 805 */ | |
| 806 if (ptr->first_undef_row < end_row) { | |
| 807 if (ptr->first_undef_row < start_row) { | |
| 808 if (writable) /* writer skipped over a section of array */ | |
| 809 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
| 810 undef_row = start_row; /* but reader is allowed to read ahead */ | |
| 811 } else { | |
| 812 undef_row = ptr->first_undef_row; | |
| 813 } | |
| 814 if (writable) | |
| 815 ptr->first_undef_row = end_row; | |
| 816 if (ptr->pre_zero) { | |
| 817 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); | |
| 818 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | |
| 819 end_row -= ptr->cur_start_row; | |
| 820 while (undef_row < end_row) { | |
| 821 FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | |
| 822 undef_row++; | |
| 823 } | |
| 824 } else { | |
| 825 if (! writable) /* reader looking at undefined data */ | |
| 826 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
| 827 } | |
| 828 } | |
| 829 /* Flag the buffer dirty if caller will write in it */ | |
| 830 if (writable) | |
| 831 ptr->dirty = TRUE; | |
| 832 /* Return address of proper part of the buffer */ | |
| 833 return ptr->mem_buffer + (start_row - ptr->cur_start_row); | |
| 834 } | |
| 835 | |
| 836 | |
| 837 METHODDEF(JBLOCKARRAY) | |
| 838 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, | |
| 839 JDIMENSION start_row, JDIMENSION num_rows, | |
| 840 boolean writable) | |
| 841 /* Access the part of a virtual block array starting at start_row */ | |
| 842 /* and extending for num_rows rows. writable is true if */ | |
| 843 /* caller intends to modify the accessed area. */ | |
| 844 { | |
| 845 JDIMENSION end_row = start_row + num_rows; | |
| 846 JDIMENSION undef_row; | |
| 847 | |
| 848 /* debugging check */ | |
| 849 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | |
| 850 ptr->mem_buffer == NULL) | |
| 851 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
| 852 | |
| 853 /* Make the desired part of the virtual array accessible */ | |
| 854 if (start_row < ptr->cur_start_row || | |
| 855 end_row > ptr->cur_start_row + ptr->rows_in_mem) { | |
| 856 if (! ptr->b_s_open) | |
| 857 ERREXIT(cinfo, JERR_VIRTUAL_BUG); | |
| 858 /* Flush old buffer contents if necessary */ | |
| 859 if (ptr->dirty) { | |
| 860 do_barray_io(cinfo, ptr, TRUE); | |
| 861 ptr->dirty = FALSE; | |
| 862 } | |
| 863 /* Decide what part of virtual array to access. | |
| 864 * Algorithm: if target address > current window, assume forward scan, | |
| 865 * load starting at target address. If target address < current window, | |
| 866 * assume backward scan, load so that target area is top of window. | |
| 867 * Note that when switching from forward write to forward read, will have | |
| 868 * start_row = 0, so the limiting case applies and we load from 0 anyway. | |
| 869 */ | |
| 870 if (start_row > ptr->cur_start_row) { | |
| 871 ptr->cur_start_row = start_row; | |
| 872 } else { | |
| 873 /* use long arithmetic here to avoid overflow & unsigned problems */ | |
| 874 long ltemp; | |
| 875 | |
| 876 ltemp = (long) end_row - (long) ptr->rows_in_mem; | |
| 877 if (ltemp < 0) | |
| 878 ltemp = 0; /* don't fall off front end of file */ | |
| 879 ptr->cur_start_row = (JDIMENSION) ltemp; | |
| 880 } | |
| 881 /* Read in the selected part of the array. | |
| 882 * During the initial write pass, we will do no actual read | |
| 883 * because the selected part is all undefined. | |
| 884 */ | |
| 885 do_barray_io(cinfo, ptr, FALSE); | |
| 886 } | |
| 887 /* Ensure the accessed part of the array is defined; prezero if needed. | |
| 888 * To improve locality of access, we only prezero the part of the array | |
| 889 * that the caller is about to access, not the entire in-memory array. | |
| 890 */ | |
| 891 if (ptr->first_undef_row < end_row) { | |
| 892 if (ptr->first_undef_row < start_row) { | |
| 893 if (writable) /* writer skipped over a section of array */ | |
| 894 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
| 895 undef_row = start_row; /* but reader is allowed to read ahead */ | |
| 896 } else { | |
| 897 undef_row = ptr->first_undef_row; | |
| 898 } | |
| 899 if (writable) | |
| 900 ptr->first_undef_row = end_row; | |
