Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jfdctint.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jfdctint.c | |
| 3 * | |
| 4 * Copyright (C) 1991-1996, Thomas G. Lane. | |
| 5 * Modification developed 2003-2018 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains a slow-but-accurate integer implementation of the | |
| 10 * forward DCT (Discrete Cosine Transform). | |
| 11 * | |
| 12 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | |
| 13 * on each column. Direct algorithms are also available, but they are | |
| 14 * much more complex and seem not to be any faster when reduced to code. | |
| 15 * | |
| 16 * This implementation is based on an algorithm described in | |
| 17 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
| 18 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
| 19 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
| 20 * The primary algorithm described there uses 11 multiplies and 29 adds. | |
| 21 * We use their alternate method with 12 multiplies and 32 adds. | |
| 22 * The advantage of this method is that no data path contains more than one | |
| 23 * multiplication; this allows a very simple and accurate implementation in | |
| 24 * scaled fixed-point arithmetic, with a minimal number of shifts. | |
| 25 * | |
| 26 * We also provide FDCT routines with various input sample block sizes for | |
| 27 * direct resolution reduction or enlargement and for direct resolving the | |
| 28 * common 2x1 and 1x2 subsampling cases without additional resampling: NxN | |
| 29 * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block. | |
| 30 * | |
| 31 * For N<8 we fill the remaining block coefficients with zero. | |
| 32 * For N>8 we apply a partial N-point FDCT on the input samples, computing | |
| 33 * just the lower 8 frequency coefficients and discarding the rest. | |
| 34 * | |
| 35 * We must scale the output coefficients of the N-point FDCT appropriately | |
| 36 * to the standard 8-point FDCT level by 8/N per 1-D pass. This scaling | |
| 37 * is folded into the constant multipliers (pass 2) and/or final/initial | |
| 38 * shifting. | |
| 39 * | |
| 40 * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases | |
| 41 * since there would be too many additional constants to pre-calculate. | |
| 42 */ | |
| 43 | |
| 44 #define JPEG_INTERNALS | |
| 45 #include "jinclude.h" | |
| 46 #include "jpeglib.h" | |
| 47 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
| 48 | |
| 49 #ifdef DCT_ISLOW_SUPPORTED | |
| 50 | |
| 51 | |
| 52 /* | |
| 53 * This module is specialized to the case DCTSIZE = 8. | |
| 54 */ | |
| 55 | |
| 56 #if DCTSIZE != 8 | |
| 57 Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ | |
| 58 #endif | |
| 59 | |
| 60 | |
| 61 /* | |
| 62 * The poop on this scaling stuff is as follows: | |
| 63 * | |
| 64 * Each 1-D DCT step produces outputs which are a factor of sqrt(N) | |
| 65 * larger than the true DCT outputs. The final outputs are therefore | |
| 66 * a factor of N larger than desired; since N=8 this can be cured by | |
| 67 * a simple right shift at the end of the algorithm. The advantage of | |
| 68 * this arrangement is that we save two multiplications per 1-D DCT, | |
| 69 * because the y0 and y4 outputs need not be divided by sqrt(N). | |
| 70 * In the IJG code, this factor of 8 is removed by the quantization step | |
| 71 * (in jcdctmgr.c), NOT in this module. | |
| 72 * | |
| 73 * We have to do addition and subtraction of the integer inputs, which | |
| 74 * is no problem, and multiplication by fractional constants, which is | |
| 75 * a problem to do in integer arithmetic. We multiply all the constants | |
| 76 * by CONST_SCALE and convert them to integer constants (thus retaining | |
| 77 * CONST_BITS bits of precision in the constants). After doing a | |
| 78 * multiplication we have to divide the product by CONST_SCALE, with proper | |
| 79 * rounding, to produce the correct output. This division can be done | |
| 80 * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
| 81 * as long as possible so that partial sums can be added together with | |
| 82 * full fractional precision. | |
| 83 * | |
| 84 * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
| 85 * they are represented to better-than-integral precision. These outputs | |
| 86 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
| 87 * with the recommended scaling. (For 12-bit sample data, the intermediate | |
| 88 * array is INT32 anyway.) | |
| 89 * | |
| 90 * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
| 91 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
| 92 * shows that the values given below are the most effective. | |
| 93 */ | |
| 94 | |
| 95 #if BITS_IN_JSAMPLE == 8 | |
| 96 #define CONST_BITS 13 | |
| 97 #define PASS1_BITS 2 | |
| 98 #else | |
| 99 #define CONST_BITS 13 | |
| 100 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
| 101 #endif | |
| 102 | |
| 103 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
| 104 * causing a lot of useless floating-point operations at run time. | |
| 105 * To get around this we use the following pre-calculated constants. | |
| 106 * If you change CONST_BITS you may want to add appropriate values. | |
| 107 * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
| 108 */ | |
| 109 | |
| 110 #if CONST_BITS == 13 | |
| 111 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ | |
| 112 #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ | |
| 113 #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ | |
| 114 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ | |
| 115 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ | |
| 116 #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ | |
| 117 #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ | |
| 118 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ | |
| 119 #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ | |
| 120 #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ | |
| 121 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ | |
| 122 #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ | |
| 123 #else | |
| 124 #define FIX_0_298631336 FIX(0.298631336) | |
| 125 #define FIX_0_390180644 FIX(0.390180644) | |
| 126 #define FIX_0_541196100 FIX(0.541196100) | |
| 127 #define FIX_0_765366865 FIX(0.765366865) | |
| 128 #define FIX_0_899976223 FIX(0.899976223) | |
| 129 #define FIX_1_175875602 FIX(1.175875602) | |
| 130 #define FIX_1_501321110 FIX(1.501321110) | |
| 131 #define FIX_1_847759065 FIX(1.847759065) | |
| 132 #define FIX_1_961570560 FIX(1.961570560) | |
| 133 #define FIX_2_053119869 FIX(2.053119869) | |
| 134 #define FIX_2_562915447 FIX(2.562915447) | |
| 135 #define FIX_3_072711026 FIX(3.072711026) | |
| 136 #endif | |
| 137 | |
| 138 | |
| 139 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |
| 140 * For 8-bit samples with the recommended scaling, all the variable | |
| 141 * and constant values involved are no more than 16 bits wide, so a | |
| 142 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | |
| 143 * For 12-bit samples, a full 32-bit multiplication will be needed. | |
| 144 */ | |
| 145 | |
| 146 #if BITS_IN_JSAMPLE == 8 | |
| 147 #define MULTIPLY(var,const) MULTIPLY16C16(var,const) | |
| 148 #else | |
| 149 #define MULTIPLY(var,const) ((var) * (const)) | |
| 150 #endif | |
| 151 | |
| 152 | |
| 153 /* | |
| 154 * Perform the forward DCT on one block of samples. | |
| 155 */ | |
| 156 | |
| 157 GLOBAL(void) | |
| 158 jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 159 { | |
| 160 INT32 tmp0, tmp1, tmp2, tmp3; | |
| 161 INT32 tmp10, tmp11, tmp12, tmp13; | |
| 162 INT32 z1; | |
| 163 DCTELEM *dataptr; | |
| 164 JSAMPROW elemptr; | |
| 165 int ctr; | |
| 166 SHIFT_TEMPS | |
| 167 | |
| 168 /* Pass 1: process rows. | |
| 169 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 170 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 171 * cK represents sqrt(2) * cos(K*pi/16). | |
| 172 */ | |
| 173 | |
| 174 dataptr = data; | |
| 175 for (ctr = 0; ctr < DCTSIZE; ctr++) { | |
| 176 elemptr = sample_data[ctr] + start_col; | |
| 177 | |
| 178 /* Even part per LL&M figure 1 --- note that published figure is faulty; | |
| 179 * rotator "c1" should be "c6". | |
| 180 */ | |
| 181 | |
| 182 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); | |
| 183 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); | |
| 184 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); | |
| 185 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); | |
| 186 | |
| 187 tmp10 = tmp0 + tmp3; | |
| 188 tmp12 = tmp0 - tmp3; | |
| 189 tmp11 = tmp1 + tmp2; | |
| 190 tmp13 = tmp1 - tmp2; | |
| 191 | |
| 192 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); | |
| 193 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); | |
| 194 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); | |
| 195 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); | |
| 196 | |
| 197 /* Apply unsigned->signed conversion. */ | |
| 198 dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); | |
| 199 dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); | |
| 200 | |
| 201 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ | |
| 202 /* Add fudge factor here for final descale. */ | |
| 203 z1 += ONE << (CONST_BITS-PASS1_BITS-1); | |
| 204 | |
| 205 dataptr[2] = (DCTELEM) | |
| 206 RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ | |
| 207 CONST_BITS-PASS1_BITS); | |
| 208 dataptr[6] = (DCTELEM) | |
| 209 RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ | |
| 210 CONST_BITS-PASS1_BITS); | |
| 211 | |
| 212 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | |
| 213 * i0..i3 in the paper are tmp0..tmp3 here. | |
| 214 */ | |
| 215 | |
| 216 tmp12 = tmp0 + tmp2; | |
| 217 tmp13 = tmp1 + tmp3; | |
| 218 | |
| 219 z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ | |
| 220 /* Add fudge factor here for final descale. */ | |
| 221 z1 += ONE << (CONST_BITS-PASS1_BITS-1); | |
| 222 | |
| 223 tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ | |
| 224 tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ | |
| 225 tmp12 += z1; | |
| 226 tmp13 += z1; | |
| 227 | |
| 228 z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ | |
| 229 tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ | |
| 230 tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ | |
| 231 tmp0 += z1 + tmp12; | |
| 232 tmp3 += z1 + tmp13; | |
| 233 | |
| 234 z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ | |
| 235 tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ | |
| 236 tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ | |
| 237 tmp1 += z1 + tmp13; | |
| 238 tmp2 += z1 + tmp12; | |
| 239 | |
| 240 dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS); | |
| 241 dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS); | |
| 242 dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS); | |
| 243 dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS); | |
| 244 | |
| 245 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 246 } | |
| 247 | |
| 248 /* Pass 2: process columns. | |
| 249 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 250 * by an overall factor of 8. | |
| 251 * cK represents sqrt(2) * cos(K*pi/16). | |
| 252 */ | |
| 253 | |
| 254 dataptr = data; | |
| 255 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 256 /* Even part per LL&M figure 1 --- note that published figure is faulty; | |
| 257 * rotator "c1" should be "c6". | |
| 258 */ | |
| 259 | |
| 260 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
| 261 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
| 262 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
| 263 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
| 264 | |
| 265 /* Add fudge factor here for final descale. */ | |
| 266 tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); | |
| 267 tmp12 = tmp0 - tmp3; | |
| 268 tmp11 = tmp1 + tmp2; | |
| 269 tmp13 = tmp1 - tmp2; | |
| 270 | |
| 271 tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
| 272 tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
| 273 tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
| 274 tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
| 275 | |
| 276 dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); | |
| 277 dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); | |
| 278 | |
| 279 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ | |
| 280 /* Add fudge factor here for final descale. */ | |
| 281 z1 += ONE << (CONST_BITS+PASS1_BITS-1); | |
| 282 | |
| 283 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 284 RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ | |
| 285 CONST_BITS+PASS1_BITS); | |
| 286 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 287 RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ | |
| 288 CONST_BITS+PASS1_BITS); | |
| 289 | |
| 290 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | |
| 291 * i0..i3 in the paper are tmp0..tmp3 here. | |
| 292 */ | |
| 293 | |
| 294 tmp12 = tmp0 + tmp2; | |
| 295 tmp13 = tmp1 + tmp3; | |
| 296 | |
| 297 z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ | |
| 298 /* Add fudge factor here for final descale. */ | |
| 299 z1 += ONE << (CONST_BITS+PASS1_BITS-1); | |
| 300 | |
| 301 tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ | |
| 302 tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ | |
| 303 tmp12 += z1; | |
| 304 tmp13 += z1; | |
| 305 | |
| 306 z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ | |
| 307 tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ | |
| 308 tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ | |
| 309 tmp0 += z1 + tmp12; | |
| 310 tmp3 += z1 + tmp13; | |
| 311 | |
| 312 z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ | |
| 313 tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ | |
| 314 tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ | |
| 315 tmp1 += z1 + tmp13; | |
| 316 tmp2 += z1 + tmp12; | |
| 317 | |
| 318 dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS); | |
| 319 dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS); | |
| 320 dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS); | |
| 321 dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS); | |
| 322 | |
| 323 dataptr++; /* advance pointer to next column */ | |
| 324 } | |
| 325 } | |
| 326 | |
| 327 #ifdef DCT_SCALING_SUPPORTED | |
| 328 | |
| 329 | |
| 330 /* | |
| 331 * Perform the forward DCT on a 7x7 sample block. | |
| 332 */ | |
| 333 | |
| 334 GLOBAL(void) | |
| 335 jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 336 { | |
| 337 INT32 tmp0, tmp1, tmp2, tmp3; | |
| 338 INT32 tmp10, tmp11, tmp12; | |
| 339 INT32 z1, z2, z3; | |
| 340 DCTELEM *dataptr; | |
| 341 JSAMPROW elemptr; | |
| 342 int ctr; | |
| 343 SHIFT_TEMPS | |
| 344 | |
| 345 /* Pre-zero output coefficient block. */ | |
| 346 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 347 | |
| 348 /* Pass 1: process rows. | |
| 349 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 350 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 351 * cK represents sqrt(2) * cos(K*pi/14). | |
| 352 */ | |
| 353 | |
| 354 dataptr = data; | |
| 355 for (ctr = 0; ctr < 7; ctr++) { | |
| 356 elemptr = sample_data[ctr] + start_col; | |
| 357 | |
| 358 /* Even part */ | |
| 359 | |
| 360 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); | |
| 361 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); | |
| 362 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); | |
| 363 tmp3 = GETJSAMPLE(elemptr[3]); | |
| 364 | |
| 365 tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); | |
| 366 tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); | |
| 367 tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); | |
| 368 | |
| 369 z1 = tmp0 + tmp2; | |
| 370 /* Apply unsigned->signed conversion. */ | |
| 371 dataptr[0] = (DCTELEM) | |
| 372 ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); | |
| 373 tmp3 += tmp3; | |
| 374 z1 -= tmp3; | |
| 375 z1 -= tmp3; | |
| 376 z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ | |
| 377 z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ | |
| 378 z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ | |
| 379 dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); | |
| 380 z1 -= z2; | |
| 381 z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ | |
| 382 dataptr[4] = (DCTELEM) | |
| 383 DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ | |
| 384 CONST_BITS-PASS1_BITS); | |
| 385 dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); | |
| 386 | |
| 387 /* Odd part */ | |
| 388 | |
| 389 tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ | |
| 390 tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ | |
| 391 tmp0 = tmp1 - tmp2; | |
| 392 tmp1 += tmp2; | |
| 393 tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ | |
| 394 tmp1 += tmp2; | |
| 395 tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ | |
| 396 tmp0 += tmp3; | |
| 397 tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ | |
| 398 | |
| 399 dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); | |
| 400 dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); | |
| 401 dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); | |
| 402 | |
| 403 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 404 } | |
| 405 | |
| 406 /* Pass 2: process columns. | |
| 407 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 408 * by an overall factor of 8. | |
| 409 * We must also scale the output by (8/7)**2 = 64/49, which we fold | |
| 410 * into the constant multipliers: | |
| 411 * cK now represents sqrt(2) * cos(K*pi/14) * 64/49. | |
| 412 */ | |
| 413 | |
| 414 dataptr = data; | |
| 415 for (ctr = 0; ctr < 7; ctr++) { | |
| 416 /* Even part */ | |
| 417 | |
| 418 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; | |
| 419 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; | |
| 420 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; | |
| 421 tmp3 = dataptr[DCTSIZE*3]; | |
| 422 | |
| 423 tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; | |
| 424 tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; | |
| 425 tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; | |
| 426 | |
| 427 z1 = tmp0 + tmp2; | |
| 428 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 429 DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ | |
| 430 CONST_BITS+PASS1_BITS); | |
| 431 tmp3 += tmp3; | |
| 432 z1 -= tmp3; | |
| 433 z1 -= tmp3; | |
| 434 z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ | |
| 435 z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ | |
| 436 z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ | |
| 437 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS); | |
| 438 z1 -= z2; | |
| 439 z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ | |
| 440 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 441 DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ | |
| 442 CONST_BITS+PASS1_BITS); | |
| 443 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS); | |
| 444 | |
| 445 /* Odd part */ | |
| 446 | |
| 447 tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ | |
| 448 tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ | |
| 449 tmp0 = tmp1 - tmp2; | |
| 450 tmp1 += tmp2; | |
| 451 tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ | |
| 452 tmp1 += tmp2; | |
| 453 tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ | |
| 454 tmp0 += tmp3; | |
| 455 tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ | |
| 456 | |
| 457 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS); | |
| 458 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS); | |
| 459 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS); | |
| 460 | |
| 461 dataptr++; /* advance pointer to next column */ | |
| 462 } | |
| 463 } | |
| 464 | |
| 465 | |
| 466 /* | |
| 467 * Perform the forward DCT on a 6x6 sample block. | |
| 468 */ | |
| 469 | |
| 470 GLOBAL(void) | |
| 471 jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 472 { | |
| 473 INT32 tmp0, tmp1, tmp2; | |
| 474 INT32 tmp10, tmp11, tmp12; | |
| 475 DCTELEM *dataptr; | |
| 476 JSAMPROW elemptr; | |
| 477 int ctr; | |
| 478 SHIFT_TEMPS | |
| 479 | |
| 480 /* Pre-zero output coefficient block. */ | |
| 481 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 482 | |
| 483 /* Pass 1: process rows. | |
| 484 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 485 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 486 * cK represents sqrt(2) * cos(K*pi/12). | |
| 487 */ | |
| 488 | |
| 489 dataptr = data; | |
| 490 for (ctr = 0; ctr < 6; ctr++) { | |
| 491 elemptr = sample_data[ctr] + start_col; | |
| 492 | |
| 493 /* Even part */ | |
| 494 | |
| 495 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); | |
| 496 tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); | |
| 497 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); | |
| 498 | |
| 499 tmp10 = tmp0 + tmp2; | |
| 500 tmp12 = tmp0 - tmp2; | |
| 501 | |
| 502 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); | |
| 503 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); | |
| 504 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); | |
| 505 | |
| 506 /* Apply unsigned->signed conversion. */ | |
| 507 dataptr[0] = (DCTELEM) | |
| 508 ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); | |
| 509 dataptr[2] = (DCTELEM) | |
| 510 DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ | |
| 511 CONST_BITS-PASS1_BITS); | |
| 512 dataptr[4] = (DCTELEM) | |
| 513 DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ | |
| 514 CONST_BITS-PASS1_BITS); | |
| 515 | |
| 516 /* Odd part */ | |
| 517 | |
| 518 tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ | |
| 519 CONST_BITS-PASS1_BITS); | |
| 520 | |
| 521 dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); | |
| 522 dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); | |
| 523 dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); | |
| 524 | |
| 525 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 526 } | |
| 527 | |
| 528 /* Pass 2: process columns. | |
| 529 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 530 * by an overall factor of 8. | |
| 531 * We must also scale the output by (8/6)**2 = 16/9, which we fold | |
| 532 * into the constant multipliers: | |
| 533 * cK now represents sqrt(2) * cos(K*pi/12) * 16/9. | |
| 534 */ | |
| 535 | |
| 536 dataptr = data; | |
| 537 for (ctr = 0; ctr < 6; ctr++) { | |
| 538 /* Even part */ | |
| 539 | |
| 540 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; | |
| 541 tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; | |
| 542 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; | |
| 543 | |
| 544 tmp10 = tmp0 + tmp2; | |
| 545 tmp12 = tmp0 - tmp2; | |
| 546 | |
| 547 tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; | |
| 548 tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; | |
| 549 tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; | |
| 550 | |
| 551 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 552 DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ | |
| 553 CONST_BITS+PASS1_BITS); | |
| 554 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 555 DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ | |
| 556 CONST_BITS+PASS1_BITS); | |
| 557 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 558 DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ | |
| 559 CONST_BITS+PASS1_BITS); | |
| 560 | |
| 561 /* Odd part */ | |
| 562 | |
