Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jidctflt.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jidctflt.c | |
| 3 * | |
| 4 * Copyright (C) 1994-1998, Thomas G. Lane. | |
| 5 * Modified 2010-2017 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains a floating-point implementation of the | |
| 10 * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | |
| 11 * must also perform dequantization of the input coefficients. | |
| 12 * | |
| 13 * This implementation should be more accurate than either of the integer | |
| 14 * IDCT implementations. However, it may not give the same results on all | |
| 15 * machines because of differences in roundoff behavior. Speed will depend | |
| 16 * on the hardware's floating point capacity. | |
| 17 * | |
| 18 * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | |
| 19 * on each row (or vice versa, but it's more convenient to emit a row at | |
| 20 * a time). Direct algorithms are also available, but they are much more | |
| 21 * complex and seem not to be any faster when reduced to code. | |
| 22 * | |
| 23 * This implementation is based on Arai, Agui, and Nakajima's algorithm for | |
| 24 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |
| 25 * Japanese, but the algorithm is described in the Pennebaker & Mitchell | |
| 26 * JPEG textbook (see REFERENCES section in file README). The following code | |
| 27 * is based directly on figure 4-8 in P&M. | |
| 28 * While an 8-point DCT cannot be done in less than 11 multiplies, it is | |
| 29 * possible to arrange the computation so that many of the multiplies are | |
| 30 * simple scalings of the final outputs. These multiplies can then be | |
| 31 * folded into the multiplications or divisions by the JPEG quantization | |
| 32 * table entries. The AA&N method leaves only 5 multiplies and 29 adds | |
| 33 * to be done in the DCT itself. | |
| 34 * The primary disadvantage of this method is that with a fixed-point | |
| 35 * implementation, accuracy is lost due to imprecise representation of the | |
| 36 * scaled quantization values. However, that problem does not arise if | |
| 37 * we use floating point arithmetic. | |
| 38 */ | |
| 39 | |
| 40 #define JPEG_INTERNALS | |
| 41 #include "jinclude.h" | |
| 42 #include "jpeglib.h" | |
| 43 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
| 44 | |
| 45 #ifdef DCT_FLOAT_SUPPORTED | |
| 46 | |
| 47 | |
| 48 /* | |
| 49 * This module is specialized to the case DCTSIZE = 8. | |
| 50 */ | |
| 51 | |
| 52 #if DCTSIZE != 8 | |
| 53 Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ | |
| 54 #endif | |
| 55 | |
| 56 | |
| 57 /* Dequantize a coefficient by multiplying it by the multiplier-table | |
| 58 * entry; produce a float result. | |
| 59 */ | |
| 60 | |
| 61 #define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) | |
| 62 | |
| 63 | |
| 64 /* | |
| 65 * Perform dequantization and inverse DCT on one block of coefficients. | |
| 66 * | |
| 67 * cK represents cos(K*pi/16). | |
| 68 */ | |
| 69 | |
| 70 GLOBAL(void) | |
| 71 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 72 JCOEFPTR coef_block, | |
| 73 JSAMPARRAY output_buf, JDIMENSION output_col) | |
| 74 { | |
| 75 FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
| 76 FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | |
| 77 FAST_FLOAT z5, z10, z11, z12, z13; | |
| 78 JCOEFPTR inptr; | |
| 79 FLOAT_MULT_TYPE * quantptr; | |
| 80 FAST_FLOAT * wsptr; | |
| 81 JSAMPROW outptr; | |
| 82 JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
| 83 int ctr; | |
| 84 FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ | |
| 85 | |
| 86 /* Pass 1: process columns from input, store into work array. */ | |
| 87 | |
| 88 inptr = coef_block; | |
| 89 quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; | |
| 90 wsptr = workspace; | |
| 91 for (ctr = DCTSIZE; ctr > 0; ctr--) { | |
| 92 /* Due to quantization, we will usually find that many of the input | |
| 93 * coefficients are zero, especially the AC terms. We can exploit this | |
| 94 * by short-circuiting the IDCT calculation for any column in which all | |
| 95 * the AC terms are zero. In that case each output is equal to the | |
| 96 * DC coefficient (with scale factor as needed). | |
| 97 * With typical images and quantization tables, half or more of the | |
| 98 * column DCT calculations can be simplified this way. | |
| 99 */ | |
| 100 | |
| 101 if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |
| 102 inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | |
| 103 inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | |
| 104 inptr[DCTSIZE*7] == 0) { | |
| 105 /* AC terms all zero */ | |
| 106 FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
| 107 | |
| 108 wsptr[DCTSIZE*0] = dcval; | |
| 109 wsptr[DCTSIZE*1] = dcval; | |
| 110 wsptr[DCTSIZE*2] = dcval; | |
