Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jdhuff.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jdhuff.c | |
| 3 * | |
| 4 * Copyright (C) 1991-1997, Thomas G. Lane. | |
| 5 * Modified 2006-2020 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains Huffman entropy decoding routines. | |
| 10 * Both sequential and progressive modes are supported in this single module. | |
| 11 * | |
| 12 * Much of the complexity here has to do with supporting input suspension. | |
| 13 * If the data source module demands suspension, we want to be able to back | |
| 14 * up to the start of the current MCU. To do this, we copy state variables | |
| 15 * into local working storage, and update them back to the permanent | |
| 16 * storage only upon successful completion of an MCU. | |
| 17 */ | |
| 18 | |
| 19 #define JPEG_INTERNALS | |
| 20 #include "jinclude.h" | |
| 21 #include "jpeglib.h" | |
| 22 | |
| 23 | |
| 24 /* Derived data constructed for each Huffman table */ | |
| 25 | |
| 26 #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ | |
| 27 | |
| 28 typedef struct { | |
| 29 /* Basic tables: (element [0] of each array is unused) */ | |
| 30 INT32 maxcode[18]; /* largest code of length k (-1 if none) */ | |
| 31 /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ | |
| 32 INT32 valoffset[17]; /* huffval[] offset for codes of length k */ | |
| 33 /* valoffset[k] = huffval[] index of 1st symbol of code length k, less | |
| 34 * the smallest code of length k; so given a code of length k, the | |
| 35 * corresponding symbol is huffval[code + valoffset[k]] | |
| 36 */ | |
| 37 | |
| 38 /* Link to public Huffman table (needed only in jpeg_huff_decode) */ | |
| 39 JHUFF_TBL *pub; | |
| 40 | |
| 41 /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of | |
| 42 * the input data stream. If the next Huffman code is no more | |
| 43 * than HUFF_LOOKAHEAD bits long, we can obtain its length and | |
| 44 * the corresponding symbol directly from these tables. | |
| 45 */ | |
| 46 int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */ | |
| 47 UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */ | |
| 48 } d_derived_tbl; | |
| 49 | |
| 50 | |
| 51 /* | |
| 52 * Fetching the next N bits from the input stream is a time-critical operation | |
| 53 * for the Huffman decoders. We implement it with a combination of inline | |
| 54 * macros and out-of-line subroutines. Note that N (the number of bits | |
| 55 * demanded at one time) never exceeds 15 for JPEG use. | |
| 56 * | |
| 57 * We read source bytes into get_buffer and dole out bits as needed. | |
| 58 * If get_buffer already contains enough bits, they are fetched in-line | |
| 59 * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough | |
| 60 * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer | |
| 61 * as full as possible (not just to the number of bits needed; this | |
| 62 * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). | |
| 63 * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. | |
| 64 * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains | |
| 65 * at least the requested number of bits --- dummy zeroes are inserted if | |
| 66 * necessary. | |
| 67 */ | |
| 68 | |
| 69 typedef INT32 bit_buf_type; /* type of bit-extraction buffer */ | |
| 70 #define BIT_BUF_SIZE 32 /* size of buffer in bits */ | |
| 71 | |
| 72 /* If long is > 32 bits on your machine, and shifting/masking longs is | |
| 73 * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE | |
| 74 * appropriately should be a win. Unfortunately we can't define the size | |
| 75 * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) | |
| 76 * because not all machines measure sizeof in 8-bit bytes. | |
| 77 */ | |
| 78 | |
| 79 typedef struct { /* Bitreading state saved across MCUs */ | |
| 80 bit_buf_type get_buffer; /* current bit-extraction buffer */ | |
| 81 int bits_left; /* # of unused bits in it */ | |
| 82 } bitread_perm_state; | |
| 83 | |
| 84 typedef struct { /* Bitreading working state within an MCU */ | |
| 85 /* Current data source location */ | |
| 86 /* We need a copy, rather than munging the original, in case of suspension */ | |
| 87 const JOCTET * next_input_byte; /* => next byte to read from source */ | |
| 88 size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ | |
| 89 /* Bit input buffer --- note these values are kept in register variables, | |
| 90 * not in this struct, inside the inner loops. | |
| 91 */ | |
| 92 bit_buf_type get_buffer; /* current bit-extraction buffer */ | |
| 93 int bits_left; /* # of unused bits in it */ | |
| 94 /* Pointer needed by jpeg_fill_bit_buffer. */ | |
| 95 j_decompress_ptr cinfo; /* back link to decompress master record */ | |
| 96 } bitread_working_state; | |
| 97 | |
| 98 /* Macros to declare and load/save bitread local variables. */ | |
| 99 #define BITREAD_STATE_VARS \ | |
| 100 register bit_buf_type get_buffer; \ | |
| 101 register int bits_left; \ | |
| 102 bitread_working_state br_state | |
| 103 | |
| 104 #define BITREAD_LOAD_STATE(cinfop,permstate) \ | |
| 105 br_state.cinfo = cinfop; \ | |
| 106 br_state.next_input_byte = cinfop->src->next_input_byte; \ | |
| 107 br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ | |
| 108 get_buffer = permstate.get_buffer; \ | |
| 109 bits_left = permstate.bits_left; | |
| 110 | |
| 111 #define BITREAD_SAVE_STATE(cinfop,permstate) \ | |
| 112 cinfop->src->next_input_byte = br_state.next_input_byte; \ | |
| 113 cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ | |
| 114 permstate.get_buffer = get_buffer; \ | |
| 115 permstate.bits_left = bits_left | |
| 116 | |
| 117 /* | |
| 118 * These macros provide the in-line portion of bit fetching. | |
| 119 * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer | |
| 120 * before using GET_BITS, PEEK_BITS, or DROP_BITS. | |
| 121 * The variables get_buffer and bits_left are assumed to be locals, | |
| 122 * but the state struct might not be (jpeg_huff_decode needs this). | |
| 123 * CHECK_BIT_BUFFER(state,n,action); | |
| 124 * Ensure there are N bits in get_buffer; if suspend, take action. | |
| 125 * val = GET_BITS(n); | |
| 126 * Fetch next N bits. | |
| 127 * val = PEEK_BITS(n); | |
| 128 * Fetch next N bits without removing them from the buffer. | |
| 129 * DROP_BITS(n); | |
| 130 * Discard next N bits. | |
| 131 * The value N should be a simple variable, not an expression, because it | |
| 132 * is evaluated multiple times. | |
| 133 */ | |
| 134 | |
| 135 #define CHECK_BIT_BUFFER(state,nbits,action) \ | |
| 136 { if (bits_left < (nbits)) { \ | |
| 137 if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \ | |
| 138 { action; } \ | |
| 139 get_buffer = (state).get_buffer; bits_left = (state).bits_left; } } | |
| 140 | |
| 141 #define GET_BITS(nbits) \ | |
| 142 (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits)) | |
| 143 | |
| 144 #define PEEK_BITS(nbits) \ | |
| 145 (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits)) | |
| 146 | |
| 147 #define DROP_BITS(nbits) \ | |