| 563 tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ | |
| 564 | |
| 565 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 566 DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ | |
| 567 CONST_BITS+PASS1_BITS); | |
| 568 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 569 DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ | |
| 570 CONST_BITS+PASS1_BITS); | |
| 571 dataptr[DCTSIZE*5] = (DCTELEM) | |
| 572 DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ | |
| 573 CONST_BITS+PASS1_BITS); | |
| 574 | |
| 575 dataptr++; /* advance pointer to next column */ | |
| 576 } | |
| 577 } | |
| 578 | |
| 579 | |
| 580 /* | |
| 581 * Perform the forward DCT on a 5x5 sample block. | |
| 582 */ | |
| 583 | |
| 584 GLOBAL(void) | |
| 585 jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 586 { | |
| 587 INT32 tmp0, tmp1, tmp2; | |
| 588 INT32 tmp10, tmp11; | |
| 589 DCTELEM *dataptr; | |
| 590 JSAMPROW elemptr; | |
| 591 int ctr; | |
| 592 SHIFT_TEMPS | |
| 593 | |
| 594 /* Pre-zero output coefficient block. */ | |
| 595 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 596 | |
| 597 /* Pass 1: process rows. | |
| 598 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 599 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 600 * We scale the results further by 2 as part of output adaption | |
| 601 * scaling for different DCT size. | |
| 602 * cK represents sqrt(2) * cos(K*pi/10). | |
| 603 */ | |
| 604 | |
| 605 dataptr = data; | |
| 606 for (ctr = 0; ctr < 5; ctr++) { | |
| 607 elemptr = sample_data[ctr] + start_col; | |
| 608 | |
| 609 /* Even part */ | |
| 610 | |
| 611 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); | |
| 612 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); | |
| 613 tmp2 = GETJSAMPLE(elemptr[2]); | |
| 614 | |
| 615 tmp10 = tmp0 + tmp1; | |
| 616 tmp11 = tmp0 - tmp1; | |
| 617 | |
| 618 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); | |
| 619 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); | |
| 620 | |
| 621 /* Apply unsigned->signed conversion. */ | |
| 622 dataptr[0] = (DCTELEM) | |
| 623 ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1)); | |
| 624 tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ | |
| 625 tmp10 -= tmp2 << 2; | |
| 626 tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ | |
| 627 dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1); | |
| 628 dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1); | |
| 629 | |
| 630 /* Odd part */ | |
| 631 | |
| 632 tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ | |
| 633 | |
| 634 dataptr[1] = (DCTELEM) | |
| 635 DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ | |
| 636 CONST_BITS-PASS1_BITS-1); | |
| 637 dataptr[3] = (DCTELEM) | |
| 638 DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ | |
| 639 CONST_BITS-PASS1_BITS-1); | |
| 640 | |
| 641 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 642 } | |
| 643 | |
| 644 /* Pass 2: process columns. | |
| 645 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 646 * by an overall factor of 8. | |
| 647 * We must also scale the output by (8/5)**2 = 64/25, which we partially | |
| 648 * fold into the constant multipliers (other part was done in pass 1): | |
| 649 * cK now represents sqrt(2) * cos(K*pi/10) * 32/25. | |
| 650 */ | |
| 651 | |
| 652 dataptr = data; | |
| 653 for (ctr = 0; ctr < 5; ctr++) { | |
| 654 /* Even part */ | |
| 655 | |
| 656 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; | |
| 657 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; | |
| 658 tmp2 = dataptr[DCTSIZE*2]; | |
| 659 | |
| 660 tmp10 = tmp0 + tmp1; | |
| 661 tmp11 = tmp0 - tmp1; | |
| 662 | |
| 663 tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; | |
| 664 tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; | |
| 665 | |
| 666 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 667 DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ | |
| 668 CONST_BITS+PASS1_BITS); | |
| 669 tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ | |
| 670 tmp10 -= tmp2 << 2; | |
| 671 tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ | |
| 672 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); | |
| 673 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); | |
| 674 | |
| 675 /* Odd part */ | |
| 676 | |
| 677 tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ | |
| 678 | |
| 679 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 680 DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ | |
| 681 CONST_BITS+PASS1_BITS); | |
| 682 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 683 DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ | |
| 684 CONST_BITS+PASS1_BITS); | |
| 685 | |
| 686 dataptr++; /* advance pointer to next column */ | |
| 687 } | |
| 688 } | |
| 689 | |
| 690 | |
| 691 /* | |
| 692 * Perform the forward DCT on a 4x4 sample block. | |
| 693 */ | |
| 694 | |
| 695 GLOBAL(void) | |
| 696 jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 697 { | |
| 698 INT32 tmp0, tmp1; | |
| 699 INT32 tmp10, tmp11; | |
| 700 DCTELEM *dataptr; | |
| 701 JSAMPROW elemptr; | |
| 702 int ctr; | |
| 703 SHIFT_TEMPS | |
| 704 | |
| 705 /* Pre-zero output coefficient block. */ | |
| 706 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 707 | |
| 708 /* Pass 1: process rows. | |
| 709 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 710 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 711 * We must also scale the output by (8/4)**2 = 2**2, which we add here. | |
| 712 * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. | |
| 713 */ | |
| 714 | |
| 715 dataptr = data; | |
| 716 for (ctr = 0; ctr < 4; ctr++) { | |
| 717 elemptr = sample_data[ctr] + start_col; | |
| 718 | |
| 719 /* Even part */ | |
| 720 | |
| 721 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); | |
| 722 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); | |
| 723 | |
| 724 tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); | |
| 725 tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); | |
| 726 | |
| 727 /* Apply unsigned->signed conversion. */ | |
| 728 dataptr[0] = (DCTELEM) | |
| 729 ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2)); | |
| 730 dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2)); | |
| 731 | |
| 732 /* Odd part */ | |
| 733 | |
| 734 tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ | |
| 735 /* Add fudge factor here for final descale. */ | |
| 736 tmp0 += ONE << (CONST_BITS-PASS1_BITS-3); | |
| 737 | |
| 738 dataptr[1] = (DCTELEM) | |
| 739 RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ | |
| 740 CONST_BITS-PASS1_BITS-2); | |
| 741 dataptr[3] = (DCTELEM) | |
| 742 RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ | |
| 743 CONST_BITS-PASS1_BITS-2); | |
| 744 | |
| 745 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 746 } | |
| 747 | |
| 748 /* Pass 2: process columns. | |
| 749 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 750 * by an overall factor of 8. | |
| 751 * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. | |
| 752 */ | |
| 753 | |
| 754 dataptr = data; | |
| 755 for (ctr = 0; ctr < 4; ctr++) { | |
| 756 /* Even part */ | |
| 757 | |
| 758 /* Add fudge factor here for final descale. */ | |
| 759 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); | |
| 760 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; | |
| 761 | |
| 762 tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; | |
| 763 tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; | |
| 764 | |
| 765 dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); | |
| 766 dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); | |
| 767 | |
| 768 /* Odd part */ | |
| 769 | |
| 770 tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ | |
| 771 /* Add fudge factor here for final descale. */ | |
| 772 tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); | |
| 773 | |
| 774 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 775 RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ | |
| 776 CONST_BITS+PASS1_BITS); | |
| 777 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 778 RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ | |
| 779 CONST_BITS+PASS1_BITS); | |
| 780 | |
| 781 dataptr++; /* advance pointer to next column */ | |
| 782 } | |
| 783 } | |
| 784 | |
| 785 | |
| 786 /* | |
| 787 * Perform the forward DCT on a 3x3 sample block. | |
| 788 */ | |
| 789 | |
| 790 GLOBAL(void) | |
| 791 jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 792 { | |
| 793 INT32 tmp0, tmp1, tmp2; | |
| 794 DCTELEM *dataptr; | |
| 795 JSAMPROW elemptr; | |
| 796 int ctr; | |
| 797 SHIFT_TEMPS | |
| 798 | |
| 799 /* Pre-zero output coefficient block. */ | |
| 800 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 801 | |
| 802 /* Pass 1: process rows. | |
| 803 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 804 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 805 * We scale the results further by 2**2 as part of output adaption | |
| 806 * scaling for different DCT size. | |
| 807 * cK represents sqrt(2) * cos(K*pi/6). | |
| 808 */ | |
| 809 | |
| 810 dataptr = data; | |
| 811 for (ctr = 0; ctr < 3; ctr++) { | |
| 812 elemptr = sample_data[ctr] + start_col; | |
| 813 | |
| 814 /* Even part */ | |
| 815 | |
| 816 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); | |
| 817 tmp1 = GETJSAMPLE(elemptr[1]); | |
| 818 | |
| 819 tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); | |
| 820 | |
| 821 /* Apply unsigned->signed conversion. */ | |
| 822 dataptr[0] = (DCTELEM) | |
| 823 ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2)); | |
| 824 dataptr[2] = (DCTELEM) | |
| 825 DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ | |
| 826 CONST_BITS-PASS1_BITS-2); | |
| 827 | |
| 828 /* Odd part */ | |
| 829 | |
| 830 dataptr[1] = (DCTELEM) | |
| 831 DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ | |
| 832 CONST_BITS-PASS1_BITS-2); | |
| 833 | |
| 834 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 835 } | |
| 836 | |
| 837 /* Pass 2: process columns. | |
| 838 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 839 * by an overall factor of 8. | |
| 840 * We must also scale the output by (8/3)**2 = 64/9, which we partially | |
| 841 * fold into the constant multipliers (other part was done in pass 1): | |
| 842 * cK now represents sqrt(2) * cos(K*pi/6) * 16/9. | |
| 843 */ | |
| 844 | |
| 845 dataptr = data; | |
| 846 for (ctr = 0; ctr < 3; ctr++) { | |
| 847 /* Even part */ | |
| 848 | |
| 849 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; | |
| 850 tmp1 = dataptr[DCTSIZE*1]; | |
| 851 | |
| 852 tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; | |
| 853 | |
| 854 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 855 DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ | |
| 856 CONST_BITS+PASS1_BITS); | |
| 857 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 858 DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ | |
| 859 CONST_BITS+PASS1_BITS); | |
| 860 | |
| 861 /* Odd part */ | |
| 862 | |
| 863 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 864 DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ | |
| 865 CONST_BITS+PASS1_BITS); | |
| 866 | |
| 867 dataptr++; /* advance pointer to next column */ | |
| 868 } | |
| 869 } | |
| 870 | |
| 871 | |
| 872 /* | |
| 873 * Perform the forward DCT on a 2x2 sample block. | |
| 874 */ | |
| 875 | |
| 876 GLOBAL(void) | |
| 877 jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 878 { | |
| 879 DCTELEM tmp0, tmp1, tmp2, tmp3; | |
| 880 JSAMPROW elemptr; | |
| 881 | |
| 882 /* Pre-zero output coefficient block. */ | |
| 883 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 884 | |
| 885 /* Pass 1: process rows. | |
| 886 * Note results are scaled up by sqrt(8) compared to a true DCT. | |
| 887 */ | |
| 888 | |
| 889 /* Row 0 */ | |
| 890 elemptr = sample_data[0] + start_col; | |
| 891 | |
| 892 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); | |
| 893 tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); | |
| 894 | |
| 895 /* Row 1 */ | |
| 896 elemptr = sample_data[1] + start_col; | |
| 897 | |
| 898 tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]); | |
| 899 tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]); | |
| 900 | |
| 901 /* Pass 2: process columns. | |
| 902 * We leave the results scaled up by an overall factor of 8. | |
| 903 * We must also scale the output by (8/2)**2 = 2**4. | |
| 904 */ | |
| 905 | |
| 906 /* Column 0 */ | |
| 907 /* Apply unsigned->signed conversion. */ | |
| 908 data[DCTSIZE*0] = (tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4; | |
| 909 data[DCTSIZE*1] = (tmp0 - tmp2) << 4; | |
| 910 | |
| 911 /* Column 1 */ | |
| 912 data[DCTSIZE*0+1] = (tmp1 + tmp3) << 4; | |
| 913 data[DCTSIZE*1+1] = (tmp1 - tmp3) << 4; | |
| 914 } | |
| 915 | |
| 916 | |
| 917 /* | |
| 918 * Perform the forward DCT on a 1x1 sample block. | |
| 919 */ | |
| 920 | |
| 921 GLOBAL(void) | |
| 922 jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 923 { | |
| 924 DCTELEM dcval; | |
| 925 | |
| 926 /* Pre-zero output coefficient block. */ | |
| 927 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 928 | |
| 929 dcval = GETJSAMPLE(sample_data[0][start_col]); | |
| 930 | |
| 931 /* We leave the result scaled up by an overall factor of 8. */ | |
| 932 /* We must also scale the output by (8/1)**2 = 2**6. */ | |
| 933 /* Apply unsigned->signed conversion. */ | |
| 934 data[0] = (dcval - CENTERJSAMPLE) << 6; | |
| 935 } | |
| 936 | |
| 937 | |
| 938 /* | |
| 939 * Perform the forward DCT on a 9x9 sample block. | |
| 940 */ | |
| 941 | |
| 942 GLOBAL(void) | |
| 943 jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 944 { | |
| 945 INT32 tmp0, tmp1, tmp2, tmp3, tmp4; | |
| 946 INT32 tmp10, tmp11, tmp12, tmp13; | |
| 947 INT32 z1, z2; | |
| 948 DCTELEM workspace[8]; | |
| 949 DCTELEM *dataptr; | |
| 950 DCTELEM *wsptr; | |
| 951 JSAMPROW elemptr; | |
| 952 int ctr; | |
| 953 SHIFT_TEMPS | |
| 954 | |
| 955 /* Pass 1: process rows. | |
| 956 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 957 * we scale the results further by 2 as part of output adaption | |
| 958 * scaling for different DCT size. | |
| 959 * cK represents sqrt(2) * cos(K*pi/18). | |
| 960 */ | |
| 961 | |
| 962 dataptr = data; | |
| 963 ctr = 0; | |
| 964 for (;;) { | |
| 965 elemptr = sample_data[ctr] + start_col; | |
| 966 | |
| 967 /* Even part */ | |
| 968 | |
| 969 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]); | |
| 970 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]); | |
| 971 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]); | |
| 972 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]); | |
| 973 tmp4 = GETJSAMPLE(elemptr[4]); | |
| 974 | |
| 975 tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]); | |
| 976 tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]); | |
| 977 tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]); | |
| 978 tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]); | |
| 979 | |
| 980 z1 = tmp0 + tmp2 + tmp3; | |
| 981 z2 = tmp1 + tmp4; | |
| 982 /* Apply unsigned->signed conversion. */ | |
| 983 dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1); | |
| 984 dataptr[6] = (DCTELEM) | |
| 985 DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)), /* c6 */ | |
| 986 CONST_BITS-1); | |
| 987 z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049)); /* c2 */ | |
| 988 z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */ | |
| 989 dataptr[2] = (DCTELEM) | |
| 990 DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441)) /* c4 */ | |
| 991 + z1 + z2, CONST_BITS-1); | |
| 992 dataptr[4] = (DCTELEM) | |
| 993 DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608)) /* c8 */ | |
| 994 + z1 - z2, CONST_BITS-1); | |
| 995 | |
| 996 /* Odd part */ | |
| 997 | |
| 998 dataptr[3] = (DCTELEM) | |
| 999 DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */ | |
| 1000 CONST_BITS-1); | |
| 1001 | |
| 1002 tmp11 = MULTIPLY(tmp11, FIX(1.224744871)); /* c3 */ | |
| 1003 tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */ | |
| 1004 tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */ | |
| 1005 | |
| 1006 dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1); | |
| 1007 | |
| 1008 tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */ | |
| 1009 | |
| 1010 dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1); | |
| 1011 dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1); | |
| 1012 | |
| 1013 ctr++; | |
| 1014 | |
| 1015 if (ctr != DCTSIZE) { | |
| 1016 if (ctr == 9) | |
| 1017 break; /* Done. */ | |
| 1018 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 1019 } else | |
| 1020 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 1021 } | |
| 1022 | |
| 1023 /* Pass 2: process columns. | |
| 1024 * We leave the results scaled up by an overall factor of 8. | |
| 1025 * We must also scale the output by (8/9)**2 = 64/81, which we partially | |
| 1026 * fold into the constant multipliers and final/initial shifting: | |
| 1027 * cK now represents sqrt(2) * cos(K*pi/18) * 128/81. | |
| 1028 */ | |
| 1029 | |
| 1030 dataptr = data; | |
| 1031 wsptr = workspace; | |
| 1032 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 1033 /* Even part */ | |
| 1034 | |
| 1035 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0]; | |
| 1036 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7]; | |
| 1037 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6]; | |
| 1038 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5]; | |
| 1039 tmp4 = dataptr[DCTSIZE*4]; | |
| 1040 | |
| 1041 tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0]; | |
| 1042 tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7]; | |
| 1043 tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6]; | |
| 1044 tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5]; | |
| 1045 | |
| 1046 z1 = tmp0 + tmp2 + tmp3; | |
| 1047 z2 = tmp1 + tmp4; | |
| 1048 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 1049 DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)), /* 128/81 */ | |
| 1050 CONST_BITS+2); | |
| 1051 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 1052 DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)), /* c6 */ | |
| 1053 CONST_BITS+2); | |
| 1054 z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287)); /* c2 */ | |
| 1055 z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */ | |
| 1056 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 1057 DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190)) /* c4 */ | |
| 1058 + z1 + z2, CONST_BITS+2); | |
| 1059 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 1060 DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096)) /* c8 */ | |
| 1061 + z1 - z2, CONST_BITS+2); | |
| 1062 | |
| 1063 /* Odd part */ | |
| 1064 | |
| 1065 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 1066 DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */ | |
| 1067 CONST_BITS+2); | |
| 1068 | |
| 1069 tmp11 = MULTIPLY(tmp11, FIX(1.935399303)); /* c3 */ | |
| 1070 tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */ | |
| 1071 tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */ | |
| 1072 | |
| 1073 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 1074 DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2); | |
| 1075 | |
| 1076 tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */ | |
| 1077 | |
| 1078 dataptr[DCTSIZE*5] = (DCTELEM) | |
| 1079 DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2); | |
| 1080 dataptr[DCTSIZE*7] = (DCTELEM) | |
| 1081 DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2); | |
| 1082 | |
| 1083 dataptr++; /* advance pointer to next column */ | |
| 1084 wsptr++; /* advance pointer to next column */ | |
| 1085 } | |
| 1086 } | |
| 1087 | |
| 1088 | |
| 1089 /* | |
| 1090 * Perform the forward DCT on a 10x10 sample block. | |
| 1091 */ | |
| 1092 | |
| 1093 GLOBAL(void) | |
| 1094 jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 1095 { | |
| 1096 INT32 tmp0, tmp1, tmp2, tmp3, tmp4; | |
| 1097 INT32 tmp10, tmp11, tmp12, tmp13, tmp14; | |
| 1098 DCTELEM workspace[8*2]; | |
| 1099 DCTELEM *dataptr; | |
| 1100 DCTELEM *wsptr; | |
| 1101 JSAMPROW elemptr; | |
| 1102 int ctr; | |
| 1103 SHIFT_TEMPS | |
| 1104 | |
| 1105 /* Pass 1: process rows. | |
| 1106 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 1107 * we scale the results further by 2 as part of output adaption | |
| 1108 * scaling for different DCT size. | |
| 1109 * cK represents sqrt(2) * cos(K*pi/20). | |
| 1110 */ | |
| 1111 | |
| 1112 dataptr = data; | |
| 1113 ctr = 0; | |
| 1114 for (;;) { | |
| 1115 elemptr = sample_data[ctr] + start_col; | |
| 1116 | |
| 1117 /* Even part */ | |
| 1118 | |
| 1119 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); | |
| 1120 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); | |
| 1121 tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); | |
| 1122 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); | |
| 1123 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); | |
| 1124 | |
| 1125 tmp10 = tmp0 + tmp4; | |
| 1126 tmp13 = tmp0 - tmp4; | |
| 1127 tmp11 = tmp1 + tmp3; | |
| 1128 tmp14 = tmp1 - tmp3; | |
| 1129 | |
| 1130 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); | |
| 1131 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); | |
| 1132 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); | |
| 1133 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); | |
| 1134 tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); | |
| 1135 | |
| 1136 /* Apply unsigned->signed conversion. */ | |
| 1137 dataptr[0] = (DCTELEM) | |
| 1138 ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1); | |
| 1139 tmp12 += tmp12; | |
| 1140 dataptr[4] = (DCTELEM) | |
| 1141 DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ | |
| 1142 MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ | |
| 1143 CONST_BITS-1); | |
| 1144 tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ | |
| 1145 dataptr[2] = (DCTELEM) | |
| 1146 DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ | |
| 1147 CONST_BITS-1); | |
| 1148 dataptr[6] = (DCTELEM) | |
| 1149 DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ | |
| 1150 CONST_BITS-1); | |
| 1151 | |
| 1152 /* Odd part */ | |
| 1153 | |
| 1154 tmp10 = tmp0 + tmp4; | |
| 1155 tmp11 = tmp1 - tmp3; | |
| 1156 dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1); | |
| 1157 tmp2 <<= CONST_BITS; | |
| 1158 dataptr[1] = (DCTELEM) | |
| 1159 DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ | |
| 1160 MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ | |
| 1161 MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ | |
| 1162 MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ | |
| 1163 CONST_BITS-1); | |
| 1164 tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ | |
| 1165 MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ | |
| 1166 tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ | |
| 1167 (tmp11 << (CONST_BITS - 1)) - tmp2; | |
| 1168 dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1); | |
| 1169 dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1); | |
| 1170 | |
| 1171 ctr++; | |
| 1172 | |
| 1173 if (ctr != DCTSIZE) { | |
| 1174 if (ctr == 10) | |
| 1175 break; /* Done. */ | |
| 1176 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 1177 } else | |
| 1178 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 1179 } | |
| 1180 | |
| 1181 /* Pass 2: process columns. | |
