Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jidctfst.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jidctfst.c | |
| 3 * | |
| 4 * Copyright (C) 1994-1998, Thomas G. Lane. | |
| 5 * Modified 2015-2017 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains a fast, not so accurate integer implementation of the | |
| 10 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | |
| 11 * must also perform dequantization of the input coefficients. | |
| 12 * | |
| 13 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | |
| 14 * on each row (or vice versa, but it's more convenient to emit a row at | |
| 15 * a time). Direct algorithms are also available, but they are much more | |
| 16 * complex and seem not to be any faster when reduced to code. | |
| 17 * | |
| 18 * This implementation is based on Arai, Agui, and Nakajima's algorithm for | |
| 19 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |
| 20 * Japanese, but the algorithm is described in the Pennebaker & Mitchell | |
| 21 * JPEG textbook (see REFERENCES section in file README). The following code | |
| 22 * is based directly on figure 4-8 in P&M. | |
| 23 * While an 8-point DCT cannot be done in less than 11 multiplies, it is | |
| 24 * possible to arrange the computation so that many of the multiplies are | |
| 25 * simple scalings of the final outputs. These multiplies can then be | |
| 26 * folded into the multiplications or divisions by the JPEG quantization | |
| 27 * table entries. The AA&N method leaves only 5 multiplies and 29 adds | |
| 28 * to be done in the DCT itself. | |
| 29 * The primary disadvantage of this method is that with fixed-point math, | |
| 30 * accuracy is lost due to imprecise representation of the scaled | |
| 31 * quantization values. The smaller the quantization table entry, the less | |
| 32 * precise the scaled value, so this implementation does worse with high- | |
| 33 * quality-setting files than with low-quality ones. | |
| 34 */ | |
| 35 | |
| 36 #define JPEG_INTERNALS | |
| 37 #include "jinclude.h" | |
| 38 #include "jpeglib.h" | |
| 39 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
| 40 | |
| 41 #ifdef DCT_IFAST_SUPPORTED | |
| 42 | |
| 43 | |
| 44 /* | |
| 45 * This module is specialized to the case DCTSIZE = 8. | |
| 46 */ | |
| 47 | |
| 48 #if DCTSIZE != 8 | |
| 49 Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ | |
| 50 #endif | |
| 51 | |
| 52 | |
| 53 /* Scaling decisions are generally the same as in the LL&M algorithm; | |
| 54 * see jidctint.c for more details. However, we choose to descale | |
| 55 * (right shift) multiplication products as soon as they are formed, | |
| 56 * rather than carrying additional fractional bits into subsequent additions. | |
| 57 * This compromises accuracy slightly, but it lets us save a few shifts. | |
| 58 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | |
| 59 * everywhere except in the multiplications proper; this saves a good deal | |
| 60 * of work on 16-bit-int machines. | |
| 61 * | |
| 62 * The dequantized coefficients are not integers because the AA&N scaling | |
| 63 * factors have been incorporated. We represent them scaled up by PASS1_BITS, | |
| 64 * so that the first and second IDCT rounds have the same input scaling. | |
| 65 * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to | |
| 66 * avoid a descaling shift; this compromises accuracy rather drastically | |
| 67 * for small quantization table entries, but it saves a lot of shifts. | |
| 68 * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, | |
| 69 * so we use a much larger scaling factor to preserve accuracy. | |
| 70 * | |
| 71 * A final compromise is to represent the multiplicative constants to only | |
