Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jdmainct.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jdmainct.c | |
| 3 * | |
| 4 * Copyright (C) 1994-1996, Thomas G. Lane. | |
| 5 * Modified 2002-2020 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains the main buffer controller for decompression. | |
| 10 * The main buffer lies between the JPEG decompressor proper and the | |
| 11 * post-processor; it holds downsampled data in the JPEG colorspace. | |
| 12 * | |
| 13 * Note that this code is bypassed in raw-data mode, since the application | |
| 14 * supplies the equivalent of the main buffer in that case. | |
| 15 */ | |
| 16 | |
| 17 #define JPEG_INTERNALS | |
| 18 #include "jinclude.h" | |
| 19 #include "jpeglib.h" | |
| 20 | |
| 21 | |
| 22 /* | |
| 23 * In the current system design, the main buffer need never be a full-image | |
| 24 * buffer; any full-height buffers will be found inside the coefficient or | |
| 25 * postprocessing controllers. Nonetheless, the main controller is not | |
| 26 * trivial. Its responsibility is to provide context rows for upsampling/ | |
| 27 * rescaling, and doing this in an efficient fashion is a bit tricky. | |
| 28 * | |
| 29 * Postprocessor input data is counted in "row groups". A row group is | |
| 30 * defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size) | |
| 31 * sample rows of each component. (We require DCT_scaled_size values to be | |
| 32 * chosen such that these numbers are integers. In practice DCT_scaled_size | |
| 33 * values will likely be powers of two, so we actually have the stronger | |
| 34 * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) | |
| 35 * Upsampling will typically produce max_v_samp_factor pixel rows from each | |
| 36 * row group (times any additional scale factor that the upsampler is | |
| 37 * applying). | |
| 38 * | |
| 39 * The coefficient controller will deliver data to us one iMCU row at a time; | |
| 40 * each iMCU row contains v_samp_factor * DCT_v_scaled_size sample rows, or | |
| 41 * exactly min_DCT_v_scaled_size row groups. (This amount of data corresponds | |
| 42 * to one row of MCUs when the image is fully interleaved.) Note that the | |
| 43 * number of sample rows varies across components, but the number of row | |
| 44 * groups does not. Some garbage sample rows may be included in the last iMCU | |
| 45 * row at the bottom of the image. | |
| 46 * | |
| 47 * Depending on the vertical scaling algorithm used, the upsampler may need | |
| 48 * access to the sample row(s) above and below its current input row group. | |
| 49 * The upsampler is required to set need_context_rows TRUE at global selection | |
| 50 * time if so. When need_context_rows is FALSE, this controller can simply | |
| 51 * obtain one iMCU row at a time from the coefficient controller and dole it | |
| 52 * out as row groups to the postprocessor. | |
| 53 * | |
| 54 * When need_context_rows is TRUE, this controller guarantees that the buffer | |
| 55 * passed to postprocessing contains at least one row group's worth of samples | |
| 56 * above and below the row group(s) being processed. Note that the context | |
| 57 * rows "above" the first passed row group appear at negative row offsets in | |
| 58 * the passed buffer. At the top and bottom of the image, the required | |
| 59 * context rows are manufactured by duplicating the first or last real sample | |
| 60 * row; this avoids having special cases in the upsampling inner loops. | |
| 61 * | |
| 62 * The amount of context is fixed at one row group just because that's a | |
| 63 * convenient number for this controller to work with. The existing | |
| 64 * upsamplers really only need one sample row of context. An upsampler | |
| 65 * supporting arbitrary output rescaling might wish for more than one row | |
| 66 * group of context when shrinking the image; tough, we don't handle that. | |
| 67 * (This is justified by the assumption that downsizing will be handled mostly | |