| 1182 * We leave the results scaled up by an overall factor of 8. | |
| 1183 * We must also scale the output by (8/10)**2 = 16/25, which we partially | |
| 1184 * fold into the constant multipliers and final/initial shifting: | |
| 1185 * cK now represents sqrt(2) * cos(K*pi/20) * 32/25. | |
| 1186 */ | |
| 1187 | |
| 1188 dataptr = data; | |
| 1189 wsptr = workspace; | |
| 1190 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 1191 /* Even part */ | |
| 1192 | |
| 1193 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; | |
| 1194 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; | |
| 1195 tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; | |
| 1196 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; | |
| 1197 tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; | |
| 1198 | |
| 1199 tmp10 = tmp0 + tmp4; | |
| 1200 tmp13 = tmp0 - tmp4; | |
| 1201 tmp11 = tmp1 + tmp3; | |
| 1202 tmp14 = tmp1 - tmp3; | |
| 1203 | |
| 1204 tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; | |
| 1205 tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; | |
| 1206 tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; | |
| 1207 tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; | |
| 1208 tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; | |
| 1209 | |
| 1210 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 1211 DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ | |
| 1212 CONST_BITS+2); | |
| 1213 tmp12 += tmp12; | |
| 1214 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 1215 DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ | |
| 1216 MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ | |
| 1217 CONST_BITS+2); | |
| 1218 tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ | |
| 1219 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 1220 DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ | |
| 1221 CONST_BITS+2); | |
| 1222 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 1223 DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ | |
| 1224 CONST_BITS+2); | |
| 1225 | |
| 1226 /* Odd part */ | |
| 1227 | |
| 1228 tmp10 = tmp0 + tmp4; | |
| 1229 tmp11 = tmp1 - tmp3; | |
| 1230 dataptr[DCTSIZE*5] = (DCTELEM) | |
| 1231 DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ | |
| 1232 CONST_BITS+2); | |
| 1233 tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ | |
| 1234 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 1235 DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ | |
| 1236 MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ | |
| 1237 MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ | |
| 1238 MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ | |
| 1239 CONST_BITS+2); | |
| 1240 tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ | |
| 1241 MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ | |
| 1242 tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ | |
| 1243 MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ | |
| 1244 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2); | |
| 1245 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2); | |
| 1246 | |
| 1247 dataptr++; /* advance pointer to next column */ | |
| 1248 wsptr++; /* advance pointer to next column */ | |
| 1249 } | |
| 1250 } | |
| 1251 | |
| 1252 | |
| 1253 /* | |
| 1254 * Perform the forward DCT on an 11x11 sample block. | |
| 1255 */ | |
| 1256 | |
| 1257 GLOBAL(void) | |
| 1258 jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 1259 { | |
| 1260 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; | |
| 1261 INT32 tmp10, tmp11, tmp12, tmp13, tmp14; | |
| 1262 INT32 z1, z2, z3; | |
| 1263 DCTELEM workspace[8*3]; | |
| 1264 DCTELEM *dataptr; | |
| 1265 DCTELEM *wsptr; | |
| 1266 JSAMPROW elemptr; | |
| 1267 int ctr; | |
| 1268 SHIFT_TEMPS | |
| 1269 | |
| 1270 /* Pass 1: process rows. | |
| 1271 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 1272 * we scale the results further by 2 as part of output adaption | |
| 1273 * scaling for different DCT size. | |
| 1274 * cK represents sqrt(2) * cos(K*pi/22). | |
| 1275 */ | |
| 1276 | |
| 1277 dataptr = data; | |
| 1278 ctr = 0; | |
| 1279 for (;;) { | |
| 1280 elemptr = sample_data[ctr] + start_col; | |
| 1281 | |
| 1282 /* Even part */ | |
| 1283 | |
| 1284 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]); | |
| 1285 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]); | |
| 1286 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]); | |
| 1287 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]); | |
| 1288 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]); | |
| 1289 tmp5 = GETJSAMPLE(elemptr[5]); | |
| 1290 | |
| 1291 tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]); | |
| 1292 tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]); | |
| 1293 tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]); | |
| 1294 tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]); | |
| 1295 tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]); | |
| 1296 | |
| 1297 /* Apply unsigned->signed conversion. */ | |
| 1298 dataptr[0] = (DCTELEM) | |
| 1299 ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1); | |
| 1300 tmp5 += tmp5; | |
| 1301 tmp0 -= tmp5; | |
| 1302 tmp1 -= tmp5; | |
| 1303 tmp2 -= tmp5; | |
| 1304 tmp3 -= tmp5; | |
| 1305 tmp4 -= tmp5; | |
| 1306 z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) + /* c2 */ | |
| 1307 MULTIPLY(tmp2 + tmp4, FIX(0.201263574)); /* c10 */ | |
| 1308 z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931)); /* c6 */ | |
| 1309 z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156)); /* c4 */ | |
| 1310 dataptr[2] = (DCTELEM) | |
| 1311 DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */ | |
| 1312 - MULTIPLY(tmp4, FIX(1.390975730)), /* c4+c10 */ | |
| 1313 CONST_BITS-1); | |
| 1314 dataptr[4] = (DCTELEM) | |
| 1315 DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */ | |
| 1316 - MULTIPLY(tmp2, FIX(1.356927976)) /* c2 */ | |
| 1317 + MULTIPLY(tmp4, FIX(0.587485545)), /* c8 */ | |
| 1318 CONST_BITS-1); | |
| 1319 dataptr[6] = (DCTELEM) | |
| 1320 DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */ | |
| 1321 - MULTIPLY(tmp2, FIX(0.788749120)), /* c8+c10 */ | |
| 1322 CONST_BITS-1); | |
| 1323 | |
| 1324 /* Odd part */ | |
| 1325 | |
| 1326 tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905)); /* c3 */ | |
| 1327 tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298)); /* c5 */ | |
| 1328 tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576)); /* c7 */ | |
| 1329 tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */ | |
| 1330 + MULTIPLY(tmp14, FIX(0.398430003)); /* c9 */ | |
| 1331 tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576)); /* -c7 */ | |
| 1332 tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907)); /* -c1 */ | |
| 1333 tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */ | |
| 1334 - MULTIPLY(tmp14, FIX(1.068791298)); /* c5 */ | |
| 1335 tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003)); /* c9 */ | |
| 1336 tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */ | |
| 1337 + MULTIPLY(tmp14, FIX(1.399818907)); /* c1 */ | |
| 1338 tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */ | |
| 1339 - MULTIPLY(tmp14, FIX(1.286413905)); /* c3 */ | |
| 1340 | |
| 1341 dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1); | |
| 1342 dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1); | |
| 1343 dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1); | |
| 1344 dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1); | |
| 1345 | |
| 1346 ctr++; | |
| 1347 | |
| 1348 if (ctr != DCTSIZE) { | |
| 1349 if (ctr == 11) | |
| 1350 break; /* Done. */ | |
| 1351 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 1352 } else | |
| 1353 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 1354 } | |
| 1355 | |
| 1356 /* Pass 2: process columns. | |
| 1357 * We leave the results scaled up by an overall factor of 8. | |
| 1358 * We must also scale the output by (8/11)**2 = 64/121, which we partially | |
| 1359 * fold into the constant multipliers and final/initial shifting: | |
| 1360 * cK now represents sqrt(2) * cos(K*pi/22) * 128/121. | |
| 1361 */ | |
| 1362 | |
| 1363 dataptr = data; | |
| 1364 wsptr = workspace; | |
| 1365 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 1366 /* Even part */ | |
| 1367 | |
| 1368 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2]; | |
| 1369 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1]; | |
| 1370 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0]; | |
| 1371 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7]; | |
| 1372 tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6]; | |
| 1373 tmp5 = dataptr[DCTSIZE*5]; | |
| 1374 | |
| 1375 tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2]; | |
| 1376 tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1]; | |
| 1377 tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0]; | |
| 1378 tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7]; | |
| 1379 tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6]; | |
| 1380 | |
| 1381 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 1382 DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5, | |
| 1383 FIX(1.057851240)), /* 128/121 */ | |
| 1384 CONST_BITS+2); | |
| 1385 tmp5 += tmp5; | |
| 1386 tmp0 -= tmp5; | |
| 1387 tmp1 -= tmp5; | |
| 1388 tmp2 -= tmp5; | |
| 1389 tmp3 -= tmp5; | |
| 1390 tmp4 -= tmp5; | |
| 1391 z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) + /* c2 */ | |
| 1392 MULTIPLY(tmp2 + tmp4, FIX(0.212906922)); /* c10 */ | |
| 1393 z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713)); /* c6 */ | |
| 1394 z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479)); /* c4 */ | |
| 1395 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 1396 DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */ | |
| 1397 - MULTIPLY(tmp4, FIX(1.471445400)), /* c4+c10 */ | |
| 1398 CONST_BITS+2); | |
| 1399 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 1400 DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */ | |
| 1401 - MULTIPLY(tmp2, FIX(1.435427942)) /* c2 */ | |
| 1402 + MULTIPLY(tmp4, FIX(0.621472312)), /* c8 */ | |
| 1403 CONST_BITS+2); | |
| 1404 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 1405 DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */ | |
| 1406 - MULTIPLY(tmp2, FIX(0.834379234)), /* c8+c10 */ | |
| 1407 CONST_BITS+2); | |
| 1408 | |
| 1409 /* Odd part */ | |
| 1410 | |
| 1411 tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544)); /* c3 */ | |
| 1412 tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199)); /* c5 */ | |
| 1413 tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568)); /* c7 */ | |
| 1414 tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */ | |
| 1415 + MULTIPLY(tmp14, FIX(0.421479672)); /* c9 */ | |
| 1416 tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568)); /* -c7 */ | |
| 1417 tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167)); /* -c1 */ | |
| 1418 tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */ | |
| 1419 - MULTIPLY(tmp14, FIX(1.130622199)); /* c5 */ | |
| 1420 tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672)); /* c9 */ | |
| 1421 tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */ | |
| 1422 + MULTIPLY(tmp14, FIX(1.480800167)); /* c1 */ | |
| 1423 tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */ | |
| 1424 - MULTIPLY(tmp14, FIX(1.360834544)); /* c3 */ | |
| 1425 | |
| 1426 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); | |
| 1427 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); | |
| 1428 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); | |
| 1429 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); | |
| 1430 | |
| 1431 dataptr++; /* advance pointer to next column */ | |
| 1432 wsptr++; /* advance pointer to next column */ | |
| 1433 } | |
| 1434 } | |
| 1435 | |
| 1436 | |
| 1437 /* | |
| 1438 * Perform the forward DCT on a 12x12 sample block. | |
| 1439 */ | |
| 1440 | |
| 1441 GLOBAL(void) | |
| 1442 jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 1443 { | |
| 1444 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; | |
| 1445 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; | |
| 1446 DCTELEM workspace[8*4]; | |
| 1447 DCTELEM *dataptr; | |
| 1448 DCTELEM *wsptr; | |
| 1449 JSAMPROW elemptr; | |
| 1450 int ctr; | |
| 1451 SHIFT_TEMPS | |
| 1452 | |
| 1453 /* Pass 1: process rows. | |
| 1454 * Note results are scaled up by sqrt(8) compared to a true DCT. | |
| 1455 * cK represents sqrt(2) * cos(K*pi/24). | |
| 1456 */ | |
| 1457 | |
| 1458 dataptr = data; | |
| 1459 ctr = 0; | |
| 1460 for (;;) { | |
| 1461 elemptr = sample_data[ctr] + start_col; | |
| 1462 | |
| 1463 /* Even part */ | |
| 1464 | |
| 1465 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); | |
| 1466 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); | |
| 1467 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); | |
| 1468 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); | |
| 1469 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); | |
| 1470 tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); | |
| 1471 | |
| 1472 tmp10 = tmp0 + tmp5; | |
| 1473 tmp13 = tmp0 - tmp5; | |
| 1474 tmp11 = tmp1 + tmp4; | |
| 1475 tmp14 = tmp1 - tmp4; | |
| 1476 tmp12 = tmp2 + tmp3; | |
| 1477 tmp15 = tmp2 - tmp3; | |
| 1478 | |
| 1479 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); | |
| 1480 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); | |
| 1481 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); | |
| 1482 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); | |
| 1483 tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); | |
| 1484 tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); | |
| 1485 | |
| 1486 /* Apply unsigned->signed conversion. */ | |
| 1487 dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE); | |
| 1488 dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15); | |
| 1489 dataptr[4] = (DCTELEM) | |
| 1490 DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ | |
| 1491 CONST_BITS); | |
| 1492 dataptr[2] = (DCTELEM) | |
| 1493 DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ | |
| 1494 CONST_BITS); | |
| 1495 | |
| 1496 /* Odd part */ | |
| 1497 | |
| 1498 tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ | |
| 1499 tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ | |
| 1500 tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ | |
| 1501 tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ | |
| 1502 tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ | |
| 1503 tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ | |
| 1504 + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ | |
| 1505 tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ | |
| 1506 tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ | |
| 1507 + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ | |
| 1508 tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ | |
| 1509 - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ | |
| 1510 tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ | |
| 1511 - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ | |
| 1512 | |
| 1513 dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS); | |
| 1514 dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS); | |
| 1515 dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS); | |
| 1516 dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS); | |
| 1517 | |
| 1518 ctr++; | |
| 1519 | |
| 1520 if (ctr != DCTSIZE) { | |
| 1521 if (ctr == 12) | |
| 1522 break; /* Done. */ | |
| 1523 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 1524 } else | |
| 1525 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 1526 } | |
| 1527 | |
| 1528 /* Pass 2: process columns. | |
| 1529 * We leave the results scaled up by an overall factor of 8. | |
| 1530 * We must also scale the output by (8/12)**2 = 4/9, which we partially | |
| 1531 * fold into the constant multipliers and final shifting: | |
| 1532 * cK now represents sqrt(2) * cos(K*pi/24) * 8/9. | |
| 1533 */ | |
| 1534 | |
| 1535 dataptr = data; | |
| 1536 wsptr = workspace; | |
| 1537 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 1538 /* Even part */ | |
| 1539 | |
| 1540 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; | |
| 1541 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; | |
| 1542 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; | |
| 1543 tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; | |
| 1544 tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; | |
| 1545 tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; | |
| 1546 | |
| 1547 tmp10 = tmp0 + tmp5; | |
| 1548 tmp13 = tmp0 - tmp5; | |
| 1549 tmp11 = tmp1 + tmp4; | |
| 1550 tmp14 = tmp1 - tmp4; | |
| 1551 tmp12 = tmp2 + tmp3; | |
| 1552 tmp15 = tmp2 - tmp3; | |
| 1553 | |
| 1554 tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; | |
| 1555 tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; | |
| 1556 tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; | |
| 1557 tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; | |
| 1558 tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; | |
| 1559 tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; | |
| 1560 | |
| 1561 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 1562 DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ | |
| 1563 CONST_BITS+1); | |
| 1564 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 1565 DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ | |
| 1566 CONST_BITS+1); | |
| 1567 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 1568 DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ | |
| 1569 CONST_BITS+1); | |
| 1570 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 1571 DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ | |
| 1572 MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ | |
| 1573 CONST_BITS+1); | |
| 1574 | |
| 1575 /* Odd part */ | |
| 1576 | |
| 1577 tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ | |
| 1578 tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ | |
| 1579 tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ | |
| 1580 tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ | |
| 1581 tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ | |
| 1582 tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ | |
| 1583 + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ | |
| 1584 tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ | |
| 1585 tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ | |
| 1586 + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ | |
| 1587 tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ | |
| 1588 - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ | |
| 1589 tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ | |
| 1590 - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ | |
| 1591 | |
| 1592 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1); | |
| 1593 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1); | |
| 1594 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1); | |
| 1595 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1); | |
| 1596 | |
| 1597 dataptr++; /* advance pointer to next column */ | |
| 1598 wsptr++; /* advance pointer to next column */ | |
| 1599 } | |
| 1600 } | |
| 1601 | |
| 1602 | |
| 1603 /* | |
| 1604 * Perform the forward DCT on a 13x13 sample block. | |
| 1605 */ | |
| 1606 | |
| 1607 GLOBAL(void) | |
| 1608 jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 1609 { | |
| 1610 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; | |
| 1611 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; | |
| 1612 INT32 z1, z2; | |
| 1613 DCTELEM workspace[8*5]; | |
| 1614 DCTELEM *dataptr; | |
| 1615 DCTELEM *wsptr; | |
| 1616 JSAMPROW elemptr; | |
| 1617 int ctr; | |
| 1618 SHIFT_TEMPS | |
| 1619 | |
| 1620 /* Pass 1: process rows. | |
| 1621 * Note results are scaled up by sqrt(8) compared to a true DCT. | |
| 1622 * cK represents sqrt(2) * cos(K*pi/26). | |
| 1623 */ | |
| 1624 | |
| 1625 dataptr = data; | |
| 1626 ctr = 0; | |
| 1627 for (;;) { | |
| 1628 elemptr = sample_data[ctr] + start_col; | |
| 1629 | |
| 1630 /* Even part */ | |
| 1631 | |
| 1632 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]); | |
| 1633 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]); | |
| 1634 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]); | |
| 1635 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]); | |
| 1636 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]); | |
| 1637 tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]); | |
| 1638 tmp6 = GETJSAMPLE(elemptr[6]); | |
| 1639 | |
| 1640 tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]); | |
| 1641 tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]); | |
| 1642 tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]); | |
| 1643 tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]); | |
| 1644 tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]); | |
| 1645 tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]); | |
| 1646 | |
| 1647 /* Apply unsigned->signed conversion. */ | |
| 1648 dataptr[0] = (DCTELEM) | |
| 1649 (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE); | |
| 1650 tmp6 += tmp6; | |
| 1651 tmp0 -= tmp6; | |
| 1652 tmp1 -= tmp6; | |
| 1653 tmp2 -= tmp6; | |
| 1654 tmp3 -= tmp6; | |
| 1655 tmp4 -= tmp6; | |
| 1656 tmp5 -= tmp6; | |
| 1657 dataptr[2] = (DCTELEM) | |
| 1658 DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) + /* c2 */ | |
| 1659 MULTIPLY(tmp1, FIX(1.058554052)) + /* c6 */ | |
| 1660 MULTIPLY(tmp2, FIX(0.501487041)) - /* c10 */ | |
| 1661 MULTIPLY(tmp3, FIX(0.170464608)) - /* c12 */ | |
| 1662 MULTIPLY(tmp4, FIX(0.803364869)) - /* c8 */ | |
| 1663 MULTIPLY(tmp5, FIX(1.252223920)), /* c4 */ | |
| 1664 CONST_BITS); | |
| 1665 z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */ | |
| 1666 MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */ | |
| 1667 MULTIPLY(tmp1 - tmp5, FIX(0.316450131)); /* (c8-c12)/2 */ | |
| 1668 z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */ | |
| 1669 MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */ | |
| 1670 MULTIPLY(tmp1 + tmp5, FIX(0.486914739)); /* (c8+c12)/2 */ | |
| 1671 | |
| 1672 dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS); | |
| 1673 dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS); | |
| 1674 | |
| 1675 /* Odd part */ | |
| 1676 | |
| 1677 tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651)); /* c3 */ | |
| 1678 tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945)); /* c5 */ | |
| 1679 tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) + /* c7 */ | |
| 1680 MULTIPLY(tmp14 + tmp15, FIX(0.338443458)); /* c11 */ | |
| 1681 tmp0 = tmp1 + tmp2 + tmp3 - | |
| 1682 MULTIPLY(tmp10, FIX(2.020082300)) + /* c3+c5+c7-c1 */ | |
| 1683 MULTIPLY(tmp14, FIX(0.318774355)); /* c9-c11 */ | |
| 1684 tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) - /* c7 */ | |
| 1685 MULTIPLY(tmp11 + tmp12, FIX(0.338443458)); /* c11 */ | |
| 1686 tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */ | |
| 1687 tmp1 += tmp4 + tmp5 + | |
| 1688 MULTIPLY(tmp11, FIX(0.837223564)) - /* c5+c9+c11-c3 */ | |
| 1689 MULTIPLY(tmp14, FIX(2.341699410)); /* c1+c7 */ | |
| 1690 tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */ | |
| 1691 tmp2 += tmp4 + tmp6 - | |
| 1692 MULTIPLY(tmp12, FIX(1.572116027)) + /* c1+c5-c9-c11 */ | |