| 111 wsptr[DCTSIZE*3] = dcval; | |
| 112 wsptr[DCTSIZE*4] = dcval; | |
| 113 wsptr[DCTSIZE*5] = dcval; | |
| 114 wsptr[DCTSIZE*6] = dcval; | |
| 115 wsptr[DCTSIZE*7] = dcval; | |
| 116 | |
| 117 inptr++; /* advance pointers to next column */ | |
| 118 quantptr++; | |
| 119 wsptr++; | |
| 120 continue; | |
| 121 } | |
| 122 | |
| 123 /* Even part */ | |
| 124 | |
| 125 tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
| 126 tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |
| 127 tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | |
| 128 tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |
| 129 | |
| 130 tmp10 = tmp0 + tmp2; /* phase 3 */ | |
| 131 tmp11 = tmp0 - tmp2; | |
| 132 | |
| 133 tmp13 = tmp1 + tmp3; /* phases 5-3 */ | |
| 134 tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ | |
| 135 | |
| 136 tmp0 = tmp10 + tmp13; /* phase 2 */ | |
| 137 tmp3 = tmp10 - tmp13; | |
| 138 tmp1 = tmp11 + tmp12; | |
| 139 tmp2 = tmp11 - tmp12; | |
| 140 | |
| 141 /* Odd part */ | |
| 142 | |
| 143 tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
| 144 tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
| 145 tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
| 146 tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
| 147 | |
| 148 z13 = tmp6 + tmp5; /* phase 6 */ | |
| 149 z10 = tmp6 - tmp5; | |
| 150 z11 = tmp4 + tmp7; | |
| 151 z12 = tmp4 - tmp7; | |
| 152 | |
| 153 tmp7 = z11 + z13; /* phase 5 */ | |
| 154 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ | |
| 155 | |
| 156 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ | |
| 157 tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ | |
| 158 tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ | |
| 159 | |
| 160 tmp6 = tmp12 - tmp7; /* phase 2 */ | |
| 161 tmp5 = tmp11 - tmp6; | |
| 162 tmp4 = tmp10 - tmp5; | |
| 163 | |
| 164 wsptr[DCTSIZE*0] = tmp0 + tmp7; | |
| 165 wsptr[DCTSIZE*7] = tmp0 - tmp7; | |
| 166 wsptr[DCTSIZE*1] = tmp1 + tmp6; | |
| 167 wsptr[DCTSIZE*6] = tmp1 - tmp6; | |
| 168 wsptr[DCTSIZE*2] = tmp2 + tmp5; | |
| 169 wsptr[DCTSIZE*5] = tmp2 - tmp5; | |
| 170 wsptr[DCTSIZE*3] = tmp3 + tmp4; | |
| 171 wsptr[DCTSIZE*4] = tmp3 - tmp4; | |
| 172 | |
| 173 inptr++; /* advance pointers to next column */ | |
| 174 quantptr++; | |
| 175 wsptr++; | |
| 176 } | |
| 177 | |
| 178 /* Pass 2: process rows from work array, store into output array. */ | |
| 179 | |
| 180 wsptr = workspace; | |
| 181 for (ctr = 0; ctr < DCTSIZE; ctr++) { | |
| 182 outptr = output_buf[ctr] + output_col; | |
| 183 /* Rows of zeroes can be exploited in the same way as we did with columns. | |
| 184 * However, the column calculation has created many nonzero AC terms, so | |
| 185 * the simplification applies less often (typically 5% to 10% of the time). | |
| 186 * And testing floats for zero is relatively expensive, so we don't bother. | |
| 187 */ | |
| 188 | |
| 189 /* Even part */ | |
| 190 | |
| 191 /* Prepare range-limit and float->int conversion */ | |
| 192 z5 = wsptr[0] + (((FAST_FLOAT) RANGE_CENTER) + ((FAST_FLOAT) 0.5)); | |
| 193 tmp10 = z5 + wsptr[4]; | |
| 194 tmp11 = z5 - wsptr[4]; | |
| 195 | |
| 196 tmp13 = wsptr[2] + wsptr[6]; | |
| 197 tmp12 = (wsptr[2] - wsptr[6]) * | |
| 198 ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ | |
| 199 | |
| 200 tmp0 = tmp10 + tmp13; | |
| 201 tmp3 = tmp10 - tmp13; | |
| 202 tmp1 = tmp11 + tmp12; | |
| 203 tmp2 = tmp11 - tmp12; | |
| 204 | |
| 205 /* Odd part */ | |
| 206 | |
| 207 z13 = wsptr[5] + wsptr[3]; | |
| 208 z10 = wsptr[5] - wsptr[3]; | |
| 209 z11 = wsptr[1] + wsptr[7]; | |
| 210 z12 = wsptr[1] - wsptr[7]; | |
| 211 | |
| 212 tmp7 = z11 + z13; /* phase 5 */ | |
| 213 tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ | |
| 214 | |
| 215 z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ | |
| 216 tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ | |
| 217 tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ | |
| 218 | |
| 219 tmp6 = tmp12 - tmp7; /* phase 2 */ | |
| 220 tmp5 = tmp11 - tmp6; | |
| 221 tmp4 = tmp10 - tmp5; | |
| 222 | |
| 223 /* Final output stage: float->int conversion and range-limit */ | |
| 224 | |
| 225 outptr[0] = range_limit[(int) (tmp0 + tmp7) & RANGE_MASK]; | |
| 226 outptr[7] = range_limit[(int) (tmp0 - tmp7) & RANGE_MASK]; | |
| 227 outptr[1] = range_limit[(int) (tmp1 + tmp6) & RANGE_MASK]; | |
| 228 outptr[6] = range_limit[(int) (tmp1 - tmp6) & RANGE_MASK]; | |
| 229 outptr[2] = range_limit[(int) (tmp2 + tmp5) & RANGE_MASK]; | |
| 230 outptr[5] = range_limit[(int) (tmp2 - tmp5) & RANGE_MASK]; | |
| 231 outptr[3] = range_limit[(int) (tmp3 + tmp4) & RANGE_MASK]; | |
| 232 outptr[4] = range_limit[(int) (tmp3 - tmp4) & RANGE_MASK]; | |
| 233 | |
| 234 wsptr += DCTSIZE; /* advance pointer to next row */ | |
| 235 } | |
| 236 } | |
| 237 | |
| 238 #endif /* DCT_FLOAT_SUPPORTED */ |