| 68 * by adjusting the DCT_scaled_size values, so that the actual scale factor at | |
| 69 * the upsample step needn't be much less than one.) | |
| 70 * | |
| 71 * To provide the desired context, we have to retain the last two row groups | |
| 72 * of one iMCU row while reading in the next iMCU row. (The last row group | |
| 73 * can't be processed until we have another row group for its below-context, | |
| 74 * and so we have to save the next-to-last group too for its above-context.) | |
| 75 * We could do this most simply by copying data around in our buffer, but | |
| 76 * that'd be very slow. We can avoid copying any data by creating a rather | |
| 77 * strange pointer structure. Here's how it works. We allocate a workspace | |
| 78 * consisting of M+2 row groups (where M = min_DCT_v_scaled_size is the number | |
| 79 * of row groups per iMCU row). We create two sets of redundant pointers to | |
| 80 * the workspace. Labeling the physical row groups 0 to M+1, the synthesized | |
| 81 * pointer lists look like this: | |
| 82 * M+1 M-1 | |
| 83 * master pointer --> 0 master pointer --> 0 | |
| 84 * 1 1 | |
| 85 * ... ... | |
| 86 * M-3 M-3 | |
| 87 * M-2 M | |
| 88 * M-1 M+1 | |
| 89 * M M-2 | |
| 90 * M+1 M-1 | |
| 91 * 0 0 | |
| 92 * We read alternate iMCU rows using each master pointer; thus the last two | |
| 93 * row groups of the previous iMCU row remain un-overwritten in the workspace. | |
| 94 * The pointer lists are set up so that the required context rows appear to | |
| 95 * be adjacent to the proper places when we pass the pointer lists to the | |
| 96 * upsampler. | |
| 97 * | |
| 98 * The above pictures describe the normal state of the pointer lists. | |
| 99 * At top and bottom of the image, we diddle the pointer lists to duplicate | |
| 100 * the first or last sample row as necessary (this is cheaper than copying | |
| 101 * sample rows around). | |
| 102 * | |
| 103 * This scheme breaks down if M < 2, ie, min_DCT_v_scaled_size is 1. In that | |
| 104 * situation each iMCU row provides only one row group so the buffering logic | |
| 105 * must be different (eg, we must read two iMCU rows before we can emit the | |
| 106 * first row group). For now, we simply do not support providing context | |
| 107 * rows when min_DCT_v_scaled_size is 1. That combination seems unlikely to | |
| 108 * be worth providing --- if someone wants a 1/8th-size preview, they probably | |
| 109 * want it quick and dirty, so a context-free upsampler is sufficient. | |
| 110 */ | |
| 111 | |
| 112 | |
| 113 /* Private buffer controller object */ | |
| 114 | |
| 115 typedef struct { | |
| 116 struct jpeg_d_main_controller pub; /* public fields */ | |
| 117 | |
| 118 /* Pointer to allocated workspace (M or M+2 row groups). */ | |
| 119 JSAMPARRAY buffer[MAX_COMPONENTS]; | |
| 120 | |
| 121 JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ | |
| 122 JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ | |
| 123 | |
| 124 /* Remaining fields are only used in the context case. */ | |
| 125 | |
| 126 boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ | |
| 127 | |
| 128 /* These are the master pointers to the funny-order pointer lists. */ | |
| 129 JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ | |
| 130 | |
| 131 int whichptr; /* indicates which pointer set is now in use */ | |
| 132 int context_state; /* process_data state machine status */ | |
| 133 JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ | |
| 134 } my_main_controller; | |
| 135 | |
| 136 typedef my_main_controller * my_main_ptr; | |
| 137 | |
| 138 /* context_state values: */ | |
| 139 #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ | |
| 140 #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ | |
| 141 #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ | |
| 142 | |
| 143 | |
| 144 /* Forward declarations */ | |
| 145 METHODDEF(void) process_data_simple_main | |