| 901 if (ptr->pre_zero) { | |
| 902 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); | |
| 903 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | |
| 904 end_row -= ptr->cur_start_row; | |
| 905 while (undef_row < end_row) { | |
| 906 FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | |
| 907 undef_row++; | |
| 908 } | |
| 909 } else { | |
| 910 if (! writable) /* reader looking at undefined data */ | |
| 911 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
| 912 } | |
| 913 } | |
| 914 /* Flag the buffer dirty if caller will write in it */ | |
| 915 if (writable) | |
| 916 ptr->dirty = TRUE; | |
| 917 /* Return address of proper part of the buffer */ | |
| 918 return ptr->mem_buffer + (start_row - ptr->cur_start_row); | |
| 919 } | |
| 920 | |
| 921 | |
| 922 /* | |
| 923 * Release all objects belonging to a specified pool. | |
| 924 */ | |
| 925 | |
| 926 METHODDEF(void) | |
| 927 free_pool (j_common_ptr cinfo, int pool_id) | |
| 928 { | |
| 929 my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
| 930 small_pool_ptr shdr_ptr; | |
| 931 large_pool_ptr lhdr_ptr; | |
| 932 size_t space_freed; | |
| 933 | |
| 934 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
| 935 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
| 936 | |
| 937 #ifdef MEM_STATS | |
| 938 if (cinfo->err->trace_level > 1) | |
| 939 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ | |
| 940 #endif | |
| 941 | |
| 942 /* If freeing IMAGE pool, close any virtual arrays first */ | |
| 943 if (pool_id == JPOOL_IMAGE) { | |
| 944 jvirt_sarray_ptr sptr; | |
| 945 jvirt_barray_ptr bptr; | |
| 946 | |
| 947 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
| 948 if (sptr->b_s_open) { /* there may be no backing store */ | |
| 949 sptr->b_s_open = FALSE; /* prevent recursive close if error */ | |
| 950 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); | |
| 951 } | |
| 952 } | |
| 953 mem->virt_sarray_list = NULL; | |
| 954 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
| 955 if (bptr->b_s_open) { /* there may be no backing store */ | |
| 956 bptr->b_s_open = FALSE; /* prevent recursive close if error */ | |
| 957 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); | |
| 958 } | |
| 959 } | |
| 960 mem->virt_barray_list = NULL; | |
| 961 } | |
| 962 | |
| 963 /* Release large objects */ | |
| 964 lhdr_ptr = mem->large_list[pool_id]; | |
| 965 mem->large_list[pool_id] = NULL; | |
| 966 | |
| 967 while (lhdr_ptr != NULL) { | |
| 968 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; | |
| 969 space_freed = lhdr_ptr->hdr.bytes_used + | |
| 970 lhdr_ptr->hdr.bytes_left + | |
| 971 SIZEOF(large_pool_hdr); | |
| 972 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); | |
| 973 mem->total_space_allocated -= space_freed; | |
| 974 lhdr_ptr = next_lhdr_ptr; | |
| 975 } | |
| 976 | |
| 977 /* Release small objects */ | |
| 978 shdr_ptr = mem->small_list[pool_id]; | |
| 979 mem->small_list[pool_id] = NULL; | |
| 980 | |
| 981 while (shdr_ptr != NULL) { | |
| 982 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; | |
| 983 space_freed = shdr_ptr->hdr.bytes_used + | |
| 984 shdr_ptr->hdr.bytes_left + | |
| 985 SIZEOF(small_pool_hdr); | |
| 986 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); | |
| 987 mem->total_space_allocated -= space_freed; | |
| 988 shdr_ptr = next_shdr_ptr; | |
| 989 } | |
| 990 } | |
| 991 | |
| 992 | |
| 993 /* | |
| 994 * Close up shop entirely. | |
| 995 * Note that this cannot be called unless cinfo->mem is non-NULL. | |
| 996 */ | |
| 997 | |
| 998 METHODDEF(void) | |
| 999 self_destruct (j_common_ptr cinfo) | |
| 1000 { | |
| 1001 int pool; | |
| 1002 | |
| 1003 /* Close all backing store, release all memory. | |
| 1004 * Releasing pools in reverse order might help avoid fragmentation | |
| 1005 * with some (brain-damaged) malloc libraries. | |
| 1006 */ | |
| 1007 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | |
| 1008 free_pool(cinfo, pool); | |
| 1009 } | |
| 1010 | |
| 1011 /* Release the memory manager control block too. */ | |
| 1012 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); | |
| 1013 cinfo->mem = NULL; /* ensures I will be called only once */ | |