| 1693 MULTIPLY(tmp15, FIX(2.260109708)); /* c3+c7 */ | |
| 1694 tmp3 += tmp5 + tmp6 + | |
| 1695 MULTIPLY(tmp13, FIX(2.205608352)) - /* c3+c5+c9-c7 */ | |
| 1696 MULTIPLY(tmp15, FIX(1.742345811)); /* c1+c11 */ | |
| 1697 | |
| 1698 dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); | |
| 1699 dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); | |
| 1700 dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); | |
| 1701 dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); | |
| 1702 | |
| 1703 ctr++; | |
| 1704 | |
| 1705 if (ctr != DCTSIZE) { | |
| 1706 if (ctr == 13) | |
| 1707 break; /* Done. */ | |
| 1708 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 1709 } else | |
| 1710 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 1711 } | |
| 1712 | |
| 1713 /* Pass 2: process columns. | |
| 1714 * We leave the results scaled up by an overall factor of 8. | |
| 1715 * We must also scale the output by (8/13)**2 = 64/169, which we partially | |
| 1716 * fold into the constant multipliers and final shifting: | |
| 1717 * cK now represents sqrt(2) * cos(K*pi/26) * 128/169. | |
| 1718 */ | |
| 1719 | |
| 1720 dataptr = data; | |
| 1721 wsptr = workspace; | |
| 1722 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 1723 /* Even part */ | |
| 1724 | |
| 1725 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4]; | |
| 1726 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3]; | |
| 1727 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2]; | |
| 1728 tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1]; | |
| 1729 tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0]; | |
| 1730 tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7]; | |
| 1731 tmp6 = dataptr[DCTSIZE*6]; | |
| 1732 | |
| 1733 tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4]; | |
| 1734 tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3]; | |
| 1735 tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2]; | |
| 1736 tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1]; | |
| 1737 tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0]; | |
| 1738 tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7]; | |
| 1739 | |
| 1740 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 1741 DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6, | |
| 1742 FIX(0.757396450)), /* 128/169 */ | |
| 1743 CONST_BITS+1); | |
| 1744 tmp6 += tmp6; | |
| 1745 tmp0 -= tmp6; | |
| 1746 tmp1 -= tmp6; | |
| 1747 tmp2 -= tmp6; | |
| 1748 tmp3 -= tmp6; | |
| 1749 tmp4 -= tmp6; | |
| 1750 tmp5 -= tmp6; | |
| 1751 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 1752 DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) + /* c2 */ | |
| 1753 MULTIPLY(tmp1, FIX(0.801745081)) + /* c6 */ | |
| 1754 MULTIPLY(tmp2, FIX(0.379824504)) - /* c10 */ | |
| 1755 MULTIPLY(tmp3, FIX(0.129109289)) - /* c12 */ | |
| 1756 MULTIPLY(tmp4, FIX(0.608465700)) - /* c8 */ | |
| 1757 MULTIPLY(tmp5, FIX(0.948429952)), /* c4 */ | |
| 1758 CONST_BITS+1); | |
| 1759 z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */ | |
| 1760 MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */ | |
| 1761 MULTIPLY(tmp1 - tmp5, FIX(0.239678205)); /* (c8-c12)/2 */ | |
| 1762 z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */ | |
| 1763 MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */ | |
| 1764 MULTIPLY(tmp1 + tmp5, FIX(0.368787494)); /* (c8+c12)/2 */ | |
| 1765 | |
| 1766 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1); | |
| 1767 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1); | |
| 1768 | |
| 1769 /* Odd part */ | |
| 1770 | |
| 1771 tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908)); /* c3 */ | |
| 1772 tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751)); /* c5 */ | |
| 1773 tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) + /* c7 */ | |
| 1774 MULTIPLY(tmp14 + tmp15, FIX(0.256335874)); /* c11 */ | |
| 1775 tmp0 = tmp1 + tmp2 + tmp3 - | |
| 1776 MULTIPLY(tmp10, FIX(1.530003162)) + /* c3+c5+c7-c1 */ | |
| 1777 MULTIPLY(tmp14, FIX(0.241438564)); /* c9-c11 */ | |
| 1778 tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) - /* c7 */ | |
| 1779 MULTIPLY(tmp11 + tmp12, FIX(0.256335874)); /* c11 */ | |
| 1780 tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */ | |
| 1781 tmp1 += tmp4 + tmp5 + | |
| 1782 MULTIPLY(tmp11, FIX(0.634110155)) - /* c5+c9+c11-c3 */ | |
| 1783 MULTIPLY(tmp14, FIX(1.773594819)); /* c1+c7 */ | |
| 1784 tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */ | |
| 1785 tmp2 += tmp4 + tmp6 - | |
| 1786 MULTIPLY(tmp12, FIX(1.190715098)) + /* c1+c5-c9-c11 */ | |
| 1787 MULTIPLY(tmp15, FIX(1.711799069)); /* c3+c7 */ | |
| 1788 tmp3 += tmp5 + tmp6 + | |
| 1789 MULTIPLY(tmp13, FIX(1.670519935)) - /* c3+c5+c9-c7 */ | |
| 1790 MULTIPLY(tmp15, FIX(1.319646532)); /* c1+c11 */ | |
| 1791 | |
| 1792 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1); | |
| 1793 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1); | |
| 1794 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1); | |
| 1795 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1); | |
| 1796 | |
| 1797 dataptr++; /* advance pointer to next column */ | |
| 1798 wsptr++; /* advance pointer to next column */ | |
| 1799 } | |
| 1800 } | |
| 1801 | |
| 1802 | |
| 1803 /* | |
| 1804 * Perform the forward DCT on a 14x14 sample block. | |
| 1805 */ | |
| 1806 | |
| 1807 GLOBAL(void) | |
| 1808 jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 1809 { | |
| 1810 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; | |
| 1811 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; | |
| 1812 DCTELEM workspace[8*6]; | |
| 1813 DCTELEM *dataptr; | |
| 1814 DCTELEM *wsptr; | |
| 1815 JSAMPROW elemptr; | |
| 1816 int ctr; | |
| 1817 SHIFT_TEMPS | |
| 1818 | |
| 1819 /* Pass 1: process rows. | |
| 1820 * Note results are scaled up by sqrt(8) compared to a true DCT. | |
| 1821 * cK represents sqrt(2) * cos(K*pi/28). | |
| 1822 */ | |
| 1823 | |
| 1824 dataptr = data; | |
| 1825 ctr = 0; | |
| 1826 for (;;) { | |
| 1827 elemptr = sample_data[ctr] + start_col; | |
| 1828 | |
| 1829 /* Even part */ | |
| 1830 | |
| 1831 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); | |
| 1832 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); | |
| 1833 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); | |
| 1834 tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); | |
| 1835 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); | |
| 1836 tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); | |
| 1837 tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); | |
| 1838 | |
| 1839 tmp10 = tmp0 + tmp6; | |
| 1840 tmp14 = tmp0 - tmp6; | |
| 1841 tmp11 = tmp1 + tmp5; | |
| 1842 tmp15 = tmp1 - tmp5; | |
| 1843 tmp12 = tmp2 + tmp4; | |
| 1844 tmp16 = tmp2 - tmp4; | |
| 1845 | |
| 1846 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); | |
| 1847 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); | |
| 1848 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); | |
| 1849 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); | |
| 1850 tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); | |
| 1851 tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); | |
| 1852 tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); | |
| 1853 | |
| 1854 /* Apply unsigned->signed conversion. */ | |
| 1855 dataptr[0] = (DCTELEM) | |
| 1856 (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE); | |
| 1857 tmp13 += tmp13; | |
| 1858 dataptr[4] = (DCTELEM) | |
| 1859 DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ | |
| 1860 MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ | |
| 1861 MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ | |
| 1862 CONST_BITS); | |
| 1863 | |
| 1864 tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ | |
| 1865 | |
| 1866 dataptr[2] = (DCTELEM) | |
| 1867 DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ | |
| 1868 + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ | |
| 1869 CONST_BITS); | |
| 1870 dataptr[6] = (DCTELEM) | |
| 1871 DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ | |
| 1872 - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ | |
| 1873 CONST_BITS); | |
| 1874 | |
| 1875 /* Odd part */ | |
| 1876 | |
| 1877 tmp10 = tmp1 + tmp2; | |
| 1878 tmp11 = tmp5 - tmp4; | |
| 1879 dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6); | |
| 1880 tmp3 <<= CONST_BITS; | |
| 1881 tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ | |
| 1882 tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ | |
| 1883 tmp10 += tmp11 - tmp3; | |
| 1884 tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ | |
| 1885 MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ | |
| 1886 dataptr[5] = (DCTELEM) | |
| 1887 DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ | |
| 1888 + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ | |
| 1889 CONST_BITS); | |
| 1890 tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ | |
| 1891 MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ | |
| 1892 dataptr[3] = (DCTELEM) | |
| 1893 DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ | |
| 1894 - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ | |
| 1895 CONST_BITS); | |
| 1896 dataptr[1] = (DCTELEM) | |
| 1897 DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - | |
| 1898 MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ | |
| 1899 CONST_BITS); | |
| 1900 | |
| 1901 ctr++; | |
| 1902 | |
| 1903 if (ctr != DCTSIZE) { | |
| 1904 if (ctr == 14) | |
| 1905 break; /* Done. */ | |
| 1906 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 1907 } else | |
| 1908 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 1909 } | |
| 1910 | |
| 1911 /* Pass 2: process columns. | |
| 1912 * We leave the results scaled up by an overall factor of 8. | |
| 1913 * We must also scale the output by (8/14)**2 = 16/49, which we partially | |
| 1914 * fold into the constant multipliers and final shifting: | |
| 1915 * cK now represents sqrt(2) * cos(K*pi/28) * 32/49. | |
| 1916 */ | |
| 1917 | |
| 1918 dataptr = data; | |
| 1919 wsptr = workspace; | |
| 1920 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 1921 /* Even part */ | |
| 1922 | |
| 1923 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; | |
| 1924 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; | |
| 1925 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; | |
| 1926 tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; | |
| 1927 tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; | |
| 1928 tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; | |
| 1929 tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; | |
| 1930 | |
| 1931 tmp10 = tmp0 + tmp6; | |
| 1932 tmp14 = tmp0 - tmp6; | |
| 1933 tmp11 = tmp1 + tmp5; | |
| 1934 tmp15 = tmp1 - tmp5; | |
| 1935 tmp12 = tmp2 + tmp4; | |
| 1936 tmp16 = tmp2 - tmp4; | |
| 1937 | |
| 1938 tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; | |
| 1939 tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; | |
| 1940 tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; | |
| 1941 tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; | |
| 1942 tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; | |
| 1943 tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; | |
| 1944 tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; | |
| 1945 | |
| 1946 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 1947 DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, | |
| 1948 FIX(0.653061224)), /* 32/49 */ | |
| 1949 CONST_BITS+1); | |
| 1950 tmp13 += tmp13; | |
| 1951 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 1952 DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ | |
| 1953 MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ | |
| 1954 MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ | |
| 1955 CONST_BITS+1); | |
| 1956 | |
| 1957 tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ | |
| 1958 | |
| 1959 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 1960 DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ | |
| 1961 + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ | |
| 1962 CONST_BITS+1); | |
| 1963 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 1964 DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ | |
| 1965 - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ | |
| 1966 CONST_BITS+1); | |
| 1967 | |
| 1968 /* Odd part */ | |
| 1969 | |
| 1970 tmp10 = tmp1 + tmp2; | |
| 1971 tmp11 = tmp5 - tmp4; | |
| 1972 dataptr[DCTSIZE*7] = (DCTELEM) | |
| 1973 DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, | |
| 1974 FIX(0.653061224)), /* 32/49 */ | |
| 1975 CONST_BITS+1); | |
| 1976 tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ | |
| 1977 tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ | |
| 1978 tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ | |
| 1979 tmp10 += tmp11 - tmp3; | |
| 1980 tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ | |
| 1981 MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ | |
| 1982 dataptr[DCTSIZE*5] = (DCTELEM) | |
| 1983 DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ | |
| 1984 + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ | |
| 1985 CONST_BITS+1); | |
| 1986 tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ | |
| 1987 MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ | |
| 1988 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 1989 DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ | |
| 1990 - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ | |
| 1991 CONST_BITS+1); | |
| 1992 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 1993 DESCALE(tmp11 + tmp12 + tmp3 | |
| 1994 - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ | |
| 1995 - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ | |
| 1996 CONST_BITS+1); | |
| 1997 | |
| 1998 dataptr++; /* advance pointer to next column */ | |
| 1999 wsptr++; /* advance pointer to next column */ | |
| 2000 } | |
| 2001 } | |
| 2002 | |
| 2003 | |
| 2004 /* | |
| 2005 * Perform the forward DCT on a 15x15 sample block. | |
| 2006 */ | |
| 2007 | |
| 2008 GLOBAL(void) | |
| 2009 jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 2010 { | |
| 2011 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
| 2012 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; | |
| 2013 INT32 z1, z2, z3; | |
| 2014 DCTELEM workspace[8*7]; | |
| 2015 DCTELEM *dataptr; | |
| 2016 DCTELEM *wsptr; | |
| 2017 JSAMPROW elemptr; | |
| 2018 int ctr; | |
| 2019 SHIFT_TEMPS | |
| 2020 | |
| 2021 /* Pass 1: process rows. | |
| 2022 * Note results are scaled up by sqrt(8) compared to a true DCT. | |
| 2023 * cK represents sqrt(2) * cos(K*pi/30). | |
| 2024 */ | |
| 2025 | |
| 2026 dataptr = data; | |
| 2027 ctr = 0; | |
| 2028 for (;;) { | |
| 2029 elemptr = sample_data[ctr] + start_col; | |
| 2030 | |
| 2031 /* Even part */ | |
| 2032 | |
| 2033 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]); | |
| 2034 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]); | |
| 2035 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]); | |
| 2036 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]); | |
| 2037 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]); | |
| 2038 tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]); | |
| 2039 tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]); | |
| 2040 tmp7 = GETJSAMPLE(elemptr[7]); | |
| 2041 | |
| 2042 tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]); | |
| 2043 tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]); | |
| 2044 tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]); | |
| 2045 tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]); | |
| 2046 tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]); | |
| 2047 tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]); | |
| 2048 tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]); | |
| 2049 | |
| 2050 z1 = tmp0 + tmp4 + tmp5; | |
| 2051 z2 = tmp1 + tmp3 + tmp6; | |
| 2052 z3 = tmp2 + tmp7; | |
| 2053 /* Apply unsigned->signed conversion. */ | |
| 2054 dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE); | |
| 2055 z3 += z3; | |
| 2056 dataptr[6] = (DCTELEM) | |
| 2057 DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */ | |
| 2058 MULTIPLY(z2 - z3, FIX(0.437016024)), /* c12 */ | |
| 2059 CONST_BITS); | |
| 2060 tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; | |
| 2061 z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) - /* c2+c14 */ | |
| 2062 MULTIPLY(tmp6 - tmp2, FIX(2.238241955)); /* c4+c8 */ | |
| 2063 z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) - /* c8-c14 */ | |
| 2064 MULTIPLY(tmp0 - tmp2, FIX(0.091361227)); /* c2-c4 */ | |
| 2065 z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) + /* c2 */ | |
| 2066 MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) + /* c8 */ | |
| 2067 MULTIPLY(tmp1 - tmp4, FIX(0.790569415)); /* (c6+c12)/2 */ | |
| 2068 | |
| 2069 dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS); | |
| 2070 dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS); | |
| 2071 | |
| 2072 /* Odd part */ | |
| 2073 | |
| 2074 tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, | |
| 2075 FIX(1.224744871)); /* c5 */ | |
| 2076 tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */ | |
| 2077 MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876)); /* c9 */ | |
| 2078 tmp12 = MULTIPLY(tmp12, FIX(1.224744871)); /* c5 */ | |
| 2079 tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) + /* c1 */ | |
| 2080 MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) + /* c3 */ | |
| 2081 MULTIPLY(tmp13 + tmp15, FIX(0.575212477)); /* c11 */ | |
| 2082 tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) - /* c7-c11 */ | |
| 2083 MULTIPLY(tmp14, FIX(0.513743148)) + /* c3-c9 */ | |
| 2084 MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12; /* c1+c13 */ | |
| 2085 tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) - /* -(c1-c7) */ | |
| 2086 MULTIPLY(tmp11, FIX(2.176250899)) - /* c3+c9 */ | |
| 2087 MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12; /* c11+c13 */ | |
| 2088 | |
| 2089 dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS); | |
| 2090 dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS); | |
| 2091 dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS); | |
| 2092 dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS); | |
| 2093 | |
| 2094 ctr++; | |
| 2095 | |
| 2096 if (ctr != DCTSIZE) { | |
| 2097 if (ctr == 15) | |
| 2098 break; /* Done. */ | |
| 2099 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 2100 } else | |
| 2101 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 2102 } | |
| 2103 | |
| 2104 /* Pass 2: process columns. | |
| 2105 * We leave the results scaled up by an overall factor of 8. | |
| 2106 * We must also scale the output by (8/15)**2 = 64/225, which we partially | |
| 2107 * fold into the constant multipliers and final shifting: | |
| 2108 * cK now represents sqrt(2) * cos(K*pi/30) * 256/225. | |
| 2109 */ | |
| 2110 | |
| 2111 dataptr = data; | |
| 2112 wsptr = workspace; | |
| 2113 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 2114 /* Even part */ | |
| 2115 | |
| 2116 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6]; | |
| 2117 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5]; | |
| 2118 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4]; | |
| 2119 tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3]; | |
| 2120 tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2]; | |
| 2121 tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1]; | |
| 2122 tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0]; | |
| 2123 tmp7 = dataptr[DCTSIZE*7]; | |
| 2124 | |
| 2125 tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6]; | |
| 2126 tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5]; | |
| 2127 tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4]; | |
| 2128 tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3]; | |
| 2129 tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2]; | |
| 2130 tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1]; | |
| 2131 tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0]; | |
| 2132 | |
| 2133 z1 = tmp0 + tmp4 + tmp5; | |
| 2134 z2 = tmp1 + tmp3 + tmp6; | |
| 2135 z3 = tmp2 + tmp7; | |
| 2136 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 2137 DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */ | |
| 2138 CONST_BITS+2); | |
| 2139 z3 += z3; | |
| 2140 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 2141 DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */ | |
| 2142 MULTIPLY(z2 - z3, FIX(0.497227121)), /* c12 */ | |
| 2143 CONST_BITS+2); | |
| 2144 tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7; | |
| 2145 z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) - /* c2+c14 */ | |
| 2146 MULTIPLY(tmp6 - tmp2, FIX(2.546621957)); /* c4+c8 */ | |
| 2147 z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) - /* c8-c14 */ | |
| 2148 MULTIPLY(tmp0 - tmp2, FIX(0.103948774)); /* c2-c4 */ | |
| 2149 z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) + /* c2 */ | |
| 2150 MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) + /* c8 */ | |
| 2151 MULTIPLY(tmp1 - tmp4, FIX(0.899492312)); /* (c6+c12)/2 */ | |
| 2152 | |
| 2153 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2); | |
| 2154 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2); | |
| 2155 | |
| 2156 /* Odd part */ | |
| 2157 | |
| 2158 tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16, | |
| 2159 FIX(1.393487498)); /* c5 */ | |
| 2160 tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */ | |
| 2161 MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187)); /* c9 */ | |
| 2162 tmp12 = MULTIPLY(tmp12, FIX(1.393487498)); /* c5 */ | |
| 2163 tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) + /* c1 */ | |
| 2164 MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) + /* c3 */ | |
| 2165 MULTIPLY(tmp13 + tmp15, FIX(0.654463974)); /* c11 */ | |
| 2166 tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) - /* c7-c11 */ | |
| 2167 MULTIPLY(tmp14, FIX(0.584525538)) + /* c3-c9 */ | |
| 2168 MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12; /* c1+c13 */ | |
| 2169 tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) - /* -(c1-c7) */ | |
| 2170 MULTIPLY(tmp11, FIX(2.476089912)) - /* c3+c9 */ | |
| 2171 MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12; /* c11+c13 */ | |
| 2172 | |
| 2173 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2); | |
| 2174 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2); | |
| 2175 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2); | |
| 2176 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2); | |
| 2177 | |
| 2178 dataptr++; /* advance pointer to next column */ | |
| 2179 wsptr++; /* advance pointer to next column */ | |
| 2180 } | |
| 2181 } | |
| 2182 | |
| 2183 | |
| 2184 /* | |
| 2185 * Perform the forward DCT on a 16x16 sample block. | |
| 2186 */ | |
| 2187 | |
| 2188 GLOBAL(void) | |
| 2189 jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 2190 { | |
| 2191 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
| 2192 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; | |
| 2193 DCTELEM workspace[DCTSIZE2]; | |
| 2194 DCTELEM *dataptr; | |
| 2195 DCTELEM *wsptr; | |
| 2196 JSAMPROW elemptr; | |
| 2197 int ctr; | |
| 2198 SHIFT_TEMPS | |
| 2199 | |
| 2200 /* Pass 1: process rows. | |