| 146 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |
| 147 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | |
| 148 METHODDEF(void) process_data_context_main | |
| 149 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |
| 150 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | |
| 151 #ifdef QUANT_2PASS_SUPPORTED | |
| 152 METHODDEF(void) process_data_crank_post | |
| 153 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |
| 154 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | |
| 155 #endif | |
| 156 | |
| 157 | |
| 158 LOCAL(void) | |
| 159 alloc_funny_pointers (j_decompress_ptr cinfo) | |
| 160 /* Allocate space for the funny pointer lists. | |
| 161 * This is done only once, not once per pass. | |
| 162 */ | |
| 163 { | |
| 164 my_main_ptr mainp = (my_main_ptr) cinfo->main; | |
| 165 int ci, rgroup; | |
| 166 int M = cinfo->min_DCT_v_scaled_size; | |
| 167 jpeg_component_info *compptr; | |
| 168 JSAMPARRAY xbuf; | |
| 169 | |
| 170 /* Get top-level space for component array pointers. | |
| 171 * We alloc both arrays with one call to save a few cycles. | |
| 172 */ | |
| 173 mainp->xbuffer[0] = (JSAMPIMAGE) (*cinfo->mem->alloc_small) | |
| 174 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 175 cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); | |
| 176 mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components; | |
| 177 | |
| 178 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 179 ci++, compptr++) { | |
| 180 if (! compptr->component_needed) | |
| 181 continue; /* skip uninteresting component */ | |
| 182 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |
| 183 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | |
| 184 /* Get space for pointer lists --- M+4 row groups in each list. | |
| 185 * We alloc both pointer lists with one call to save a few cycles. | |
| 186 */ | |
| 187 xbuf = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, | |
| 188 JPOOL_IMAGE, 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); | |
| 189 xbuf += rgroup; /* want one row group at negative offsets */ | |
| 190 mainp->xbuffer[0][ci] = xbuf; | |
| 191 xbuf += rgroup * (M + 4); | |
| 192 mainp->xbuffer[1][ci] = xbuf; | |
| 193 } | |
| 194 } | |
| 195 | |
| 196 | |
| 197 LOCAL(void) | |
| 198 make_funny_pointers (j_decompress_ptr cinfo) | |
| 199 /* Create the funny pointer lists discussed in the comments above. | |
| 200 * The actual workspace is already allocated (in mainp->buffer), | |
| 201 * and the space for the pointer lists is allocated too. | |
| 202 * This routine just fills in the curiously ordered lists. | |
| 203 * This will be repeated at the beginning of each pass. | |
| 204 */ | |
| 205 { | |
| 206 my_main_ptr mainp = (my_main_ptr) cinfo->main; | |
| 207 int ci, i, rgroup; | |
| 208 int M = cinfo->min_DCT_v_scaled_size; | |
| 209 jpeg_component_info *compptr; | |
| 210 JSAMPARRAY buf, xbuf0, xbuf1; | |
| 211 | |
| 212 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 213 ci++, compptr++) { | |
| 214 if (! compptr->component_needed) | |
| 215 continue; /* skip uninteresting component */ | |
| 216 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |
| 217 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | |
| 218 xbuf0 = mainp->xbuffer[0][ci]; | |
| 219 xbuf1 = mainp->xbuffer[1][ci]; | |
| 220 /* First copy the workspace pointers as-is */ | |
| 221 buf = mainp->buffer[ci]; | |
| 222 for (i = 0; i < rgroup * (M + 2); i++) { | |
| 223 xbuf0[i] = xbuf1[i] = buf[i]; | |
| 224 } | |
| 225 /* In the second list, put the last four row groups in swapped order */ | |
| 226 for (i = 0; i < rgroup * 2; i++) { | |
| 227 xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; | |
| 228 xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; | |
| 229 } | |
| 230 /* The wraparound pointers at top and bottom will be filled later | |
| 231 * (see set_wraparound_pointers, below). Initially we want the "above" | |