| 72 * 8 fractional bits, rather than 13. This saves some shifting work on some | |
| 73 * machines, and may also reduce the cost of multiplication (since there | |
| 74 * are fewer one-bits in the constants). | |
| 75 */ | |
| 76 | |
| 77 #if BITS_IN_JSAMPLE == 8 | |
| 78 #define CONST_BITS 8 | |
| 79 #define PASS1_BITS 2 | |
| 80 #else | |
| 81 #define CONST_BITS 8 | |
| 82 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
| 83 #endif | |
| 84 | |
| 85 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
| 86 * causing a lot of useless floating-point operations at run time. | |
| 87 * To get around this we use the following pre-calculated constants. | |
| 88 * If you change CONST_BITS you may want to add appropriate values. | |
| 89 * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
| 90 */ | |
| 91 | |
| 92 #if CONST_BITS == 8 | |
| 93 #define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ | |
| 94 #define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ | |
| 95 #define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ | |
| 96 #define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ | |
| 97 #else | |
| 98 #define FIX_1_082392200 FIX(1.082392200) | |
| 99 #define FIX_1_414213562 FIX(1.414213562) | |
| 100 #define FIX_1_847759065 FIX(1.847759065) | |
| 101 #define FIX_2_613125930 FIX(2.613125930) | |
| 102 #endif | |
| 103 | |
| 104 | |
| 105 /* We can gain a little more speed, with a further compromise in accuracy, | |
| 106 * by omitting the addition in a descaling shift. This yields an incorrectly | |
| 107 * rounded result half the time... | |
| 108 */ | |
| 109 | |
| 110 #ifndef USE_ACCURATE_ROUNDING | |
| 111 #undef DESCALE | |
| 112 #define DESCALE(x,n) RIGHT_SHIFT(x, n) | |
| 113 #endif | |
| 114 | |
| 115 | |
| 116 /* Multiply a DCTELEM variable by an INT32 constant, and immediately | |
| 117 * descale to yield a DCTELEM result. | |
| 118 */ | |
| 119 | |
| 120 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | |
| 121 | |
| 122 | |
| 123 /* Dequantize a coefficient by multiplying it by the multiplier-table | |
| 124 * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 | |
| 125 * multiplication will do. For 12-bit data, the multiplier table is | |
| 126 * declared INT32, so a 32-bit multiply will be used. | |
| 127 */ | |
| 128 | |
| 129 #if BITS_IN_JSAMPLE == 8 | |
| 130 #define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) | |
| 131 #else | |
| 132 #define DEQUANTIZE(coef,quantval) \ | |
| 133 DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) | |
| 134 #endif | |
| 135 | |
| 136 | |
| 137 /* | |
| 138 * Perform dequantization and inverse DCT on one block of coefficients. | |
| 139 * | |
| 140 * cK represents cos(K*pi/16). | |
| 141 */ | |
| 142 | |
| 143 GLOBAL(void) | |
| 144 jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 145 JCOEFPTR coef_block, | |
| 146 JSAMPARRAY output_buf, JDIMENSION output_col) | |
| 147 { | |
| 148 DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
| 149 DCTELEM tmp10, tmp11, tmp12, tmp13; | |
| 150 DCTELEM z5, z10, z11, z12, z13; | |
| 151 JCOEFPTR inptr; | |
| 152 IFAST_MULT_TYPE * quantptr; | |
| 153 int * wsptr; | |
| 154 JSAMPROW outptr; | |
| 155 JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
| 156 int ctr; | |
| 157 int workspace[DCTSIZE2]; /* buffers data between passes */ | |
| 158 SHIFT_TEMPS /* for DESCALE */ | |
| 159 ISHIFT_TEMPS /* for IRIGHT_SHIFT */ | |
| 160 | |
| 161 /* Pass 1: process columns from input, store into work array. */ | |
| 162 | |
| 163 inptr = coef_block; | |
| 164 quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; | |
| 165 wsptr = workspace; | |
| 166 for (ctr = DCTSIZE; ctr > 0; ctr--) { | |