| 2201 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 2202 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 2203 * cK represents sqrt(2) * cos(K*pi/32). | |
| 2204 */ | |
| 2205 | |
| 2206 dataptr = data; | |
| 2207 ctr = 0; | |
| 2208 for (;;) { | |
| 2209 elemptr = sample_data[ctr] + start_col; | |
| 2210 | |
| 2211 /* Even part */ | |
| 2212 | |
| 2213 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); | |
| 2214 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); | |
| 2215 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); | |
| 2216 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); | |
| 2217 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); | |
| 2218 tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); | |
| 2219 tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); | |
| 2220 tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); | |
| 2221 | |
| 2222 tmp10 = tmp0 + tmp7; | |
| 2223 tmp14 = tmp0 - tmp7; | |
| 2224 tmp11 = tmp1 + tmp6; | |
| 2225 tmp15 = tmp1 - tmp6; | |
| 2226 tmp12 = tmp2 + tmp5; | |
| 2227 tmp16 = tmp2 - tmp5; | |
| 2228 tmp13 = tmp3 + tmp4; | |
| 2229 tmp17 = tmp3 - tmp4; | |
| 2230 | |
| 2231 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); | |
| 2232 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); | |
| 2233 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); | |
| 2234 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); | |
| 2235 tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); | |
| 2236 tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); | |
| 2237 tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); | |
| 2238 tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); | |
| 2239 | |
| 2240 /* Apply unsigned->signed conversion. */ | |
| 2241 dataptr[0] = (DCTELEM) | |
| 2242 ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); | |
| 2243 dataptr[4] = (DCTELEM) | |
| 2244 DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ | |
| 2245 MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ | |
| 2246 CONST_BITS-PASS1_BITS); | |
| 2247 | |
| 2248 tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ | |
| 2249 MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ | |
| 2250 | |
| 2251 dataptr[2] = (DCTELEM) | |
| 2252 DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ | |
| 2253 + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ | |
| 2254 CONST_BITS-PASS1_BITS); | |
| 2255 dataptr[6] = (DCTELEM) | |
| 2256 DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ | |
| 2257 - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ | |
| 2258 CONST_BITS-PASS1_BITS); | |
| 2259 | |
| 2260 /* Odd part */ | |
| 2261 | |
| 2262 tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ | |
| 2263 MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ | |
| 2264 tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ | |
| 2265 MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ | |
| 2266 tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ | |
| 2267 MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ | |
| 2268 tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ | |
| 2269 MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ | |
| 2270 tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ | |
| 2271 MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ | |
| 2272 tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ | |
| 2273 MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ | |
| 2274 tmp10 = tmp11 + tmp12 + tmp13 - | |
| 2275 MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ | |
| 2276 MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ | |
| 2277 tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ | |
| 2278 - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ | |
| 2279 tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ | |
| 2280 + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ | |
| 2281 tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ | |
| 2282 + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ | |
| 2283 | |
| 2284 dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); | |
| 2285 dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); | |
| 2286 dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); | |
| 2287 dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); | |
| 2288 | |
| 2289 ctr++; | |
| 2290 | |
| 2291 if (ctr != DCTSIZE) { | |
| 2292 if (ctr == DCTSIZE * 2) | |
| 2293 break; /* Done. */ | |
| 2294 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 2295 } else | |
| 2296 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 2297 } | |
| 2298 | |
| 2299 /* Pass 2: process columns. | |
| 2300 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 2301 * by an overall factor of 8. | |
| 2302 * We must also scale the output by (8/16)**2 = 1/2**2. | |
| 2303 * cK represents sqrt(2) * cos(K*pi/32). | |
| 2304 */ | |
| 2305 | |
| 2306 dataptr = data; | |
| 2307 wsptr = workspace; | |
| 2308 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 2309 /* Even part */ | |
| 2310 | |
| 2311 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; | |
| 2312 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; | |
| 2313 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; | |
| 2314 tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; | |
| 2315 tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; | |
| 2316 tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; | |
| 2317 tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; | |
| 2318 tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; | |
| 2319 | |
| 2320 tmp10 = tmp0 + tmp7; | |
| 2321 tmp14 = tmp0 - tmp7; | |
| 2322 tmp11 = tmp1 + tmp6; | |
| 2323 tmp15 = tmp1 - tmp6; | |
| 2324 tmp12 = tmp2 + tmp5; | |
| 2325 tmp16 = tmp2 - tmp5; | |
| 2326 tmp13 = tmp3 + tmp4; | |
| 2327 tmp17 = tmp3 - tmp4; | |
| 2328 | |
| 2329 tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; | |
| 2330 tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; | |
| 2331 tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; | |
| 2332 tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; | |
| 2333 tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; | |
| 2334 tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; | |
| 2335 tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; | |
| 2336 tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; | |
| 2337 | |
| 2338 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 2339 DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2); | |
| 2340 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 2341 DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ | |
| 2342 MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ | |
| 2343 CONST_BITS+PASS1_BITS+2); | |
| 2344 | |
| 2345 tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ | |
| 2346 MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ | |
| 2347 | |
| 2348 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 2349 DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ | |
| 2350 + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+10 */ | |
| 2351 CONST_BITS+PASS1_BITS+2); | |
| 2352 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 2353 DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ | |
| 2354 - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ | |
| 2355 CONST_BITS+PASS1_BITS+2); | |
| 2356 | |
| 2357 /* Odd part */ | |
| 2358 | |
| 2359 tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ | |
| 2360 MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ | |
| 2361 tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ | |
| 2362 MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ | |
| 2363 tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ | |
| 2364 MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ | |
| 2365 tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ | |
| 2366 MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ | |
| 2367 tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ | |
| 2368 MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ | |
| 2369 tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ | |
| 2370 MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ | |
| 2371 tmp10 = tmp11 + tmp12 + tmp13 - | |
| 2372 MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ | |
| 2373 MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ | |
| 2374 tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ | |
| 2375 - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ | |
| 2376 tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ | |
| 2377 + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ | |
| 2378 tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ | |
| 2379 + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ | |
| 2380 | |
| 2381 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2); | |
| 2382 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2); | |
| 2383 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2); | |
| 2384 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2); | |
| 2385 | |
| 2386 dataptr++; /* advance pointer to next column */ | |
| 2387 wsptr++; /* advance pointer to next column */ | |
| 2388 } | |
| 2389 } | |
| 2390 | |
| 2391 | |
| 2392 /* | |
| 2393 * Perform the forward DCT on a 16x8 sample block. | |
| 2394 * | |
| 2395 * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). | |
| 2396 */ | |
| 2397 | |
| 2398 GLOBAL(void) | |
| 2399 jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 2400 { | |
| 2401 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
| 2402 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; | |
| 2403 INT32 z1; | |
| 2404 DCTELEM *dataptr; | |
| 2405 JSAMPROW elemptr; | |
| 2406 int ctr; | |
| 2407 SHIFT_TEMPS | |
| 2408 | |
| 2409 /* Pass 1: process rows. | |
| 2410 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 2411 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 2412 * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). | |
| 2413 */ | |
| 2414 | |
| 2415 dataptr = data; | |
| 2416 ctr = 0; | |
| 2417 for (ctr = 0; ctr < DCTSIZE; ctr++) { | |
| 2418 elemptr = sample_data[ctr] + start_col; | |
| 2419 | |
| 2420 /* Even part */ | |
| 2421 | |
| 2422 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]); | |
| 2423 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]); | |
| 2424 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]); | |
| 2425 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]); | |
| 2426 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]); | |
| 2427 tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]); | |
| 2428 tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]); | |
| 2429 tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]); | |
| 2430 | |
| 2431 tmp10 = tmp0 + tmp7; | |
| 2432 tmp14 = tmp0 - tmp7; | |
| 2433 tmp11 = tmp1 + tmp6; | |
| 2434 tmp15 = tmp1 - tmp6; | |
| 2435 tmp12 = tmp2 + tmp5; | |
| 2436 tmp16 = tmp2 - tmp5; | |
| 2437 tmp13 = tmp3 + tmp4; | |
| 2438 tmp17 = tmp3 - tmp4; | |
| 2439 | |
| 2440 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]); | |
| 2441 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]); | |
| 2442 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]); | |
| 2443 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]); | |
| 2444 tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]); | |
| 2445 tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]); | |
| 2446 tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]); | |
| 2447 tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]); | |
| 2448 | |
| 2449 /* Apply unsigned->signed conversion. */ | |
| 2450 dataptr[0] = (DCTELEM) | |
| 2451 ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS); | |
| 2452 dataptr[4] = (DCTELEM) | |
| 2453 DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ | |
| 2454 MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ | |
| 2455 CONST_BITS-PASS1_BITS); | |
| 2456 | |
| 2457 tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ | |
| 2458 MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ | |
| 2459 | |
| 2460 dataptr[2] = (DCTELEM) | |
| 2461 DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ | |
| 2462 + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ | |
| 2463 CONST_BITS-PASS1_BITS); | |
| 2464 dataptr[6] = (DCTELEM) | |
| 2465 DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ | |
| 2466 - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ | |
| 2467 CONST_BITS-PASS1_BITS); | |
| 2468 | |
| 2469 /* Odd part */ | |
| 2470 | |
| 2471 tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ | |
| 2472 MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ | |
| 2473 tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ | |
| 2474 MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ | |
| 2475 tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ | |
| 2476 MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ | |
| 2477 tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ | |
| 2478 MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ | |
| 2479 tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ | |
| 2480 MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ | |
| 2481 tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ | |
| 2482 MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ | |
| 2483 tmp10 = tmp11 + tmp12 + tmp13 - | |
| 2484 MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ | |
| 2485 MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ | |
| 2486 tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ | |
| 2487 - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ | |
| 2488 tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ | |
| 2489 + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ | |
| 2490 tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ | |
| 2491 + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ | |
| 2492 | |
| 2493 dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); | |
| 2494 dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); | |
| 2495 dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); | |
| 2496 dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); | |
| 2497 | |
| 2498 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 2499 } | |
| 2500 | |
| 2501 /* Pass 2: process columns. | |
| 2502 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 2503 * by an overall factor of 8. | |
| 2504 * We must also scale the output by 8/16 = 1/2. | |
| 2505 * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). | |
| 2506 */ | |
| 2507 | |
| 2508 dataptr = data; | |
| 2509 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 2510 /* Even part per LL&M figure 1 --- note that published figure is faulty; | |
| 2511 * rotator "c1" should be "c6". | |
| 2512 */ | |
| 2513 | |
| 2514 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
| 2515 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
| 2516 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
| 2517 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
| 2518 | |
| 2519 tmp10 = tmp0 + tmp3; | |
| 2520 tmp12 = tmp0 - tmp3; | |
| 2521 tmp11 = tmp1 + tmp2; | |
| 2522 tmp13 = tmp1 - tmp2; | |
| 2523 | |
| 2524 tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
| 2525 tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
| 2526 tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
| 2527 tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
| 2528 | |
| 2529 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1); | |
| 2530 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1); | |
| 2531 | |
| 2532 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ | |
| 2533 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 2534 DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ | |
| 2535 CONST_BITS+PASS1_BITS+1); | |
| 2536 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 2537 DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ | |
| 2538 CONST_BITS+PASS1_BITS+1); | |
| 2539 | |
| 2540 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | |
| 2541 * i0..i3 in the paper are tmp0..tmp3 here. | |
| 2542 */ | |
| 2543 | |
| 2544 tmp12 = tmp0 + tmp2; | |
| 2545 tmp13 = tmp1 + tmp3; | |
| 2546 | |
| 2547 z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ | |
| 2548 tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ | |
| 2549 tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ | |
| 2550 tmp12 += z1; | |
| 2551 tmp13 += z1; | |
| 2552 | |
| 2553 z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ | |
| 2554 tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ | |
| 2555 tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ | |
| 2556 tmp0 += z1 + tmp12; | |
| 2557 tmp3 += z1 + tmp13; | |
| 2558 | |
| 2559 z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ | |
| 2560 tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ | |
| 2561 tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ | |
| 2562 tmp1 += z1 + tmp13; | |
| 2563 tmp2 += z1 + tmp12; | |
| 2564 | |
| 2565 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1); | |
| 2566 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1); | |
| 2567 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1); | |
| 2568 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+PASS1_BITS+1); | |
| 2569 | |
| 2570 dataptr++; /* advance pointer to next column */ | |
| 2571 } | |
| 2572 } | |
| 2573 | |
| 2574 | |
| 2575 /* | |
| 2576 * Perform the forward DCT on a 14x7 sample block. | |
| 2577 * | |
| 2578 * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns). | |
| 2579 */ | |
| 2580 | |
| 2581 GLOBAL(void) | |
| 2582 jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 2583 { | |
| 2584 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; | |
| 2585 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; | |
| 2586 INT32 z1, z2, z3; | |
| 2587 DCTELEM *dataptr; | |
| 2588 JSAMPROW elemptr; | |
| 2589 int ctr; | |
| 2590 SHIFT_TEMPS | |
| 2591 | |
| 2592 /* Zero bottom row of output coefficient block. */ | |
| 2593 MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE); | |
| 2594 | |
| 2595 /* Pass 1: process rows. | |
| 2596 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 2597 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 2598 * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). | |
| 2599 */ | |
| 2600 | |
| 2601 dataptr = data; | |
| 2602 for (ctr = 0; ctr < 7; ctr++) { | |
| 2603 elemptr = sample_data[ctr] + start_col; | |
| 2604 | |
| 2605 /* Even part */ | |
| 2606 | |
| 2607 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]); | |
| 2608 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]); | |
| 2609 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]); | |
| 2610 tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]); | |
| 2611 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]); | |
| 2612 tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]); | |
| 2613 tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]); | |
| 2614 | |
| 2615 tmp10 = tmp0 + tmp6; | |
| 2616 tmp14 = tmp0 - tmp6; | |
| 2617 tmp11 = tmp1 + tmp5; | |
| 2618 tmp15 = tmp1 - tmp5; | |
| 2619 tmp12 = tmp2 + tmp4; | |
| 2620 tmp16 = tmp2 - tmp4; | |
| 2621 | |
| 2622 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]); | |
| 2623 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]); | |
| 2624 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]); | |
| 2625 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]); | |
| 2626 tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]); | |
| 2627 tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]); | |
| 2628 tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]); | |
| 2629 | |
| 2630 /* Apply unsigned->signed conversion. */ | |
| 2631 dataptr[0] = (DCTELEM) | |
| 2632 ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS); | |
| 2633 tmp13 += tmp13; | |
| 2634 dataptr[4] = (DCTELEM) | |
| 2635 DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */ | |
| 2636 MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */ | |
| 2637 MULTIPLY(tmp12 - tmp13, FIX(0.881747734)), /* c8 */ | |
| 2638 CONST_BITS-PASS1_BITS); | |
| 2639 | |
| 2640 tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686)); /* c6 */ | |
| 2641 | |
| 2642 dataptr[2] = (DCTELEM) | |
| 2643 DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590)) /* c2-c6 */ | |
| 2644 + MULTIPLY(tmp16, FIX(0.613604268)), /* c10 */ | |
| 2645 CONST_BITS-PASS1_BITS); | |
| 2646 dataptr[6] = (DCTELEM) | |
| 2647 DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954)) /* c6+c10 */ | |
| 2648 - MULTIPLY(tmp16, FIX(1.378756276)), /* c2 */ | |
| 2649 CONST_BITS-PASS1_BITS); | |
| 2650 | |
| 2651 /* Odd part */ | |
| 2652 | |
| 2653 tmp10 = tmp1 + tmp2; | |
| 2654 tmp11 = tmp5 - tmp4; | |
| 2655 dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS); | |
| 2656 tmp3 <<= CONST_BITS; | |
| 2657 tmp10 = MULTIPLY(tmp10, - FIX(0.158341681)); /* -c13 */ | |
| 2658 tmp11 = MULTIPLY(tmp11, FIX(1.405321284)); /* c1 */ | |
| 2659 tmp10 += tmp11 - tmp3; | |
| 2660 tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) + /* c5 */ | |
| 2661 MULTIPLY(tmp4 + tmp6, FIX(0.752406978)); /* c9 */ | |
| 2662 dataptr[5] = (DCTELEM) | |
| 2663 DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */ | |
| 2664 + MULTIPLY(tmp4, FIX(1.119999435)), /* c1+c11-c9 */ | |
| 2665 CONST_BITS-PASS1_BITS); | |
| 2666 tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) + /* c3 */ | |
| 2667 MULTIPLY(tmp5 - tmp6, FIX(0.467085129)); /* c11 */ | |
| 2668 dataptr[3] = (DCTELEM) | |
| 2669 DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */ | |
| 2670 - MULTIPLY(tmp5, FIX(3.069855259)), /* c1+c5+c11 */ | |
| 2671 CONST_BITS-PASS1_BITS); | |
| 2672 dataptr[1] = (DCTELEM) | |
| 2673 DESCALE(tmp11 + tmp12 + tmp3 + tmp6 - | |
| 2674 MULTIPLY(tmp0 + tmp6, FIX(1.126980169)), /* c3+c5-c1 */ | |
| 2675 CONST_BITS-PASS1_BITS); | |
| 2676 | |
| 2677 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 2678 } | |
| 2679 | |
| 2680 /* Pass 2: process columns. | |
| 2681 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 2682 * by an overall factor of 8. | |
| 2683 * We must also scale the output by (8/14)*(8/7) = 32/49, which we | |
| 2684 * partially fold into the constant multipliers and final shifting: | |
| 2685 * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49. | |
| 2686 */ | |
| 2687 | |
| 2688 dataptr = data; | |
| 2689 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 2690 /* Even part */ | |
| 2691 | |
| 2692 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6]; | |
| 2693 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5]; | |
| 2694 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4]; | |
| 2695 tmp3 = dataptr[DCTSIZE*3]; | |
| 2696 | |
| 2697 tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6]; | |
| 2698 tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5]; | |
| 2699 tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4]; | |
| 2700 | |
| 2701 z1 = tmp0 + tmp2; | |
| 2702 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 2703 DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */ | |
| 2704 CONST_BITS+PASS1_BITS+1); | |
| 2705 tmp3 += tmp3; | |
| 2706 z1 -= tmp3; | |
| 2707 z1 -= tmp3; | |
| 2708 z1 = MULTIPLY(z1, FIX(0.461784020)); /* (c2+c6-c4)/2 */ | |
| 2709 z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084)); /* (c2+c4-c6)/2 */ | |
| 2710 z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446)); /* c6 */ | |
| 2711 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1); | |