| 148 (bits_left -= (nbits)) | |
| 149 | |
| 150 | |
| 151 /* | |
| 152 * Code for extracting next Huffman-coded symbol from input bit stream. | |
| 153 * Again, this is time-critical and we make the main paths be macros. | |
| 154 * | |
| 155 * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits | |
| 156 * without looping. Usually, more than 95% of the Huffman codes will be 8 | |
| 157 * or fewer bits long. The few overlength codes are handled with a loop, | |
| 158 * which need not be inline code. | |
| 159 * | |
| 160 * Notes about the HUFF_DECODE macro: | |
| 161 * 1. Near the end of the data segment, we may fail to get enough bits | |
| 162 * for a lookahead. In that case, we do it the hard way. | |
| 163 * 2. If the lookahead table contains no entry, the next code must be | |
| 164 * more than HUFF_LOOKAHEAD bits long. | |
| 165 * 3. jpeg_huff_decode returns -1 if forced to suspend. | |
| 166 */ | |
| 167 | |
| 168 #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \ | |
| 169 { register int nb, look; \ | |
| 170 if (bits_left < HUFF_LOOKAHEAD) { \ | |
| 171 if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \ | |
| 172 get_buffer = state.get_buffer; bits_left = state.bits_left; \ | |
| 173 if (bits_left < HUFF_LOOKAHEAD) { \ | |
| 174 nb = 1; goto slowlabel; \ | |
| 175 } \ | |
| 176 } \ | |
| 177 look = PEEK_BITS(HUFF_LOOKAHEAD); \ | |
| 178 if ((nb = htbl->look_nbits[look]) != 0) { \ | |
| 179 DROP_BITS(nb); \ | |
| 180 result = htbl->look_sym[look]; \ | |
| 181 } else { \ | |
| 182 nb = HUFF_LOOKAHEAD+1; \ | |
| 183 slowlabel: \ | |
| 184 if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \ | |
| 185 { failaction; } \ | |
| 186 get_buffer = state.get_buffer; bits_left = state.bits_left; \ | |
| 187 } \ | |
| 188 } | |
| 189 | |
| 190 | |
| 191 /* | |
| 192 * Expanded entropy decoder object for Huffman decoding. | |
| 193 * | |
| 194 * The savable_state subrecord contains fields that change within an MCU, | |
| 195 * but must not be updated permanently until we complete the MCU. | |
| 196 */ | |
| 197 | |
| 198 typedef struct { | |
| 199 unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ | |
| 200 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |
| 201 } savable_state; | |
| 202 | |
| 203 /* This macro is to work around compilers with missing or broken | |
| 204 * structure assignment. You'll need to fix this code if you have | |
| 205 * such a compiler and you change MAX_COMPS_IN_SCAN. | |
| 206 */ | |
| 207 | |
| 208 #ifndef NO_STRUCT_ASSIGN | |
| 209 #define ASSIGN_STATE(dest,src) ((dest) = (src)) | |
| 210 #else | |
| 211 #if MAX_COMPS_IN_SCAN == 4 | |
| 212 #define ASSIGN_STATE(dest,src) \ | |
| 213 ((dest).EOBRUN = (src).EOBRUN, \ | |
| 214 (dest).last_dc_val[0] = (src).last_dc_val[0], \ | |
| 215 (dest).last_dc_val[1] = (src).last_dc_val[1], \ | |
| 216 (dest).last_dc_val[2] = (src).last_dc_val[2], \ | |
| 217 (dest).last_dc_val[3] = (src).last_dc_val[3]) | |
| 218 #endif | |
| 219 #endif | |
| 220 | |
| 221 | |
| 222 typedef struct { | |
| 223 struct jpeg_entropy_decoder pub; /* public fields */ | |
| 224 | |
| 225 /* These fields are loaded into local variables at start of each MCU. | |
| 226 * In case of suspension, we exit WITHOUT updating them. | |
| 227 */ | |
| 228 bitread_perm_state bitstate; /* Bit buffer at start of MCU */ | |
| 229 savable_state saved; /* Other state at start of MCU */ | |
| 230 | |
| 231 /* These fields are NOT loaded into local working state. */ | |