| 232 * pointers to duplicate the first actual data line. This only needs | |
| 233 * to happen in xbuffer[0]. | |
| 234 */ | |
| 235 for (i = 0; i < rgroup; i++) { | |
| 236 xbuf0[i - rgroup] = xbuf0[0]; | |
| 237 } | |
| 238 } | |
| 239 } | |
| 240 | |
| 241 | |
| 242 LOCAL(void) | |
| 243 set_wraparound_pointers (j_decompress_ptr cinfo) | |
| 244 /* Set up the "wraparound" pointers at top and bottom of the pointer lists. | |
| 245 * This changes the pointer list state from top-of-image to the normal state. | |
| 246 */ | |
| 247 { | |
| 248 my_main_ptr mainp = (my_main_ptr) cinfo->main; | |
| 249 int ci, i, rgroup; | |
| 250 int M = cinfo->min_DCT_v_scaled_size; | |
| 251 jpeg_component_info *compptr; | |
| 252 JSAMPARRAY xbuf0, xbuf1; | |
| 253 | |
| 254 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 255 ci++, compptr++) { | |
| 256 if (! compptr->component_needed) | |
| 257 continue; /* skip uninteresting component */ | |
| 258 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |
| 259 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | |
| 260 xbuf0 = mainp->xbuffer[0][ci]; | |
| 261 xbuf1 = mainp->xbuffer[1][ci]; | |
| 262 for (i = 0; i < rgroup; i++) { | |
| 263 xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; | |
| 264 xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; | |
| 265 xbuf0[rgroup*(M+2) + i] = xbuf0[i]; | |
| 266 xbuf1[rgroup*(M+2) + i] = xbuf1[i]; | |
| 267 } | |
| 268 } | |
| 269 } | |
| 270 | |
| 271 | |
| 272 LOCAL(void) | |
| 273 set_bottom_pointers (j_decompress_ptr cinfo) | |
| 274 /* Change the pointer lists to duplicate the last sample row at the bottom | |
| 275 * of the image. whichptr indicates which xbuffer holds the final iMCU row. | |
| 276 * Also sets rowgroups_avail to indicate number of nondummy row groups in row. | |
| 277 */ | |
| 278 { | |
| 279 my_main_ptr mainp = (my_main_ptr) cinfo->main; | |
| 280 int ci, i, rgroup, iMCUheight, rows_left; | |
| 281 jpeg_component_info *compptr; | |
| 282 JSAMPARRAY xbuf; | |
| 283 | |
| 284 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 285 ci++, compptr++) { | |
| 286 if (! compptr->component_needed) | |
| 287 continue; /* skip uninteresting component */ | |
| 288 /* Count sample rows in one iMCU row and in one row group */ | |
| 289 iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size; | |
| 290 rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size; | |
| 291 /* Count nondummy sample rows remaining for this component */ | |
| 292 rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); | |
| 293 if (rows_left == 0) rows_left = iMCUheight; | |
| 294 /* Count nondummy row groups. Should get same answer for each component, | |
| 295 * so we need only do it once. | |
| 296 */ | |
| 297 if (ci == 0) { | |
| 298 mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); | |
| 299 } | |
| 300 /* Duplicate the last real sample row rgroup*2 times; this pads out the | |
| 301 * last partial rowgroup and ensures at least one full rowgroup of context. | |
| 302 */ | |
| 303 xbuf = mainp->xbuffer[mainp->whichptr][ci]; | |
| 304 for (i = 0; i < rgroup * 2; i++) { | |
| 305 xbuf[rows_left + i] = xbuf[rows_left-1]; | |
| 306 } | |
| 307 } | |
| 308 } | |
| 309 | |
| 310 | |
| 311 /* | |
| 312 * Initialize for a processing pass. | |
| 313 */ | |
| 314 | |
| 315 METHODDEF(void) | |
| 316 start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) | |
| 317 { | |
| 318 my_main_ptr mainp = (my_main_ptr) cinfo->main; | |
| 319 | |
| 320 switch (pass_mode) { | |
| 321 case JBUF_PASS_THRU: | |
| 322 if (cinfo->upsample->need_context_rows) { | |
| 323 mainp->pub.process_data = process_data_context_main; | |
| 324 make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ | |
| 325 mainp->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ | |
| 326 mainp->context_state = CTX_PREPARE_FOR_IMCU; | |
| 327 mainp->iMCU_row_ctr = 0; | |
| 328 mainp->buffer_full = FALSE; /* Mark buffer empty */ | |