| 167 /* Due to quantization, we will usually find that many of the input | |
| 168 * coefficients are zero, especially the AC terms. We can exploit this | |
| 169 * by short-circuiting the IDCT calculation for any column in which all | |
| 170 * the AC terms are zero. In that case each output is equal to the | |
| 171 * DC coefficient (with scale factor as needed). | |
| 172 * With typical images and quantization tables, half or more of the | |
| 173 * column DCT calculations can be simplified this way. | |
| 174 */ | |
| 175 | |
| 176 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |
| 177 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | |
| 178 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | |
| 179 inptr[DCTSIZE*7] == 0) { | |
| 180 /* AC terms all zero */ | |
| 181 int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
| 182 | |
| 183 wsptr[DCTSIZE*0] = dcval; | |
| 184 wsptr[DCTSIZE*1] = dcval; | |
| 185 wsptr[DCTSIZE*2] = dcval; | |
| 186 wsptr[DCTSIZE*3] = dcval; | |
| 187 wsptr[DCTSIZE*4] = dcval; | |
| 188 wsptr[DCTSIZE*5] = dcval; | |
| 189 wsptr[DCTSIZE*6] = dcval; | |
| 190 wsptr[DCTSIZE*7] = dcval; | |
| 191 | |
| 192 inptr++; /* advance pointers to next column */ | |
| 193 quantptr++; | |
| 194 wsptr++; | |
| 195 continue; | |
| 196 } | |
| 197 | |
| 198 /* Even part */ | |
| 199 | |
| 200 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
| 201 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |
| 202 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | |
| 203 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |
| 204 | |
| 205 tmp10 = tmp0 + tmp2; /* phase 3 */ | |
| 206 tmp11 = tmp0 - tmp2; | |
| 207 | |
| 208 tmp13 = tmp1 + tmp3; /* phases 5-3 */ | |
| 209 tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ | |
| 210 | |
| 211 tmp0 = tmp10 + tmp13; /* phase 2 */ | |
| 212 tmp3 = tmp10 - tmp13; | |
| 213 tmp1 = tmp11 + tmp12; | |
| 214 tmp2 = tmp11 - tmp12; | |
| 215 | |
| 216 /* Odd part */ | |
| 217 | |
| 218 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
| 219 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
| 220 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
| 221 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
| 222 | |
| 223 z13 = tmp6 + tmp5; /* phase 6 */ | |
| 224 z10 = tmp6 - tmp5; | |
| 225 z11 = tmp4 + tmp7; | |
| 226 z12 = tmp4 - tmp7; | |
| 227 | |
| 228 tmp7 = z11 + z13; /* phase 5 */ | |
| 229 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | |
| 230 | |
| 231 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | |
| 232 tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */ | |
| 233 tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */ | |
| 234 | |
| 235 tmp6 = tmp12 - tmp7; /* phase 2 */ | |
| 236 tmp5 = tmp11 - tmp6; | |
| 237 tmp4 = tmp10 - tmp5; | |
| 238 | |
| 239 wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); | |
| 240 wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); | |
| 241 wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); | |
| 242 wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); | |
| 243 wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); | |
| 244 wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); | |
| 245 wsptr[DCTSIZE*3] = (int) (tmp3 + tmp4); | |
| 246 wsptr[DCTSIZE*4] = (int) (tmp3 - tmp4); | |
| 247 | |
| 248 inptr++; /* advance pointers to next column */ | |
| 249 quantptr++; | |
| 250 wsptr++; | |
| 251 } | |
| 252 | |
| 253 /* Pass 2: process rows from work array, store into output array. | |
| 254 * Note that we must descale the results by a factor of 8 == 2**3, | |
| 255 * and also undo the PASS1_BITS scaling. | |
| 256 */ | |
| 257 | |
| 258 wsptr = workspace; | |
| 259 for (ctr = 0; ctr < DCTSIZE; ctr++) { | |