| 2712 z1 -= z2; | |
| 2713 z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509)); /* c4 */ | |
| 2714 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 2715 DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */ | |
| 2716 CONST_BITS+PASS1_BITS+1); | |
| 2717 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1); | |
| 2718 | |
| 2719 /* Odd part */ | |
| 2720 | |
| 2721 tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677)); /* (c3+c1-c5)/2 */ | |
| 2722 tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464)); /* (c3+c5-c1)/2 */ | |
| 2723 tmp0 = tmp1 - tmp2; | |
| 2724 tmp1 += tmp2; | |
| 2725 tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */ | |
| 2726 tmp1 += tmp2; | |
| 2727 tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310)); /* c5 */ | |
| 2728 tmp0 += tmp3; | |
| 2729 tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355)); /* c3+c1-c5 */ | |
| 2730 | |
| 2731 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1); | |
| 2732 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1); | |
| 2733 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1); | |
| 2734 | |
| 2735 dataptr++; /* advance pointer to next column */ | |
| 2736 } | |
| 2737 } | |
| 2738 | |
| 2739 | |
| 2740 /* | |
| 2741 * Perform the forward DCT on a 12x6 sample block. | |
| 2742 * | |
| 2743 * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). | |
| 2744 */ | |
| 2745 | |
| 2746 GLOBAL(void) | |
| 2747 jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 2748 { | |
| 2749 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; | |
| 2750 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; | |
| 2751 DCTELEM *dataptr; | |
| 2752 JSAMPROW elemptr; | |
| 2753 int ctr; | |
| 2754 SHIFT_TEMPS | |
| 2755 | |
| 2756 /* Zero 2 bottom rows of output coefficient block. */ | |
| 2757 MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2); | |
| 2758 | |
| 2759 /* Pass 1: process rows. | |
| 2760 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 2761 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 2762 * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). | |
| 2763 */ | |
| 2764 | |
| 2765 dataptr = data; | |
| 2766 for (ctr = 0; ctr < 6; ctr++) { | |
| 2767 elemptr = sample_data[ctr] + start_col; | |
| 2768 | |
| 2769 /* Even part */ | |
| 2770 | |
| 2771 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]); | |
| 2772 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]); | |
| 2773 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]); | |
| 2774 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]); | |
| 2775 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]); | |
| 2776 tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]); | |
| 2777 | |
| 2778 tmp10 = tmp0 + tmp5; | |
| 2779 tmp13 = tmp0 - tmp5; | |
| 2780 tmp11 = tmp1 + tmp4; | |
| 2781 tmp14 = tmp1 - tmp4; | |
| 2782 tmp12 = tmp2 + tmp3; | |
| 2783 tmp15 = tmp2 - tmp3; | |
| 2784 | |
| 2785 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]); | |
| 2786 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]); | |
| 2787 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]); | |
| 2788 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]); | |
| 2789 tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]); | |
| 2790 tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]); | |
| 2791 | |
| 2792 /* Apply unsigned->signed conversion. */ | |
| 2793 dataptr[0] = (DCTELEM) | |
| 2794 ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS); | |
| 2795 dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS); | |
| 2796 dataptr[4] = (DCTELEM) | |
| 2797 DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */ | |
| 2798 CONST_BITS-PASS1_BITS); | |
| 2799 dataptr[2] = (DCTELEM) | |
| 2800 DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */ | |
| 2801 CONST_BITS-PASS1_BITS); | |
| 2802 | |
| 2803 /* Odd part */ | |
| 2804 | |
| 2805 tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100); /* c9 */ | |
| 2806 tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865); /* c3-c9 */ | |
| 2807 tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065); /* c3+c9 */ | |
| 2808 tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054)); /* c5 */ | |
| 2809 tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669)); /* c7 */ | |
| 2810 tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */ | |
| 2811 + MULTIPLY(tmp5, FIX(0.184591911)); /* c11 */ | |
| 2812 tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */ | |
| 2813 tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */ | |
| 2814 + MULTIPLY(tmp5, FIX(0.860918669)); /* c7 */ | |
| 2815 tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */ | |
| 2816 - MULTIPLY(tmp5, FIX(1.121971054)); /* c5 */ | |
| 2817 tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */ | |
| 2818 - MULTIPLY(tmp2 + tmp5, FIX_0_541196100); /* c9 */ | |
| 2819 | |
| 2820 dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS); | |
| 2821 dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS); | |
| 2822 dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS); | |
| 2823 dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS); | |
| 2824 | |
| 2825 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 2826 } | |
| 2827 | |
| 2828 /* Pass 2: process columns. | |
| 2829 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 2830 * by an overall factor of 8. | |
| 2831 * We must also scale the output by (8/12)*(8/6) = 8/9, which we | |
| 2832 * partially fold into the constant multipliers and final shifting: | |
| 2833 * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. | |
| 2834 */ | |
| 2835 | |
| 2836 dataptr = data; | |
| 2837 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 2838 /* Even part */ | |
| 2839 | |
| 2840 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; | |
| 2841 tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; | |
| 2842 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; | |
| 2843 | |
| 2844 tmp10 = tmp0 + tmp2; | |
| 2845 tmp12 = tmp0 - tmp2; | |
| 2846 | |
| 2847 tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; | |
| 2848 tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; | |
| 2849 tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; | |
| 2850 | |
| 2851 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 2852 DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ | |
| 2853 CONST_BITS+PASS1_BITS+1); | |
| 2854 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 2855 DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ | |
| 2856 CONST_BITS+PASS1_BITS+1); | |
| 2857 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 2858 DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ | |
| 2859 CONST_BITS+PASS1_BITS+1); | |
| 2860 | |
| 2861 /* Odd part */ | |
| 2862 | |
| 2863 tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ | |
| 2864 | |
| 2865 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 2866 DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ | |
| 2867 CONST_BITS+PASS1_BITS+1); | |
| 2868 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 2869 DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ | |
| 2870 CONST_BITS+PASS1_BITS+1); | |
| 2871 dataptr[DCTSIZE*5] = (DCTELEM) | |
| 2872 DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ | |
| 2873 CONST_BITS+PASS1_BITS+1); | |
| 2874 | |
| 2875 dataptr++; /* advance pointer to next column */ | |
| 2876 } | |
| 2877 } | |
| 2878 | |
| 2879 | |
| 2880 /* | |
| 2881 * Perform the forward DCT on a 10x5 sample block. | |
| 2882 * | |
| 2883 * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns). | |
| 2884 */ | |
| 2885 | |
| 2886 GLOBAL(void) | |
| 2887 jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 2888 { | |
| 2889 INT32 tmp0, tmp1, tmp2, tmp3, tmp4; | |
| 2890 INT32 tmp10, tmp11, tmp12, tmp13, tmp14; | |
| 2891 DCTELEM *dataptr; | |
| 2892 JSAMPROW elemptr; | |
| 2893 int ctr; | |
| 2894 SHIFT_TEMPS | |
| 2895 | |
| 2896 /* Zero 3 bottom rows of output coefficient block. */ | |
| 2897 MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3); | |
| 2898 | |
| 2899 /* Pass 1: process rows. | |
| 2900 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 2901 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 2902 * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). | |
| 2903 */ | |
| 2904 | |
| 2905 dataptr = data; | |
| 2906 for (ctr = 0; ctr < 5; ctr++) { | |
| 2907 elemptr = sample_data[ctr] + start_col; | |
| 2908 | |
| 2909 /* Even part */ | |
| 2910 | |
| 2911 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]); | |
| 2912 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]); | |
| 2913 tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]); | |
| 2914 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]); | |
| 2915 tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]); | |
| 2916 | |
| 2917 tmp10 = tmp0 + tmp4; | |
| 2918 tmp13 = tmp0 - tmp4; | |
| 2919 tmp11 = tmp1 + tmp3; | |
| 2920 tmp14 = tmp1 - tmp3; | |
| 2921 | |
| 2922 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]); | |
| 2923 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]); | |
| 2924 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]); | |
| 2925 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]); | |
| 2926 tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]); | |
| 2927 | |
| 2928 /* Apply unsigned->signed conversion. */ | |
| 2929 dataptr[0] = (DCTELEM) | |
| 2930 ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS); | |
| 2931 tmp12 += tmp12; | |
| 2932 dataptr[4] = (DCTELEM) | |
| 2933 DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */ | |
| 2934 MULTIPLY(tmp11 - tmp12, FIX(0.437016024)), /* c8 */ | |
| 2935 CONST_BITS-PASS1_BITS); | |
| 2936 tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876)); /* c6 */ | |
| 2937 dataptr[2] = (DCTELEM) | |
| 2938 DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)), /* c2-c6 */ | |
| 2939 CONST_BITS-PASS1_BITS); | |
| 2940 dataptr[6] = (DCTELEM) | |
| 2941 DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)), /* c2+c6 */ | |
| 2942 CONST_BITS-PASS1_BITS); | |
| 2943 | |
| 2944 /* Odd part */ | |
| 2945 | |
| 2946 tmp10 = tmp0 + tmp4; | |
| 2947 tmp11 = tmp1 - tmp3; | |
| 2948 dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS); | |
| 2949 tmp2 <<= CONST_BITS; | |
| 2950 dataptr[1] = (DCTELEM) | |
| 2951 DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) + /* c1 */ | |
| 2952 MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 + /* c3 */ | |
| 2953 MULTIPLY(tmp3, FIX(0.642039522)) + /* c7 */ | |
| 2954 MULTIPLY(tmp4, FIX(0.221231742)), /* c9 */ | |
| 2955 CONST_BITS-PASS1_BITS); | |
| 2956 tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) - /* (c3+c7)/2 */ | |
| 2957 MULTIPLY(tmp1 + tmp3, FIX(0.587785252)); /* (c1-c9)/2 */ | |
| 2958 tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) + /* (c3-c7)/2 */ | |
| 2959 (tmp11 << (CONST_BITS - 1)) - tmp2; | |
| 2960 dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS); | |
| 2961 dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS); | |
| 2962 | |
| 2963 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 2964 } | |
| 2965 | |
| 2966 /* Pass 2: process columns. | |
| 2967 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 2968 * by an overall factor of 8. | |
| 2969 * We must also scale the output by (8/10)*(8/5) = 32/25, which we | |
| 2970 * fold into the constant multipliers: | |
| 2971 * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25. | |
| 2972 */ | |
| 2973 | |
| 2974 dataptr = data; | |
| 2975 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 2976 /* Even part */ | |
| 2977 | |
| 2978 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4]; | |
| 2979 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3]; | |
| 2980 tmp2 = dataptr[DCTSIZE*2]; | |
| 2981 | |
| 2982 tmp10 = tmp0 + tmp1; | |
| 2983 tmp11 = tmp0 - tmp1; | |
| 2984 | |
| 2985 tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4]; | |
| 2986 tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3]; | |
| 2987 | |
| 2988 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 2989 DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)), /* 32/25 */ | |
| 2990 CONST_BITS+PASS1_BITS); | |
| 2991 tmp11 = MULTIPLY(tmp11, FIX(1.011928851)); /* (c2+c4)/2 */ | |
| 2992 tmp10 -= tmp2 << 2; | |
| 2993 tmp10 = MULTIPLY(tmp10, FIX(0.452548340)); /* (c2-c4)/2 */ | |
| 2994 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS); | |
| 2995 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS); | |
| 2996 | |
| 2997 /* Odd part */ | |
| 2998 | |
| 2999 tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961)); /* c3 */ | |
| 3000 | |
| 3001 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 3002 DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */ | |
| 3003 CONST_BITS+PASS1_BITS); | |
| 3004 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 3005 DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */ | |
| 3006 CONST_BITS+PASS1_BITS); | |
| 3007 | |
| 3008 dataptr++; /* advance pointer to next column */ | |
| 3009 } | |
| 3010 } | |
| 3011 | |
| 3012 | |
| 3013 /* | |
| 3014 * Perform the forward DCT on an 8x4 sample block. | |
| 3015 * | |
| 3016 * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). | |
| 3017 */ | |
| 3018 | |
| 3019 GLOBAL(void) | |
| 3020 jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 3021 { | |
| 3022 INT32 tmp0, tmp1, tmp2, tmp3; | |
| 3023 INT32 tmp10, tmp11, tmp12, tmp13; | |
| 3024 INT32 z1; | |
| 3025 DCTELEM *dataptr; | |
| 3026 JSAMPROW elemptr; | |
| 3027 int ctr; | |
| 3028 SHIFT_TEMPS | |
| 3029 | |
| 3030 /* Zero 4 bottom rows of output coefficient block. */ | |
| 3031 MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4); | |
| 3032 | |
| 3033 /* Pass 1: process rows. | |
| 3034 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 3035 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 3036 * We must also scale the output by 8/4 = 2, which we add here. | |
| 3037 * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). | |
| 3038 */ | |
| 3039 | |
| 3040 dataptr = data; | |
| 3041 for (ctr = 0; ctr < 4; ctr++) { | |
| 3042 elemptr = sample_data[ctr] + start_col; | |
| 3043 | |
| 3044 /* Even part per LL&M figure 1 --- note that published figure is faulty; | |
| 3045 * rotator "c1" should be "c6". | |
| 3046 */ | |
| 3047 | |
| 3048 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); | |
| 3049 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); | |
| 3050 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); | |
| 3051 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); | |
| 3052 | |
| 3053 tmp10 = tmp0 + tmp3; | |
| 3054 tmp12 = tmp0 - tmp3; | |
| 3055 tmp11 = tmp1 + tmp2; | |
| 3056 tmp13 = tmp1 - tmp2; | |
| 3057 | |
| 3058 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); | |
| 3059 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); | |
| 3060 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); | |
| 3061 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); | |
| 3062 | |
| 3063 /* Apply unsigned->signed conversion. */ | |
| 3064 dataptr[0] = (DCTELEM) | |
| 3065 ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1)); | |
| 3066 dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1)); | |
| 3067 | |
| 3068 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ | |
| 3069 /* Add fudge factor here for final descale. */ | |
| 3070 z1 += ONE << (CONST_BITS-PASS1_BITS-2); | |
| 3071 | |
| 3072 dataptr[2] = (DCTELEM) | |
| 3073 RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ | |
| 3074 CONST_BITS-PASS1_BITS-1); | |
| 3075 dataptr[6] = (DCTELEM) | |
| 3076 RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ | |
| 3077 CONST_BITS-PASS1_BITS-1); | |
| 3078 | |
| 3079 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | |
| 3080 * i0..i3 in the paper are tmp0..tmp3 here. | |
| 3081 */ | |
| 3082 | |
| 3083 tmp12 = tmp0 + tmp2; | |
| 3084 tmp13 = tmp1 + tmp3; | |
| 3085 | |
| 3086 z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ | |
| 3087 /* Add fudge factor here for final descale. */ | |
| 3088 z1 += ONE << (CONST_BITS-PASS1_BITS-2); | |
| 3089 | |
| 3090 tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ | |
| 3091 tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ | |
| 3092 tmp12 += z1; | |
| 3093 tmp13 += z1; | |
| 3094 | |
| 3095 z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ | |
| 3096 tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ | |
| 3097 tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ | |
| 3098 tmp0 += z1 + tmp12; | |
| 3099 tmp3 += z1 + tmp13; | |
| 3100 | |
| 3101 z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ | |
| 3102 tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ | |
| 3103 tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ | |
| 3104 tmp1 += z1 + tmp13; | |
| 3105 tmp2 += z1 + tmp12; | |
| 3106 | |
| 3107 dataptr[1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS-PASS1_BITS-1); | |
| 3108 dataptr[3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS-PASS1_BITS-1); | |
| 3109 dataptr[5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS-PASS1_BITS-1); | |
| 3110 dataptr[7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS-PASS1_BITS-1); | |
| 3111 | |
| 3112 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 3113 } | |
| 3114 | |
| 3115 /* Pass 2: process columns. | |
| 3116 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 3117 * by an overall factor of 8. | |
| 3118 * 4-point FDCT kernel, | |
| 3119 * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. | |
| 3120 */ | |
| 3121 | |
| 3122 dataptr = data; | |
| 3123 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 3124 /* Even part */ | |
| 3125 | |
| 3126 /* Add fudge factor here for final descale. */ | |
| 3127 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1)); | |
| 3128 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; | |
| 3129 | |
| 3130 tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; | |
| 3131 tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; | |
| 3132 | |
| 3133 dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS); | |
| 3134 dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS); | |
| 3135 | |
| 3136 /* Odd part */ | |
| 3137 | |
| 3138 tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ | |
| 3139 /* Add fudge factor here for final descale. */ | |
| 3140 tmp0 += ONE << (CONST_BITS+PASS1_BITS-1); | |
| 3141 | |
| 3142 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 3143 RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ | |
| 3144 CONST_BITS+PASS1_BITS); | |
| 3145 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 3146 RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ | |
| 3147 CONST_BITS+PASS1_BITS); | |
| 3148 | |
| 3149 dataptr++; /* advance pointer to next column */ | |
| 3150 } | |
| 3151 } | |
| 3152 | |
| 3153 | |
| 3154 /* | |
| 3155 * Perform the forward DCT on a 6x3 sample block. | |
| 3156 * | |
| 3157 * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns). | |
| 3158 */ | |
| 3159 | |
| 3160 GLOBAL(void) | |
| 3161 jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 3162 { | |
| 3163 INT32 tmp0, tmp1, tmp2; | |
| 3164 INT32 tmp10, tmp11, tmp12; | |
| 3165 DCTELEM *dataptr; | |
| 3166 JSAMPROW elemptr; | |
| 3167 int ctr; | |
| 3168 SHIFT_TEMPS | |
| 3169 | |
| 3170 /* Pre-zero output coefficient block. */ | |
| 3171 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 3172 | |
| 3173 /* Pass 1: process rows. | |
| 3174 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 3175 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 3176 * We scale the results further by 2 as part of output adaption | |
| 3177 * scaling for different DCT size. | |
| 3178 * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). | |
| 3179 */ | |
| 3180 | |
| 3181 dataptr = data; | |
| 3182 for (ctr = 0; ctr < 3; ctr++) { | |
| 3183 elemptr = sample_data[ctr] + start_col; | |
| 3184 | |
| 3185 /* Even part */ | |
| 3186 | |
| 3187 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); | |
| 3188 tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); | |
| 3189 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); | |
| 3190 | |
| 3191 tmp10 = tmp0 + tmp2; | |
| 3192 tmp12 = tmp0 - tmp2; | |
| 3193 | |
| 3194 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); | |
| 3195 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); | |
| 3196 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); | |
| 3197 | |
| 3198 /* Apply unsigned->signed conversion. */ | |
| 3199 dataptr[0] = (DCTELEM) | |
| 3200 ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1)); | |
| 3201 dataptr[2] = (DCTELEM) | |
| 3202 DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ | |
| 3203 CONST_BITS-PASS1_BITS-1); | |
| 3204 dataptr[4] = (DCTELEM) | |
| 3205 DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ | |
| 3206 CONST_BITS-PASS1_BITS-1); | |
| 3207 | |
| 3208 /* Odd part */ | |
| 3209 | |
| 3210 tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ | |
| 3211 CONST_BITS-PASS1_BITS-1); | |
| 3212 | |
| 3213 dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1))); | |
| 3214 dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1)); | |
| 3215 dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1))); | |
| 3216 | |
| 3217 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 3218 } | |
| 3219 | |
| 3220 /* Pass 2: process columns. | |
| 3221 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 3222 * by an overall factor of 8. | |
| 3223 * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially | |
| 3224 * fold into the constant multipliers (other part was done in pass 1): | |
| 3225 * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9. | |
| 3226 */ | |
| 3227 | |
| 3228 dataptr = data; | |
| 3229 for (ctr = 0; ctr < 6; ctr++) { | |
| 3230 /* Even part */ | |
| 3231 | |
| 3232 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2]; | |
| 3233 tmp1 = dataptr[DCTSIZE*1]; | |
| 3234 | |
| 3235 tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2]; | |
| 3236 | |
| 3237 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 3238 DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ | |
| 3239 CONST_BITS+PASS1_BITS); | |
| 3240 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 3241 DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */ | |
| 3242 CONST_BITS+PASS1_BITS); | |
| 3243 | |
| 3244 /* Odd part */ | |
| 3245 | |
| 3246 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 3247 DESCALE(MULTIPLY(tmp2, FIX(2.177324216)), /* c1 */ | |
| 3248 CONST_BITS+PASS1_BITS); | |
| 3249 | |
| 3250 dataptr++; /* advance pointer to next column */ | |
| 3251 } | |
| 3252 } | |
| 3253 | |
| 3254 | |
| 3255 /* | |
| 3256 * Perform the forward DCT on a 4x2 sample block. | |
| 3257 * | |
| 3258 * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). | |
| 3259 */ | |
| 3260 | |
| 3261 GLOBAL(void) | |
| 3262 jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 3263 { | |
| 3264 DCTELEM tmp0, tmp2, tmp10, tmp12, tmp4, tmp5; | |
| 3265 INT32 tmp1, tmp3, tmp11, tmp13; | |
| 3266 INT32 z1, z2, z3; | |
| 3267 JSAMPROW elemptr; | |
| 3268 SHIFT_TEMPS | |
| 3269 | |
| 3270 /* Pre-zero output coefficient block. */ | |
| 3271 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 3272 | |
| 3273 /* Pass 1: process rows. | |
| 3274 * Note results are scaled up by sqrt(8) compared to a true DCT. | |
| 3275 * 4-point FDCT kernel, | |