| 329 } else { | |
| 330 /* Simple case with no context needed */ | |
| 331 mainp->pub.process_data = process_data_simple_main; | |
| 332 mainp->rowgroup_ctr = mainp->rowgroups_avail; /* Mark buffer empty */ | |
| 333 } | |
| 334 break; | |
| 335 #ifdef QUANT_2PASS_SUPPORTED | |
| 336 case JBUF_CRANK_DEST: | |
| 337 /* For last pass of 2-pass quantization, just crank the postprocessor */ | |
| 338 mainp->pub.process_data = process_data_crank_post; | |
| 339 break; | |
| 340 #endif | |
| 341 default: | |
| 342 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
| 343 } | |
| 344 } | |
| 345 | |
| 346 | |
| 347 /* | |
| 348 * Process some data. | |
| 349 * This handles the simple case where no context is required. | |
| 350 */ | |
| 351 | |
| 352 METHODDEF(void) | |
| 353 process_data_simple_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |
| 354 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) | |
| 355 { | |
| 356 my_main_ptr mainp = (my_main_ptr) cinfo->main; | |
| 357 | |
| 358 /* Read input data if we haven't filled the main buffer yet */ | |
| 359 if (mainp->rowgroup_ctr >= mainp->rowgroups_avail) { | |
| 360 if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer)) | |
| 361 return; /* suspension forced, can do nothing more */ | |
| 362 mainp->rowgroup_ctr = 0; /* OK, we have an iMCU row to work with */ | |
| 363 } | |
| 364 | |
| 365 /* Note: at the bottom of the image, we may pass extra garbage row groups | |
| 366 * to the postprocessor. The postprocessor has to check for bottom | |
| 367 * of image anyway (at row resolution), so no point in us doing it too. | |
| 368 */ | |
| 369 | |
| 370 /* Feed the postprocessor */ | |
| 371 (*cinfo->post->post_process_data) (cinfo, mainp->buffer, | |
| 372 &mainp->rowgroup_ctr, mainp->rowgroups_avail, | |
| 373 output_buf, out_row_ctr, out_rows_avail); | |
| 374 } | |
| 375 | |
| 376 | |
| 377 /* | |
| 378 * Process some data. | |
| 379 * This handles the case where context rows must be provided. | |
| 380 */ | |
| 381 | |
| 382 METHODDEF(void) | |
| 383 process_data_context_main (j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |
| 384 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) | |
| 385 { | |
| 386 my_main_ptr mainp = (my_main_ptr) cinfo->main; | |
| 387 | |
| 388 /* Read input data if we haven't filled the main buffer yet */ | |
| 389 if (! mainp->buffer_full) { | |
| 390 if (! (*cinfo->coef->decompress_data) (cinfo, | |
| 391 mainp->xbuffer[mainp->whichptr])) | |
| 392 return; /* suspension forced, can do nothing more */ | |
| 393 mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ | |
| 394 mainp->iMCU_row_ctr++; /* count rows received */ | |
| 395 } | |
| 396 | |
| 397 /* Postprocessor typically will not swallow all the input data it is handed | |
| 398 * in one call (due to filling the output buffer first). Must be prepared | |
| 399 * to exit and restart. This switch lets us keep track of how far we got. | |
| 400 * Note that each case falls through to the next on successful completion. | |
| 401 */ | |
| 402 switch (mainp->context_state) { | |
| 403 case CTX_POSTPONED_ROW: | |
| 404 /* Call postprocessor using previously set pointers for postponed row */ | |
| 405 (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], | |
| 406 &mainp->rowgroup_ctr, mainp->rowgroups_avail, | |
| 407 output_buf, out_row_ctr, out_rows_avail); | |
| 408 if (mainp->rowgroup_ctr < mainp->rowgroups_avail) | |
| 409 return; /* Need to suspend */ | |
| 410 mainp->context_state = CTX_PREPARE_FOR_IMCU; | |
| 411 if (*out_row_ctr >= out_rows_avail) | |
| 412 return; /* Postprocessor exactly filled output buf */ | |
| 413 /*FALLTHROUGH*/ | |
| 414 case CTX_PREPARE_FOR_IMCU: | |
| 415 /* Prepare to process first M-1 row groups of this iMCU row */ | |
| 416 mainp->rowgroup_ctr = 0; | |
| 417 mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1); | |
| 418 /* Check for bottom of image: if so, tweak pointers to "duplicate" | |