| 260 outptr = output_buf[ctr] + output_col; | |
| 261 | |
| 262 /* Add range center and fudge factor for final descale and range-limit. */ | |
| 263 z5 = (DCTELEM) wsptr[0] + | |
| 264 ((((DCTELEM) RANGE_CENTER) << (PASS1_BITS+3)) + | |
| 265 (1 << (PASS1_BITS+2))); | |
| 266 | |
| 267 /* Rows of zeroes can be exploited in the same way as we did with columns. | |
| 268 * However, the column calculation has created many nonzero AC terms, so | |
| 269 * the simplification applies less often (typically 5% to 10% of the time). | |
| 270 * On machines with very fast multiplication, it's possible that the | |
| 271 * test takes more time than it's worth. In that case this section | |
| 272 * may be commented out. | |
| 273 */ | |
| 274 | |
| 275 #ifndef NO_ZERO_ROW_TEST | |
| 276 if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && | |
| 277 wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | |
| 278 /* AC terms all zero */ | |
| 279 JSAMPLE dcval = range_limit[(int) IRIGHT_SHIFT(z5, PASS1_BITS+3) | |
| 280 & RANGE_MASK]; | |
| 281 | |
| 282 outptr[0] = dcval; | |
| 283 outptr[1] = dcval; | |
| 284 outptr[2] = dcval; | |
| 285 outptr[3] = dcval; | |
| 286 outptr[4] = dcval; | |
| 287 outptr[5] = dcval; | |
| 288 outptr[6] = dcval; | |
| 289 outptr[7] = dcval; | |
| 290 | |
| 291 wsptr += DCTSIZE; /* advance pointer to next row */ | |
| 292 continue; | |
| 293 } | |
| 294 #endif | |
| 295 | |
| 296 /* Even part */ | |
| 297 | |
| 298 tmp10 = z5 + (DCTELEM) wsptr[4]; | |
| 299 tmp11 = z5 - (DCTELEM) wsptr[4]; | |
| 300 | |
| 301 tmp13 = (DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]; | |
| 302 tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], | |
| 303 FIX_1_414213562) - tmp13; /* 2*c4 */ | |
| 304 | |
| 305 tmp0 = tmp10 + tmp13; | |
| 306 tmp3 = tmp10 - tmp13; | |
| 307 tmp1 = tmp11 + tmp12; | |
| 308 tmp2 = tmp11 - tmp12; | |
| 309 | |
| 310 /* Odd part */ | |
| 311 | |
| 312 z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; | |
| 313 z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; | |
| 314 z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; | |
| 315 z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; | |
| 316 | |
| 317 tmp7 = z11 + z13; /* phase 5 */ | |
| 318 tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | |
| 319 | |
| 320 z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | |
| 321 tmp10 = z5 - MULTIPLY(z12, FIX_1_082392200); /* 2*(c2-c6) */ | |
| 322 tmp12 = z5 - MULTIPLY(z10, FIX_2_613125930); /* 2*(c2+c6) */ | |
| 323 | |
| 324 tmp6 = tmp12 - tmp7; /* phase 2 */ | |
| 325 tmp5 = tmp11 - tmp6; | |
| 326 tmp4 = tmp10 - tmp5; | |
| 327 | |
| 328 /* Final output stage: scale down by a factor of 8 and range-limit */ | |
| 329 | |
| 330 outptr[0] = range_limit[(int) IRIGHT_SHIFT(tmp0 + tmp7, PASS1_BITS+3) | |
| 331 & RANGE_MASK]; | |
| 332 outptr[7] = range_limit[(int) IRIGHT_SHIFT(tmp0 - tmp7, PASS1_BITS+3) | |
| 333 & RANGE_MASK]; | |
| 334 outptr[1] = range_limit[(int) IRIGHT_SHIFT(tmp1 + tmp6, PASS1_BITS+3) | |
| 335 & RANGE_MASK]; | |
| 336 outptr[6] = range_limit[(int) IRIGHT_SHIFT(tmp1 - tmp6, PASS1_BITS+3) | |
| 337 & RANGE_MASK]; | |
| 338 outptr[2] = range_limit[(int) IRIGHT_SHIFT(tmp2 + tmp5, PASS1_BITS+3) | |
| 339 & RANGE_MASK]; | |
| 340 outptr[5] = range_limit[(int) IRIGHT_SHIFT(tmp2 - tmp5, PASS1_BITS+3) | |
| 341 & RANGE_MASK]; | |
| 342 outptr[3] = range_limit[(int) IRIGHT_SHIFT(tmp3 + tmp4, PASS1_BITS+3) | |
| 343 & RANGE_MASK]; | |
| 344 outptr[4] = range_limit[(int) IRIGHT_SHIFT(tmp3 - tmp4, PASS1_BITS+3) | |
| 345 & RANGE_MASK]; | |
| 346 | |
| 347 wsptr += DCTSIZE; /* advance pointer to next row */ | |
| 348 } | |
| 349 } | |
| 350 | |
| 351 #endif /* DCT_IFAST_SUPPORTED */ |