| 3276 * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. | |
| 3277 */ | |
| 3278 | |
| 3279 /* Row 0 */ | |
| 3280 elemptr = sample_data[0] + start_col; | |
| 3281 | |
| 3282 /* Even part */ | |
| 3283 | |
| 3284 tmp4 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); | |
| 3285 tmp5 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); | |
| 3286 | |
| 3287 tmp0 = tmp4 + tmp5; | |
| 3288 tmp2 = tmp4 - tmp5; | |
| 3289 | |
| 3290 /* Odd part */ | |
| 3291 | |
| 3292 z2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); | |
| 3293 z3 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); | |
| 3294 | |
| 3295 z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ | |
| 3296 /* Add fudge factor here for final descale. */ | |
| 3297 z1 += ONE << (CONST_BITS-3-1); | |
| 3298 tmp1 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ | |
| 3299 tmp3 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ | |
| 3300 | |
| 3301 /* Row 1 */ | |
| 3302 elemptr = sample_data[1] + start_col; | |
| 3303 | |
| 3304 /* Even part */ | |
| 3305 | |
| 3306 tmp4 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); | |
| 3307 tmp5 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); | |
| 3308 | |
| 3309 tmp10 = tmp4 + tmp5; | |
| 3310 tmp12 = tmp4 - tmp5; | |
| 3311 | |
| 3312 /* Odd part */ | |
| 3313 | |
| 3314 z2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); | |
| 3315 z3 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); | |
| 3316 | |
| 3317 z1 = MULTIPLY(z2 + z3, FIX_0_541196100); /* c6 */ | |
| 3318 tmp11 = z1 + MULTIPLY(z2, FIX_0_765366865); /* c2-c6 */ | |
| 3319 tmp13 = z1 - MULTIPLY(z3, FIX_1_847759065); /* c2+c6 */ | |
| 3320 | |
| 3321 /* Pass 2: process columns. | |
| 3322 * We leave the results scaled up by an overall factor of 8. | |
| 3323 * We must also scale the output by (8/4)*(8/2) = 2**3. | |
| 3324 */ | |
| 3325 | |
| 3326 /* Column 0 */ | |
| 3327 /* Apply unsigned->signed conversion. */ | |
| 3328 data[DCTSIZE*0] = (tmp0 + tmp10 - 8 * CENTERJSAMPLE) << 3; | |
| 3329 data[DCTSIZE*1] = (tmp0 - tmp10) << 3; | |
| 3330 | |
| 3331 /* Column 1 */ | |
| 3332 data[DCTSIZE*0+1] = (DCTELEM) RIGHT_SHIFT(tmp1 + tmp11, CONST_BITS-3); | |
| 3333 data[DCTSIZE*1+1] = (DCTELEM) RIGHT_SHIFT(tmp1 - tmp11, CONST_BITS-3); | |
| 3334 | |
| 3335 /* Column 2 */ | |
| 3336 data[DCTSIZE*0+2] = (tmp2 + tmp12) << 3; | |
| 3337 data[DCTSIZE*1+2] = (tmp2 - tmp12) << 3; | |
| 3338 | |
| 3339 /* Column 3 */ | |
| 3340 data[DCTSIZE*0+3] = (DCTELEM) RIGHT_SHIFT(tmp3 + tmp13, CONST_BITS-3); | |
| 3341 data[DCTSIZE*1+3] = (DCTELEM) RIGHT_SHIFT(tmp3 - tmp13, CONST_BITS-3); | |
| 3342 } | |
| 3343 | |
| 3344 | |
| 3345 /* | |
| 3346 * Perform the forward DCT on a 2x1 sample block. | |
| 3347 * | |
| 3348 * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns). | |
| 3349 */ | |
| 3350 | |
| 3351 GLOBAL(void) | |
| 3352 jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 3353 { | |
| 3354 DCTELEM tmp0, tmp1; | |
| 3355 JSAMPROW elemptr; | |
| 3356 | |
| 3357 /* Pre-zero output coefficient block. */ | |
| 3358 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 3359 | |
| 3360 elemptr = sample_data[0] + start_col; | |
| 3361 | |
| 3362 tmp0 = GETJSAMPLE(elemptr[0]); | |
| 3363 tmp1 = GETJSAMPLE(elemptr[1]); | |
| 3364 | |
| 3365 /* We leave the results scaled up by an overall factor of 8. | |
| 3366 * We must also scale the output by (8/2)*(8/1) = 2**5. | |
| 3367 */ | |
| 3368 | |
| 3369 /* Even part */ | |
| 3370 | |
| 3371 /* Apply unsigned->signed conversion. */ | |
| 3372 data[0] = (tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5; | |
| 3373 | |
| 3374 /* Odd part */ | |
| 3375 | |
| 3376 data[1] = (tmp0 - tmp1) << 5; | |
| 3377 } | |
| 3378 | |
| 3379 | |
| 3380 /* | |
| 3381 * Perform the forward DCT on an 8x16 sample block. | |
| 3382 * | |
| 3383 * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns). | |
| 3384 */ | |
| 3385 | |
| 3386 GLOBAL(void) | |
| 3387 jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 3388 { | |
| 3389 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |
| 3390 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17; | |
| 3391 INT32 z1; | |
| 3392 DCTELEM workspace[DCTSIZE2]; | |
| 3393 DCTELEM *dataptr; | |
| 3394 DCTELEM *wsptr; | |
| 3395 JSAMPROW elemptr; | |
| 3396 int ctr; | |
| 3397 SHIFT_TEMPS | |
| 3398 | |
| 3399 /* Pass 1: process rows. | |
| 3400 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 3401 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 3402 * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). | |
| 3403 */ | |
| 3404 | |
| 3405 dataptr = data; | |
| 3406 ctr = 0; | |
| 3407 for (;;) { | |
| 3408 elemptr = sample_data[ctr] + start_col; | |
| 3409 | |
| 3410 /* Even part per LL&M figure 1 --- note that published figure is faulty; | |
| 3411 * rotator "c1" should be "c6". | |
| 3412 */ | |
| 3413 | |
| 3414 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); | |
| 3415 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); | |
| 3416 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); | |
| 3417 tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); | |
| 3418 | |
| 3419 tmp10 = tmp0 + tmp3; | |
| 3420 tmp12 = tmp0 - tmp3; | |
| 3421 tmp11 = tmp1 + tmp2; | |
| 3422 tmp13 = tmp1 - tmp2; | |
| 3423 | |
| 3424 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); | |
| 3425 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); | |
| 3426 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); | |
| 3427 tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); | |
| 3428 | |
| 3429 /* Apply unsigned->signed conversion. */ | |
| 3430 dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS); | |
| 3431 dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS); | |
| 3432 | |
| 3433 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ | |
| 3434 dataptr[2] = (DCTELEM) | |
| 3435 DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ | |
| 3436 CONST_BITS-PASS1_BITS); | |
| 3437 dataptr[6] = (DCTELEM) | |
| 3438 DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ | |
| 3439 CONST_BITS-PASS1_BITS); | |
| 3440 | |
| 3441 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | |
| 3442 * i0..i3 in the paper are tmp0..tmp3 here. | |
| 3443 */ | |
| 3444 | |
| 3445 tmp12 = tmp0 + tmp2; | |
| 3446 tmp13 = tmp1 + tmp3; | |
| 3447 | |
| 3448 z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ | |
| 3449 tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ | |
| 3450 tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ | |
| 3451 tmp12 += z1; | |
| 3452 tmp13 += z1; | |
| 3453 | |
| 3454 z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ | |
| 3455 tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ | |
| 3456 tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ | |
| 3457 tmp0 += z1 + tmp12; | |
| 3458 tmp3 += z1 + tmp13; | |
| 3459 | |
| 3460 z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ | |
| 3461 tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ | |
| 3462 tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ | |
| 3463 tmp1 += z1 + tmp13; | |
| 3464 tmp2 += z1 + tmp12; | |
| 3465 | |
| 3466 dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); | |
| 3467 dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); | |
| 3468 dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); | |
| 3469 dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-PASS1_BITS); | |
| 3470 | |
| 3471 ctr++; | |
| 3472 | |
| 3473 if (ctr != DCTSIZE) { | |
| 3474 if (ctr == DCTSIZE * 2) | |
| 3475 break; /* Done. */ | |
| 3476 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 3477 } else | |
| 3478 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 3479 } | |
| 3480 | |
| 3481 /* Pass 2: process columns. | |
| 3482 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 3483 * by an overall factor of 8. | |
| 3484 * We must also scale the output by 8/16 = 1/2. | |
| 3485 * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). | |
| 3486 */ | |
| 3487 | |
| 3488 dataptr = data; | |
| 3489 wsptr = workspace; | |
| 3490 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
| 3491 /* Even part */ | |
| 3492 | |
| 3493 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7]; | |
| 3494 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6]; | |
| 3495 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5]; | |
| 3496 tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4]; | |
| 3497 tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3]; | |
| 3498 tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2]; | |
| 3499 tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1]; | |
| 3500 tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0]; | |
| 3501 | |
| 3502 tmp10 = tmp0 + tmp7; | |
| 3503 tmp14 = tmp0 - tmp7; | |
| 3504 tmp11 = tmp1 + tmp6; | |
| 3505 tmp15 = tmp1 - tmp6; | |
| 3506 tmp12 = tmp2 + tmp5; | |
| 3507 tmp16 = tmp2 - tmp5; | |
| 3508 tmp13 = tmp3 + tmp4; | |
| 3509 tmp17 = tmp3 - tmp4; | |
| 3510 | |
| 3511 tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7]; | |
| 3512 tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6]; | |
| 3513 tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5]; | |
| 3514 tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4]; | |
| 3515 tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3]; | |
| 3516 tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2]; | |
| 3517 tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1]; | |
| 3518 tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0]; | |
| 3519 | |
| 3520 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 3521 DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1); | |
| 3522 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 3523 DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */ | |
| 3524 MULTIPLY(tmp11 - tmp12, FIX_0_541196100), /* c12[16] = c6[8] */ | |
| 3525 CONST_BITS+PASS1_BITS+1); | |
| 3526 | |
| 3527 tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) + /* c14[16] = c7[8] */ | |
| 3528 MULTIPLY(tmp14 - tmp16, FIX(1.387039845)); /* c2[16] = c1[8] */ | |
| 3529 | |
| 3530 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 3531 DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982)) /* c6+c14 */ | |
| 3532 + MULTIPLY(tmp16, FIX(2.172734804)), /* c2+c10 */ | |
| 3533 CONST_BITS+PASS1_BITS+1); | |
| 3534 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 3535 DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243)) /* c2-c6 */ | |
| 3536 - MULTIPLY(tmp17, FIX(1.061594338)), /* c10+c14 */ | |
| 3537 CONST_BITS+PASS1_BITS+1); | |
| 3538 | |
| 3539 /* Odd part */ | |
| 3540 | |
| 3541 tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) + /* c3 */ | |
| 3542 MULTIPLY(tmp6 - tmp7, FIX(0.410524528)); /* c13 */ | |
| 3543 tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) + /* c5 */ | |
| 3544 MULTIPLY(tmp5 + tmp7, FIX(0.666655658)); /* c11 */ | |
| 3545 tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) + /* c7 */ | |
| 3546 MULTIPLY(tmp4 - tmp7, FIX(0.897167586)); /* c9 */ | |
| 3547 tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) + /* c15 */ | |
| 3548 MULTIPLY(tmp6 - tmp5, FIX(1.407403738)); /* c1 */ | |
| 3549 tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) + /* -c11 */ | |
| 3550 MULTIPLY(tmp4 + tmp6, - FIX(1.247225013)); /* -c5 */ | |
| 3551 tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) + /* -c3 */ | |
| 3552 MULTIPLY(tmp5 - tmp4, FIX(0.410524528)); /* c13 */ | |
| 3553 tmp10 = tmp11 + tmp12 + tmp13 - | |
| 3554 MULTIPLY(tmp0, FIX(2.286341144)) + /* c7+c5+c3-c1 */ | |
| 3555 MULTIPLY(tmp7, FIX(0.779653625)); /* c15+c13-c11+c9 */ | |
| 3556 tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */ | |
| 3557 - MULTIPLY(tmp6, FIX(1.663905119)); /* c7+c13+c1-c5 */ | |
| 3558 tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */ | |
| 3559 + MULTIPLY(tmp5, FIX(1.227391138)); /* c9-c11+c1-c13 */ | |
| 3560 tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */ | |
| 3561 + MULTIPLY(tmp4, FIX(2.167985692)); /* c1+c13+c5-c9 */ | |
| 3562 | |
| 3563 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1); | |
| 3564 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1); | |
| 3565 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1); | |
| 3566 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1); | |
| 3567 | |
| 3568 dataptr++; /* advance pointer to next column */ | |
| 3569 wsptr++; /* advance pointer to next column */ | |
| 3570 } | |
| 3571 } | |
| 3572 | |
| 3573 | |
| 3574 /* | |
| 3575 * Perform the forward DCT on a 7x14 sample block. | |
| 3576 * | |
| 3577 * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns). | |
| 3578 */ | |
| 3579 | |
| 3580 GLOBAL(void) | |
| 3581 jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 3582 { | |
| 3583 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6; | |
| 3584 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; | |
| 3585 INT32 z1, z2, z3; | |
| 3586 DCTELEM workspace[8*6]; | |
| 3587 DCTELEM *dataptr; | |
| 3588 DCTELEM *wsptr; | |
| 3589 JSAMPROW elemptr; | |
| 3590 int ctr; | |
| 3591 SHIFT_TEMPS | |
| 3592 | |
| 3593 /* Pre-zero output coefficient block. */ | |
| 3594 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 3595 | |
| 3596 /* Pass 1: process rows. | |
| 3597 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 3598 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 3599 * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). | |
| 3600 */ | |
| 3601 | |
| 3602 dataptr = data; | |
| 3603 ctr = 0; | |
| 3604 for (;;) { | |
| 3605 elemptr = sample_data[ctr] + start_col; | |
| 3606 | |
| 3607 /* Even part */ | |
| 3608 | |
| 3609 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]); | |
| 3610 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]); | |
| 3611 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]); | |
| 3612 tmp3 = GETJSAMPLE(elemptr[3]); | |
| 3613 | |
| 3614 tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]); | |
| 3615 tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]); | |
| 3616 tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]); | |
| 3617 | |
| 3618 z1 = tmp0 + tmp2; | |
| 3619 /* Apply unsigned->signed conversion. */ | |
| 3620 dataptr[0] = (DCTELEM) | |
| 3621 ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS); | |
| 3622 tmp3 += tmp3; | |
| 3623 z1 -= tmp3; | |
| 3624 z1 -= tmp3; | |
| 3625 z1 = MULTIPLY(z1, FIX(0.353553391)); /* (c2+c6-c4)/2 */ | |
| 3626 z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002)); /* (c2+c4-c6)/2 */ | |
| 3627 z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123)); /* c6 */ | |
| 3628 dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS); | |
| 3629 z1 -= z2; | |
| 3630 z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734)); /* c4 */ | |
| 3631 dataptr[4] = (DCTELEM) | |
| 3632 DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */ | |
| 3633 CONST_BITS-PASS1_BITS); | |
| 3634 dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS); | |
| 3635 | |
| 3636 /* Odd part */ | |
| 3637 | |
| 3638 tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347)); /* (c3+c1-c5)/2 */ | |
| 3639 tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339)); /* (c3+c5-c1)/2 */ | |
| 3640 tmp0 = tmp1 - tmp2; | |
| 3641 tmp1 += tmp2; | |
| 3642 tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */ | |
| 3643 tmp1 += tmp2; | |
| 3644 tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268)); /* c5 */ | |
| 3645 tmp0 += tmp3; | |
| 3646 tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693)); /* c3+c1-c5 */ | |
| 3647 | |
| 3648 dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS); | |
| 3649 dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS); | |
| 3650 dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS); | |
| 3651 | |
| 3652 ctr++; | |
| 3653 | |
| 3654 if (ctr != DCTSIZE) { | |
| 3655 if (ctr == 14) | |
| 3656 break; /* Done. */ | |
| 3657 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 3658 } else | |
| 3659 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 3660 } | |
| 3661 | |
| 3662 /* Pass 2: process columns. | |
| 3663 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 3664 * by an overall factor of 8. | |
| 3665 * We must also scale the output by (8/7)*(8/14) = 32/49, which we | |
| 3666 * fold into the constant multipliers: | |
| 3667 * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49. | |
| 3668 */ | |
| 3669 | |
| 3670 dataptr = data; | |
| 3671 wsptr = workspace; | |
| 3672 for (ctr = 0; ctr < 7; ctr++) { | |
| 3673 /* Even part */ | |
| 3674 | |
| 3675 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5]; | |
| 3676 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4]; | |
| 3677 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3]; | |
| 3678 tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2]; | |
| 3679 tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1]; | |
| 3680 tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0]; | |
| 3681 tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; | |
| 3682 | |
| 3683 tmp10 = tmp0 + tmp6; | |
| 3684 tmp14 = tmp0 - tmp6; | |
| 3685 tmp11 = tmp1 + tmp5; | |
| 3686 tmp15 = tmp1 - tmp5; | |
| 3687 tmp12 = tmp2 + tmp4; | |
| 3688 tmp16 = tmp2 - tmp4; | |
| 3689 | |
| 3690 tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5]; | |
| 3691 tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4]; | |
| 3692 tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3]; | |
| 3693 tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2]; | |
| 3694 tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1]; | |
| 3695 tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0]; | |
| 3696 tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; | |
| 3697 | |
| 3698 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 3699 DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13, | |
| 3700 FIX(0.653061224)), /* 32/49 */ | |
| 3701 CONST_BITS+PASS1_BITS); | |
| 3702 tmp13 += tmp13; | |
| 3703 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 3704 DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */ | |
| 3705 MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */ | |
| 3706 MULTIPLY(tmp12 - tmp13, FIX(0.575835255)), /* c8 */ | |
| 3707 CONST_BITS+PASS1_BITS); | |
| 3708 | |
| 3709 tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570)); /* c6 */ | |
| 3710 | |
| 3711 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 3712 DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691)) /* c2-c6 */ | |
| 3713 + MULTIPLY(tmp16, FIX(0.400721155)), /* c10 */ | |
| 3714 CONST_BITS+PASS1_BITS); | |
| 3715 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 3716 DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725)) /* c6+c10 */ | |
| 3717 - MULTIPLY(tmp16, FIX(0.900412262)), /* c2 */ | |
| 3718 CONST_BITS+PASS1_BITS); | |
| 3719 | |
| 3720 /* Odd part */ | |
| 3721 | |
| 3722 tmp10 = tmp1 + tmp2; | |
| 3723 tmp11 = tmp5 - tmp4; | |
| 3724 dataptr[DCTSIZE*7] = (DCTELEM) | |
| 3725 DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6, | |
| 3726 FIX(0.653061224)), /* 32/49 */ | |
| 3727 CONST_BITS+PASS1_BITS); | |
| 3728 tmp3 = MULTIPLY(tmp3 , FIX(0.653061224)); /* 32/49 */ | |
| 3729 tmp10 = MULTIPLY(tmp10, - FIX(0.103406812)); /* -c13 */ | |
| 3730 tmp11 = MULTIPLY(tmp11, FIX(0.917760839)); /* c1 */ | |
| 3731 tmp10 += tmp11 - tmp3; | |
| 3732 tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) + /* c5 */ | |
| 3733 MULTIPLY(tmp4 + tmp6, FIX(0.491367823)); /* c9 */ | |
| 3734 dataptr[DCTSIZE*5] = (DCTELEM) | |
| 3735 DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */ | |
| 3736 + MULTIPLY(tmp4, FIX(0.731428202)), /* c1+c11-c9 */ | |
| 3737 CONST_BITS+PASS1_BITS); | |
| 3738 tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) + /* c3 */ | |
| 3739 MULTIPLY(tmp5 - tmp6, FIX(0.305035186)); /* c11 */ | |
| 3740 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 3741 DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */ | |
| 3742 - MULTIPLY(tmp5, FIX(2.004803435)), /* c1+c5+c11 */ | |
| 3743 CONST_BITS+PASS1_BITS); | |
| 3744 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 3745 DESCALE(tmp11 + tmp12 + tmp3 | |
| 3746 - MULTIPLY(tmp0, FIX(0.735987049)) /* c3+c5-c1 */ | |
| 3747 - MULTIPLY(tmp6, FIX(0.082925825)), /* c9-c11-c13 */ | |
| 3748 CONST_BITS+PASS1_BITS); | |
| 3749 | |
| 3750 dataptr++; /* advance pointer to next column */ | |
| 3751 wsptr++; /* advance pointer to next column */ | |
| 3752 } | |
| 3753 } | |
| 3754 | |
| 3755 | |
| 3756 /* | |
| 3757 * Perform the forward DCT on a 6x12 sample block. | |
| 3758 * | |
| 3759 * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns). | |
| 3760 */ | |
| 3761 | |
| 3762 GLOBAL(void) | |
| 3763 jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 3764 { | |
| 3765 INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5; | |
| 3766 INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; | |
| 3767 DCTELEM workspace[8*4]; | |
| 3768 DCTELEM *dataptr; | |
| 3769 DCTELEM *wsptr; | |
| 3770 JSAMPROW elemptr; | |
| 3771 int ctr; | |
| 3772 SHIFT_TEMPS | |
| 3773 | |
| 3774 /* Pre-zero output coefficient block. */ | |
| 3775 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 3776 | |
| 3777 /* Pass 1: process rows. | |
| 3778 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 3779 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 3780 * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). | |
| 3781 */ | |
| 3782 | |
| 3783 dataptr = data; | |
| 3784 ctr = 0; | |
| 3785 for (;;) { | |
| 3786 elemptr = sample_data[ctr] + start_col; | |
| 3787 | |
| 3788 /* Even part */ | |
| 3789 | |
| 3790 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]); | |
| 3791 tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]); | |
| 3792 tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]); | |
| 3793 | |
| 3794 tmp10 = tmp0 + tmp2; | |
| 3795 tmp12 = tmp0 - tmp2; | |
| 3796 | |
| 3797 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]); | |
| 3798 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]); | |
| 3799 tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]); | |
| 3800 | |
| 3801 /* Apply unsigned->signed conversion. */ | |
| 3802 dataptr[0] = (DCTELEM) | |
| 3803 ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS); | |
| 3804 dataptr[2] = (DCTELEM) | |
| 3805 DESCALE(MULTIPLY(tmp12, FIX(1.224744871)), /* c2 */ | |
| 3806 CONST_BITS-PASS1_BITS); | |
| 3807 dataptr[4] = (DCTELEM) | |
| 3808 DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */ | |
| 3809 CONST_BITS-PASS1_BITS); | |
| 3810 | |
| 3811 /* Odd part */ | |
| 3812 | |
| 3813 tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)), /* c5 */ | |
| 3814 CONST_BITS-PASS1_BITS); | |
| 3815 | |
| 3816 dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS)); | |
| 3817 dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS); | |
| 3818 dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS)); | |
| 3819 | |
| 3820 ctr++; | |
| 3821 | |
| 3822 if (ctr != DCTSIZE) { | |
| 3823 if (ctr == 12) | |
| 3824 break; /* Done. */ | |
| 3825 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 3826 } else | |
| 3827 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 3828 } | |
| 3829 | |
| 3830 /* Pass 2: process columns. | |
| 3831 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 3832 * by an overall factor of 8. | |
| 3833 * We must also scale the output by (8/6)*(8/12) = 8/9, which we | |
| 3834 * fold into the constant multipliers: | |
| 3835 * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9. | |