| 419 * the last sample row, and adjust rowgroups_avail to ignore padding rows. | |
| 420 */ | |
| 421 if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows) | |
| 422 set_bottom_pointers(cinfo); | |
| 423 mainp->context_state = CTX_PROCESS_IMCU; | |
| 424 /*FALLTHROUGH*/ | |
| 425 case CTX_PROCESS_IMCU: | |
| 426 /* Call postprocessor using previously set pointers */ | |
| 427 (*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], | |
| 428 &mainp->rowgroup_ctr, mainp->rowgroups_avail, | |
| 429 output_buf, out_row_ctr, out_rows_avail); | |
| 430 if (mainp->rowgroup_ctr < mainp->rowgroups_avail) | |
| 431 return; /* Need to suspend */ | |
| 432 /* After the first iMCU, change wraparound pointers to normal state */ | |
| 433 if (mainp->iMCU_row_ctr == 1) | |
| 434 set_wraparound_pointers(cinfo); | |
| 435 /* Prepare to load new iMCU row using other xbuffer list */ | |
| 436 mainp->whichptr ^= 1; /* 0=>1 or 1=>0 */ | |
| 437 mainp->buffer_full = FALSE; | |
| 438 /* Still need to process last row group of this iMCU row, */ | |
| 439 /* which is saved at index M+1 of the other xbuffer */ | |
| 440 mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1); | |
| 441 mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2); | |
| 442 mainp->context_state = CTX_POSTPONED_ROW; | |
| 443 } | |
| 444 } | |
| 445 | |
| 446 | |
| 447 /* | |
| 448 * Process some data. | |
| 449 * Final pass of two-pass quantization: just call the postprocessor. | |
| 450 * Source data will be the postprocessor controller's internal buffer. | |
| 451 */ | |
| 452 | |
| 453 #ifdef QUANT_2PASS_SUPPORTED | |
| 454 | |
| 455 METHODDEF(void) | |
| 456 process_data_crank_post (j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |
| 457 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) | |
| 458 { | |
| 459 (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, | |
| 460 (JDIMENSION *) NULL, (JDIMENSION) 0, | |
| 461 output_buf, out_row_ctr, out_rows_avail); | |
| 462 } | |
| 463 | |
| 464 #endif /* QUANT_2PASS_SUPPORTED */ | |
| 465 | |
| 466 | |
| 467 /* | |
| 468 * Initialize main buffer controller. | |
| 469 */ | |
| 470 | |
| 471 GLOBAL(void) | |
| 472 jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | |
| 473 { | |
| 474 my_main_ptr mainp; | |
| 475 int ci, rgroup, ngroups; | |
| 476 jpeg_component_info *compptr; | |
| 477 | |
| 478 mainp = (my_main_ptr) (*cinfo->mem->alloc_small) | |
| 479 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_main_controller)); | |
| 480 cinfo->main = &mainp->pub; | |
| 481 mainp->pub.start_pass = start_pass_main; | |
| 482 | |
| 483 if (need_full_buffer) /* shouldn't happen */ | |
| 484 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
| 485 | |
| 486 /* Allocate the workspace. | |
| 487 * ngroups is the number of row groups we need. | |
| 488 */ | |
| 489 if (cinfo->upsample->need_context_rows) { | |
| 490 if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */ | |
| 491 ERREXIT(cinfo, JERR_NOTIMPL); | |
| 492 alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ | |
| 493 ngroups = cinfo->min_DCT_v_scaled_size + 2; | |
| 494 } else { | |
| 495 /* There are always min_DCT_v_scaled_size row groups in an iMCU row. */ | |
| 496 ngroups = cinfo->min_DCT_v_scaled_size; | |
| 497 mainp->rowgroups_avail = (JDIMENSION) ngroups; | |
| 498 } | |
| 499 | |
| 500 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 501 ci++, compptr++) { | |
| 502 if (! compptr->component_needed) | |
| 503 continue; /* skip uninteresting component */ | |
| 504 rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |
| 505 cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | |
| 506 mainp->buffer[ci] = (*cinfo->mem->alloc_sarray) | |
| 507 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 508 compptr->width_in_blocks * ((JDIMENSION) compptr->DCT_h_scaled_size), | |
| 509 (JDIMENSION) (rgroup * ngroups)); | |
| 510 } | |
| 511 } |