| 1014 | |
| 1015 jpeg_mem_term(cinfo); /* system-dependent cleanup */ | |
| 1016 } | |
| 1017 | |
| 1018 | |
| 1019 /* | |
| 1020 * Memory manager initialization. | |
| 1021 * When this is called, only the error manager pointer is valid in cinfo! | |
| 1022 */ | |
| 1023 | |
| 1024 GLOBAL(void) | |
| 1025 jinit_memory_mgr (j_common_ptr cinfo) | |
| 1026 { | |
| 1027 my_mem_ptr mem; | |
| 1028 long max_to_use; | |
| 1029 int pool; | |
| 1030 size_t test_mac; | |
| 1031 | |
| 1032 cinfo->mem = NULL; /* for safety if init fails */ | |
| 1033 | |
| 1034 /* Check for configuration errors. | |
| 1035 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably | |
| 1036 * doesn't reflect any real hardware alignment requirement. | |
| 1037 * The test is a little tricky: for X>0, X and X-1 have no one-bits | |
| 1038 * in common if and only if X is a power of 2, ie has only one one-bit. | |
| 1039 * Some compilers may give an "unreachable code" warning here; ignore it. | |
| 1040 */ | |
| 1041 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) | |
| 1042 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); | |
| 1043 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be | |
| 1044 * a multiple of SIZEOF(ALIGN_TYPE). | |
| 1045 * Again, an "unreachable code" warning may be ignored here. | |
| 1046 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. | |
| 1047 */ | |
| 1048 test_mac = (size_t) MAX_ALLOC_CHUNK; | |
| 1049 if ((long) test_mac != MAX_ALLOC_CHUNK || | |
| 1050 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) | |
| 1051 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); | |
| 1052 | |
| 1053 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ | |
| 1054 | |
| 1055 /* Attempt to allocate memory manager's control block */ | |
| 1056 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); | |
| 1057 | |
| 1058 if (mem == NULL) { | |
| 1059 jpeg_mem_term(cinfo); /* system-dependent cleanup */ | |
| 1060 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); | |
| 1061 } | |
| 1062 | |
| 1063 /* OK, fill in the method pointers */ | |
| 1064 mem->pub.alloc_small = alloc_small; | |
| 1065 mem->pub.alloc_large = alloc_large; | |
| 1066 mem->pub.alloc_sarray = alloc_sarray; | |
| 1067 mem->pub.alloc_barray = alloc_barray; | |
| 1068 mem->pub.request_virt_sarray = request_virt_sarray; | |
| 1069 mem->pub.request_virt_barray = request_virt_barray; | |
| 1070 mem->pub.realize_virt_arrays = realize_virt_arrays; | |
| 1071 mem->pub.access_virt_sarray = access_virt_sarray; | |
| 1072 mem->pub.access_virt_barray = access_virt_barray; | |
| 1073 mem->pub.free_pool = free_pool; | |
| 1074 mem->pub.self_destruct = self_destruct; | |
| 1075 | |
| 1076 /* Make MAX_ALLOC_CHUNK accessible to other modules */ | |
| 1077 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; | |
| 1078 | |
| 1079 /* Initialize working state */ | |
| 1080 mem->pub.max_memory_to_use = max_to_use; | |
| 1081 | |
| 1082 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | |
| 1083 mem->small_list[pool] = NULL; | |
| 1084 mem->large_list[pool] = NULL; | |
| 1085 } | |
| 1086 mem->virt_sarray_list = NULL; | |
| 1087 mem->virt_barray_list = NULL; | |
| 1088 | |
| 1089 mem->total_space_allocated = SIZEOF(my_memory_mgr); | |
| 1090 | |
| 1091 /* Declare ourselves open for business */ | |
| 1092 cinfo->mem = &mem->pub; | |
| 1093 | |
| 1094 /* Check for an environment variable JPEGMEM; if found, override the | |
| 1095 * default max_memory setting from jpeg_mem_init. Note that the | |
| 1096 * surrounding application may again override this value. | |
| 1097 * If your system doesn't support getenv(), define NO_GETENV to disable | |
| 1098 * this feature. | |
| 1099 */ | |
| 1100 #ifndef NO_GETENV | |
| 1101 { char * memenv; | |
| 1102 | |
| 1103 if ((memenv = getenv("JPEGMEM")) != NULL) { | |
| 1104 char ch = 'x'; | |
| 1105 | |
| 1106 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { | |
| 1107 if (ch == 'm' || ch == 'M') | |
| 1108 max_to_use *= 1000L; | |
| 1109 mem->pub.max_memory_to_use = max_to_use * 1000L; | |
| 1110 } | |
| 1111 } | |
| 1112 } | |
| 1113 #endif | |
| 1114 | |
| 1115 } |