| 3836 */ | |
| 3837 | |
| 3838 dataptr = data; | |
| 3839 wsptr = workspace; | |
| 3840 for (ctr = 0; ctr < 6; ctr++) { | |
| 3841 /* Even part */ | |
| 3842 | |
| 3843 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3]; | |
| 3844 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2]; | |
| 3845 tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1]; | |
| 3846 tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0]; | |
| 3847 tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7]; | |
| 3848 tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6]; | |
| 3849 | |
| 3850 tmp10 = tmp0 + tmp5; | |
| 3851 tmp13 = tmp0 - tmp5; | |
| 3852 tmp11 = tmp1 + tmp4; | |
| 3853 tmp14 = tmp1 - tmp4; | |
| 3854 tmp12 = tmp2 + tmp3; | |
| 3855 tmp15 = tmp2 - tmp3; | |
| 3856 | |
| 3857 tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3]; | |
| 3858 tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2]; | |
| 3859 tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1]; | |
| 3860 tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0]; | |
| 3861 tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7]; | |
| 3862 tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6]; | |
| 3863 | |
| 3864 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 3865 DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */ | |
| 3866 CONST_BITS+PASS1_BITS); | |
| 3867 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 3868 DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */ | |
| 3869 CONST_BITS+PASS1_BITS); | |
| 3870 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 3871 DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)), /* c4 */ | |
| 3872 CONST_BITS+PASS1_BITS); | |
| 3873 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 3874 DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) + /* 8/9 */ | |
| 3875 MULTIPLY(tmp13 + tmp15, FIX(1.214244803)), /* c2 */ | |
| 3876 CONST_BITS+PASS1_BITS); | |
| 3877 | |
| 3878 /* Odd part */ | |
| 3879 | |
| 3880 tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200)); /* c9 */ | |
| 3881 tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102)); /* c3-c9 */ | |
| 3882 tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502)); /* c3+c9 */ | |
| 3883 tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603)); /* c5 */ | |
| 3884 tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039)); /* c7 */ | |
| 3885 tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */ | |
| 3886 + MULTIPLY(tmp5, FIX(0.164081699)); /* c11 */ | |
| 3887 tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */ | |
| 3888 tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */ | |
| 3889 + MULTIPLY(tmp5, FIX(0.765261039)); /* c7 */ | |
| 3890 tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */ | |
| 3891 - MULTIPLY(tmp5, FIX(0.997307603)); /* c5 */ | |
| 3892 tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */ | |
| 3893 - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */ | |
| 3894 | |
| 3895 dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS); | |
| 3896 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS); | |
| 3897 dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS); | |
| 3898 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS); | |
| 3899 | |
| 3900 dataptr++; /* advance pointer to next column */ | |
| 3901 wsptr++; /* advance pointer to next column */ | |
| 3902 } | |
| 3903 } | |
| 3904 | |
| 3905 | |
| 3906 /* | |
| 3907 * Perform the forward DCT on a 5x10 sample block. | |
| 3908 * | |
| 3909 * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns). | |
| 3910 */ | |
| 3911 | |
| 3912 GLOBAL(void) | |
| 3913 jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 3914 { | |
| 3915 INT32 tmp0, tmp1, tmp2, tmp3, tmp4; | |
| 3916 INT32 tmp10, tmp11, tmp12, tmp13, tmp14; | |
| 3917 DCTELEM workspace[8*2]; | |
| 3918 DCTELEM *dataptr; | |
| 3919 DCTELEM *wsptr; | |
| 3920 JSAMPROW elemptr; | |
| 3921 int ctr; | |
| 3922 SHIFT_TEMPS | |
| 3923 | |
| 3924 /* Pre-zero output coefficient block. */ | |
| 3925 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 3926 | |
| 3927 /* Pass 1: process rows. | |
| 3928 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 3929 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 3930 * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). | |
| 3931 */ | |
| 3932 | |
| 3933 dataptr = data; | |
| 3934 ctr = 0; | |
| 3935 for (;;) { | |
| 3936 elemptr = sample_data[ctr] + start_col; | |
| 3937 | |
| 3938 /* Even part */ | |
| 3939 | |
| 3940 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]); | |
| 3941 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]); | |
| 3942 tmp2 = GETJSAMPLE(elemptr[2]); | |
| 3943 | |
| 3944 tmp10 = tmp0 + tmp1; | |
| 3945 tmp11 = tmp0 - tmp1; | |
| 3946 | |
| 3947 tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]); | |
| 3948 tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]); | |
| 3949 | |
| 3950 /* Apply unsigned->signed conversion. */ | |
| 3951 dataptr[0] = (DCTELEM) | |
| 3952 ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS); | |
| 3953 tmp11 = MULTIPLY(tmp11, FIX(0.790569415)); /* (c2+c4)/2 */ | |
| 3954 tmp10 -= tmp2 << 2; | |
| 3955 tmp10 = MULTIPLY(tmp10, FIX(0.353553391)); /* (c2-c4)/2 */ | |
| 3956 dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS); | |
| 3957 dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS); | |
| 3958 | |
| 3959 /* Odd part */ | |
| 3960 | |
| 3961 tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876)); /* c3 */ | |
| 3962 | |
| 3963 dataptr[1] = (DCTELEM) | |
| 3964 DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */ | |
| 3965 CONST_BITS-PASS1_BITS); | |
| 3966 dataptr[3] = (DCTELEM) | |
| 3967 DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */ | |
| 3968 CONST_BITS-PASS1_BITS); | |
| 3969 | |
| 3970 ctr++; | |
| 3971 | |
| 3972 if (ctr != DCTSIZE) { | |
| 3973 if (ctr == 10) | |
| 3974 break; /* Done. */ | |
| 3975 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 3976 } else | |
| 3977 dataptr = workspace; /* switch pointer to extended workspace */ | |
| 3978 } | |
| 3979 | |
| 3980 /* Pass 2: process columns. | |
| 3981 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 3982 * by an overall factor of 8. | |
| 3983 * We must also scale the output by (8/5)*(8/10) = 32/25, which we | |
| 3984 * fold into the constant multipliers: | |
| 3985 * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25. | |
| 3986 */ | |
| 3987 | |
| 3988 dataptr = data; | |
| 3989 wsptr = workspace; | |
| 3990 for (ctr = 0; ctr < 5; ctr++) { | |
| 3991 /* Even part */ | |
| 3992 | |
| 3993 tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1]; | |
| 3994 tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0]; | |
| 3995 tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7]; | |
| 3996 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6]; | |
| 3997 tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; | |
| 3998 | |
| 3999 tmp10 = tmp0 + tmp4; | |
| 4000 tmp13 = tmp0 - tmp4; | |
| 4001 tmp11 = tmp1 + tmp3; | |
| 4002 tmp14 = tmp1 - tmp3; | |
| 4003 | |
| 4004 tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1]; | |
| 4005 tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0]; | |
| 4006 tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7]; | |
| 4007 tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6]; | |
| 4008 tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; | |
| 4009 | |
| 4010 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 4011 DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */ | |
| 4012 CONST_BITS+PASS1_BITS); | |
| 4013 tmp12 += tmp12; | |
| 4014 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 4015 DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */ | |
| 4016 MULTIPLY(tmp11 - tmp12, FIX(0.559380511)), /* c8 */ | |
| 4017 CONST_BITS+PASS1_BITS); | |
| 4018 tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961)); /* c6 */ | |
| 4019 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 4020 DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)), /* c2-c6 */ | |
| 4021 CONST_BITS+PASS1_BITS); | |
| 4022 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 4023 DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)), /* c2+c6 */ | |
| 4024 CONST_BITS+PASS1_BITS); | |
| 4025 | |
| 4026 /* Odd part */ | |
| 4027 | |
| 4028 tmp10 = tmp0 + tmp4; | |
| 4029 tmp11 = tmp1 - tmp3; | |
| 4030 dataptr[DCTSIZE*5] = (DCTELEM) | |
| 4031 DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)), /* 32/25 */ | |
| 4032 CONST_BITS+PASS1_BITS); | |
| 4033 tmp2 = MULTIPLY(tmp2, FIX(1.28)); /* 32/25 */ | |
| 4034 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 4035 DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) + /* c1 */ | |
| 4036 MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 + /* c3 */ | |
| 4037 MULTIPLY(tmp3, FIX(0.821810588)) + /* c7 */ | |
| 4038 MULTIPLY(tmp4, FIX(0.283176630)), /* c9 */ | |
| 4039 CONST_BITS+PASS1_BITS); | |
| 4040 tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) - /* (c3+c7)/2 */ | |
| 4041 MULTIPLY(tmp1 + tmp3, FIX(0.752365123)); /* (c1-c9)/2 */ | |
| 4042 tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) + /* (c3-c7)/2 */ | |
| 4043 MULTIPLY(tmp11, FIX(0.64)) - tmp2; /* 16/25 */ | |
| 4044 dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS); | |
| 4045 dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS); | |
| 4046 | |
| 4047 dataptr++; /* advance pointer to next column */ | |
| 4048 wsptr++; /* advance pointer to next column */ | |
| 4049 } | |
| 4050 } | |
| 4051 | |
| 4052 | |
| 4053 /* | |
| 4054 * Perform the forward DCT on a 4x8 sample block. | |
| 4055 * | |
| 4056 * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns). | |
| 4057 */ | |
| 4058 | |
| 4059 GLOBAL(void) | |
| 4060 jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 4061 { | |
| 4062 INT32 tmp0, tmp1, tmp2, tmp3; | |
| 4063 INT32 tmp10, tmp11, tmp12, tmp13; | |
| 4064 INT32 z1; | |
| 4065 DCTELEM *dataptr; | |
| 4066 JSAMPROW elemptr; | |
| 4067 int ctr; | |
| 4068 SHIFT_TEMPS | |
| 4069 | |
| 4070 /* Pre-zero output coefficient block. */ | |
| 4071 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 4072 | |
| 4073 /* Pass 1: process rows. | |
| 4074 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 4075 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 4076 * We must also scale the output by 8/4 = 2, which we add here. | |
| 4077 * 4-point FDCT kernel, | |
| 4078 * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. | |
| 4079 */ | |
| 4080 | |
| 4081 dataptr = data; | |
| 4082 for (ctr = 0; ctr < DCTSIZE; ctr++) { | |
| 4083 elemptr = sample_data[ctr] + start_col; | |
| 4084 | |
| 4085 /* Even part */ | |
| 4086 | |
| 4087 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]); | |
| 4088 tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]); | |
| 4089 | |
| 4090 tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]); | |
| 4091 tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]); | |
| 4092 | |
| 4093 /* Apply unsigned->signed conversion. */ | |
| 4094 dataptr[0] = (DCTELEM) | |
| 4095 ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1)); | |
| 4096 dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1)); | |
| 4097 | |
| 4098 /* Odd part */ | |
| 4099 | |
| 4100 tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ | |
| 4101 /* Add fudge factor here for final descale. */ | |
| 4102 tmp0 += ONE << (CONST_BITS-PASS1_BITS-2); | |
| 4103 | |
| 4104 dataptr[1] = (DCTELEM) | |
| 4105 RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ | |
| 4106 CONST_BITS-PASS1_BITS-1); | |
| 4107 dataptr[3] = (DCTELEM) | |
| 4108 RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ | |
| 4109 CONST_BITS-PASS1_BITS-1); | |
| 4110 | |
| 4111 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 4112 } | |
| 4113 | |
| 4114 /* Pass 2: process columns. | |
| 4115 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 4116 * by an overall factor of 8. | |
| 4117 * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). | |
| 4118 */ | |
| 4119 | |
| 4120 dataptr = data; | |
| 4121 for (ctr = 0; ctr < 4; ctr++) { | |
| 4122 /* Even part per LL&M figure 1 --- note that published figure is faulty; | |
| 4123 * rotator "c1" should be "c6". | |
| 4124 */ | |
| 4125 | |
| 4126 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
| 4127 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
| 4128 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
| 4129 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
| 4130 | |
| 4131 /* Add fudge factor here for final descale. */ | |
| 4132 tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1)); | |
| 4133 tmp12 = tmp0 - tmp3; | |
| 4134 tmp11 = tmp1 + tmp2; | |
| 4135 tmp13 = tmp1 - tmp2; | |
| 4136 | |
| 4137 tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
| 4138 tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
| 4139 tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
| 4140 tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
| 4141 | |
| 4142 dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS); | |
| 4143 dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS); | |
| 4144 | |
| 4145 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); /* c6 */ | |
| 4146 /* Add fudge factor here for final descale. */ | |
| 4147 z1 += ONE << (CONST_BITS+PASS1_BITS-1); | |
| 4148 | |
| 4149 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 4150 RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), /* c2-c6 */ | |
| 4151 CONST_BITS+PASS1_BITS); | |
| 4152 dataptr[DCTSIZE*6] = (DCTELEM) | |
| 4153 RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), /* c2+c6 */ | |
| 4154 CONST_BITS+PASS1_BITS); | |
| 4155 | |
| 4156 /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | |
| 4157 * i0..i3 in the paper are tmp0..tmp3 here. | |
| 4158 */ | |
| 4159 | |
| 4160 tmp12 = tmp0 + tmp2; | |
| 4161 tmp13 = tmp1 + tmp3; | |
| 4162 | |
| 4163 z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /* c3 */ | |
| 4164 /* Add fudge factor here for final descale. */ | |
| 4165 z1 += ONE << (CONST_BITS+PASS1_BITS-1); | |
| 4166 | |
| 4167 tmp12 = MULTIPLY(tmp12, - FIX_0_390180644); /* -c3+c5 */ | |
| 4168 tmp13 = MULTIPLY(tmp13, - FIX_1_961570560); /* -c3-c5 */ | |
| 4169 tmp12 += z1; | |
| 4170 tmp13 += z1; | |
| 4171 | |
| 4172 z1 = MULTIPLY(tmp0 + tmp3, - FIX_0_899976223); /* -c3+c7 */ | |
| 4173 tmp0 = MULTIPLY(tmp0, FIX_1_501321110); /* c1+c3-c5-c7 */ | |
| 4174 tmp3 = MULTIPLY(tmp3, FIX_0_298631336); /* -c1+c3+c5-c7 */ | |
| 4175 tmp0 += z1 + tmp12; | |
| 4176 tmp3 += z1 + tmp13; | |
| 4177 | |
| 4178 z1 = MULTIPLY(tmp1 + tmp2, - FIX_2_562915447); /* -c1-c3 */ | |
| 4179 tmp1 = MULTIPLY(tmp1, FIX_3_072711026); /* c1+c3+c5-c7 */ | |
| 4180 tmp2 = MULTIPLY(tmp2, FIX_2_053119869); /* c1+c3-c5+c7 */ | |
| 4181 tmp1 += z1 + tmp13; | |
| 4182 tmp2 += z1 + tmp12; | |
| 4183 | |
| 4184 dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0, CONST_BITS+PASS1_BITS); | |
| 4185 dataptr[DCTSIZE*3] = (DCTELEM) RIGHT_SHIFT(tmp1, CONST_BITS+PASS1_BITS); | |
| 4186 dataptr[DCTSIZE*5] = (DCTELEM) RIGHT_SHIFT(tmp2, CONST_BITS+PASS1_BITS); | |
| 4187 dataptr[DCTSIZE*7] = (DCTELEM) RIGHT_SHIFT(tmp3, CONST_BITS+PASS1_BITS); | |
| 4188 | |
| 4189 dataptr++; /* advance pointer to next column */ | |
| 4190 } | |
| 4191 } | |
| 4192 | |
| 4193 | |
| 4194 /* | |
| 4195 * Perform the forward DCT on a 3x6 sample block. | |
| 4196 * | |
| 4197 * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns). | |
| 4198 */ | |
| 4199 | |
| 4200 GLOBAL(void) | |
| 4201 jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 4202 { | |
| 4203 INT32 tmp0, tmp1, tmp2; | |
| 4204 INT32 tmp10, tmp11, tmp12; | |
| 4205 DCTELEM *dataptr; | |
| 4206 JSAMPROW elemptr; | |
| 4207 int ctr; | |
| 4208 SHIFT_TEMPS | |
| 4209 | |
| 4210 /* Pre-zero output coefficient block. */ | |
| 4211 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 4212 | |
| 4213 /* Pass 1: process rows. | |
| 4214 * Note results are scaled up by sqrt(8) compared to a true DCT; | |
| 4215 * furthermore, we scale the results by 2**PASS1_BITS. | |
| 4216 * We scale the results further by 2 as part of output adaption | |
| 4217 * scaling for different DCT size. | |
| 4218 * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). | |
| 4219 */ | |
| 4220 | |
| 4221 dataptr = data; | |
| 4222 for (ctr = 0; ctr < 6; ctr++) { | |
| 4223 elemptr = sample_data[ctr] + start_col; | |
| 4224 | |
| 4225 /* Even part */ | |
| 4226 | |
| 4227 tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]); | |
| 4228 tmp1 = GETJSAMPLE(elemptr[1]); | |
| 4229 | |
| 4230 tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]); | |
| 4231 | |
| 4232 /* Apply unsigned->signed conversion. */ | |
| 4233 dataptr[0] = (DCTELEM) | |
| 4234 ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1)); | |
| 4235 dataptr[2] = (DCTELEM) | |
| 4236 DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */ | |
| 4237 CONST_BITS-PASS1_BITS-1); | |
| 4238 | |
| 4239 /* Odd part */ | |
| 4240 | |
| 4241 dataptr[1] = (DCTELEM) | |
| 4242 DESCALE(MULTIPLY(tmp2, FIX(1.224744871)), /* c1 */ | |
| 4243 CONST_BITS-PASS1_BITS-1); | |
| 4244 | |
| 4245 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 4246 } | |
| 4247 | |
| 4248 /* Pass 2: process columns. | |
| 4249 * We remove the PASS1_BITS scaling, but leave the results scaled up | |
| 4250 * by an overall factor of 8. | |
| 4251 * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially | |
| 4252 * fold into the constant multipliers (other part was done in pass 1): | |
| 4253 * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9. | |
| 4254 */ | |
| 4255 | |
| 4256 dataptr = data; | |
| 4257 for (ctr = 0; ctr < 3; ctr++) { | |
| 4258 /* Even part */ | |
| 4259 | |
| 4260 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5]; | |
| 4261 tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4]; | |
| 4262 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; | |
| 4263 | |
| 4264 tmp10 = tmp0 + tmp2; | |
| 4265 tmp12 = tmp0 - tmp2; | |
| 4266 | |
| 4267 tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5]; | |
| 4268 tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4]; | |
| 4269 tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; | |
| 4270 | |
| 4271 dataptr[DCTSIZE*0] = (DCTELEM) | |
| 4272 DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)), /* 16/9 */ | |
| 4273 CONST_BITS+PASS1_BITS); | |
| 4274 dataptr[DCTSIZE*2] = (DCTELEM) | |
| 4275 DESCALE(MULTIPLY(tmp12, FIX(2.177324216)), /* c2 */ | |
| 4276 CONST_BITS+PASS1_BITS); | |
| 4277 dataptr[DCTSIZE*4] = (DCTELEM) | |
| 4278 DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */ | |
| 4279 CONST_BITS+PASS1_BITS); | |
| 4280 | |
| 4281 /* Odd part */ | |
| 4282 | |
| 4283 tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829)); /* c5 */ | |
| 4284 | |
| 4285 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 4286 DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)), /* 16/9 */ | |
| 4287 CONST_BITS+PASS1_BITS); | |
| 4288 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 4289 DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)), /* 16/9 */ | |
| 4290 CONST_BITS+PASS1_BITS); | |
| 4291 dataptr[DCTSIZE*5] = (DCTELEM) | |
| 4292 DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)), /* 16/9 */ | |
| 4293 CONST_BITS+PASS1_BITS); | |
| 4294 | |
| 4295 dataptr++; /* advance pointer to next column */ | |
| 4296 } | |
| 4297 } | |
| 4298 | |
| 4299 | |
| 4300 /* | |
| 4301 * Perform the forward DCT on a 2x4 sample block. | |
| 4302 * | |
| 4303 * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns). | |
| 4304 */ | |
| 4305 | |
| 4306 GLOBAL(void) | |
| 4307 jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 4308 { | |
| 4309 INT32 tmp0, tmp1; | |
| 4310 INT32 tmp10, tmp11; | |
| 4311 DCTELEM *dataptr; | |
| 4312 JSAMPROW elemptr; | |
| 4313 int ctr; | |
| 4314 SHIFT_TEMPS | |
| 4315 | |
| 4316 /* Pre-zero output coefficient block. */ | |
| 4317 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 4318 | |
| 4319 /* Pass 1: process rows. | |
| 4320 * Note results are scaled up by sqrt(8) compared to a true DCT. | |
| 4321 */ | |
| 4322 | |
| 4323 dataptr = data; | |
| 4324 for (ctr = 0; ctr < 4; ctr++) { | |
| 4325 elemptr = sample_data[ctr] + start_col; | |
| 4326 | |
| 4327 /* Even part */ | |
| 4328 | |
| 4329 tmp0 = GETJSAMPLE(elemptr[0]); | |
| 4330 tmp1 = GETJSAMPLE(elemptr[1]); | |
| 4331 | |
| 4332 /* Apply unsigned->signed conversion. */ | |
| 4333 dataptr[0] = (DCTELEM) (tmp0 + tmp1 - 2 * CENTERJSAMPLE); | |
| 4334 | |
| 4335 /* Odd part */ | |
| 4336 | |
| 4337 dataptr[1] = (DCTELEM) (tmp0 - tmp1); | |
| 4338 | |
| 4339 dataptr += DCTSIZE; /* advance pointer to next row */ | |
| 4340 } | |
| 4341 | |
| 4342 /* Pass 2: process columns. | |
| 4343 * We leave the results scaled up by an overall factor of 8. | |
| 4344 * We must also scale the output by (8/2)*(8/4) = 2**3. | |
| 4345 * 4-point FDCT kernel, | |
| 4346 * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. | |
| 4347 */ | |
| 4348 | |
| 4349 dataptr = data; | |
| 4350 for (ctr = 0; ctr < 2; ctr++) { | |
| 4351 /* Even part */ | |
| 4352 | |
| 4353 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3]; | |
| 4354 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2]; | |
| 4355 | |
| 4356 tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3]; | |
| 4357 tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2]; | |
| 4358 | |
| 4359 dataptr[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1) << 3); | |
| 4360 dataptr[DCTSIZE*2] = (DCTELEM) ((tmp0 - tmp1) << 3); | |
| 4361 | |
| 4362 /* Odd part */ | |
| 4363 | |
| 4364 tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100); /* c6 */ | |
| 4365 /* Add fudge factor here for final descale. */ | |
| 4366 tmp0 += ONE << (CONST_BITS-3-1); | |
| 4367 | |
| 4368 dataptr[DCTSIZE*1] = (DCTELEM) | |
| 4369 RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */ | |
| 4370 CONST_BITS-3); | |
| 4371 dataptr[DCTSIZE*3] = (DCTELEM) | |
| 4372 RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */ | |
| 4373 CONST_BITS-3); | |
| 4374 | |
| 4375 dataptr++; /* advance pointer to next column */ | |
| 4376 } | |
| 4377 } | |
| 4378 | |
| 4379 | |
| 4380 /* | |
| 4381 * Perform the forward DCT on a 1x2 sample block. | |
| 4382 * | |
| 4383 * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns). | |
| 4384 */ | |
| 4385 | |
| 4386 GLOBAL(void) | |
| 4387 jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |
| 4388 { | |
| 4389 DCTELEM tmp0, tmp1; | |
| 4390 | |
| 4391 /* Pre-zero output coefficient block. */ | |
| 4392 MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2); | |
| 4393 | |
| 4394 /* Pass 1: empty. */ | |
| 4395 | |
| 4396 /* Pass 2: process columns. | |
| 4397 * We leave the results scaled up by an overall factor of 8. | |
| 4398 * We must also scale the output by (8/1)*(8/2) = 2**5. | |
| 4399 */ | |
| 4400 | |
| 4401 /* Even part */ | |
| 4402 | |
| 4403 tmp0 = GETJSAMPLE(sample_data[0][start_col]); | |
| 4404 tmp1 = GETJSAMPLE(sample_data[1][start_col]); | |
| 4405 | |
| 4406 /* Apply unsigned->signed conversion. */ | |
| 4407 data[DCTSIZE*0] = (tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5; | |
| 4408 | |
| 4409 /* Odd part */ | |
| 4410 | |
| 4411 data[DCTSIZE*1] = (tmp0 - tmp1) << 5; | |
| 4412 } | |
| 4413 | |
| 4414 #endif /* DCT_SCALING_SUPPORTED */ | |
| 4415 #endif /* DCT_ISLOW_SUPPORTED */ |