| 232 boolean insufficient_data; /* set TRUE after emitting warning */ | |
| 233 unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |
| 234 | |
| 235 /* Following two fields used only in progressive mode */ | |
| 236 | |
| 237 /* Pointers to derived tables (these workspaces have image lifespan) */ | |
| 238 d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; | |
| 239 | |
| 240 d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ | |
| 241 | |
| 242 /* Following fields used only in sequential mode */ | |
| 243 | |
| 244 /* Pointers to derived tables (these workspaces have image lifespan) */ | |
| 245 d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; | |
| 246 d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; | |
| 247 | |
| 248 /* Precalculated info set up by start_pass for use in decode_mcu: */ | |
| 249 | |
| 250 /* Pointers to derived tables to be used for each block within an MCU */ | |
| 251 d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; | |
| 252 d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; | |
| 253 /* Whether we care about the DC and AC coefficient values for each block */ | |
| 254 int coef_limit[D_MAX_BLOCKS_IN_MCU]; | |
| 255 } huff_entropy_decoder; | |
| 256 | |
| 257 typedef huff_entropy_decoder * huff_entropy_ptr; | |
| 258 | |
| 259 | |
| 260 static const int jpeg_zigzag_order[8][8] = { | |
| 261 { 0, 1, 5, 6, 14, 15, 27, 28 }, | |
| 262 { 2, 4, 7, 13, 16, 26, 29, 42 }, | |
| 263 { 3, 8, 12, 17, 25, 30, 41, 43 }, | |
| 264 { 9, 11, 18, 24, 31, 40, 44, 53 }, | |
| 265 { 10, 19, 23, 32, 39, 45, 52, 54 }, | |
| 266 { 20, 22, 33, 38, 46, 51, 55, 60 }, | |
| 267 { 21, 34, 37, 47, 50, 56, 59, 61 }, | |
| 268 { 35, 36, 48, 49, 57, 58, 62, 63 } | |
| 269 }; | |
| 270 | |
| 271 static const int jpeg_zigzag_order7[7][7] = { | |
| 272 { 0, 1, 5, 6, 14, 15, 27 }, | |
| 273 { 2, 4, 7, 13, 16, 26, 28 }, | |
| 274 { 3, 8, 12, 17, 25, 29, 38 }, | |
| 275 { 9, 11, 18, 24, 30, 37, 39 }, | |
| 276 { 10, 19, 23, 31, 36, 40, 45 }, | |
| 277 { 20, 22, 32, 35, 41, 44, 46 }, | |
| 278 { 21, 33, 34, 42, 43, 47, 48 } | |
| 279 }; | |
| 280 | |
| 281 static const int jpeg_zigzag_order6[6][6] = { | |
| 282 { 0, 1, 5, 6, 14, 15 }, | |
| 283 { 2, 4, 7, 13, 16, 25 }, | |
| 284 { 3, 8, 12, 17, 24, 26 }, | |
| 285 { 9, 11, 18, 23, 27, 32 }, | |
| 286 { 10, 19, 22, 28, 31, 33 }, | |
| 287 { 20, 21, 29, 30, 34, 35 } | |
| 288 }; | |
| 289 | |
| 290 static const int jpeg_zigzag_order5[5][5] = { | |
| 291 { 0, 1, 5, 6, 14 }, | |
| 292 { 2, 4, 7, 13, 15 }, | |
| 293 { 3, 8, 12, 16, 21 }, | |
| 294 { 9, 11, 17, 20, 22 }, | |
| 295 { 10, 18, 19, 23, 24 } | |
| 296 }; | |
| 297 | |
| 298 static const int jpeg_zigzag_order4[4][4] = { | |
| 299 { 0, 1, 5, 6 }, | |
| 300 { 2, 4, 7, 12 }, | |
| 301 { 3, 8, 11, 13 }, | |
| 302 { 9, 10, 14, 15 } | |
| 303 }; | |
| 304 | |
| 305 static const int jpeg_zigzag_order3[3][3] = { | |
| 306 { 0, 1, 5 }, | |
| 307 { 2, 4, 6 }, | |
| 308 { 3, 7, 8 } | |
| 309 }; | |
| 310 | |
| 311 static const int jpeg_zigzag_order2[2][2] = { | |
| 312 { 0, 1 }, | |
| 313 { 2, 3 } | |
| 314 }; | |
| 315 | |
| 316 | |
| 317 /* | |
| 318 * Compute the derived values for a Huffman table. | |
| 319 * This routine also performs some validation checks on the table. | |
| 320 */ | |
| 321 | |
| 322 LOCAL(void) | |
| 323 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno, | |
| 324 d_derived_tbl ** pdtbl) | |
| 325 { | |
| 326 JHUFF_TBL *htbl; | |
| 327 d_derived_tbl *dtbl; | |
| 328 int p, i, l, si, numsymbols; | |
| 329 int lookbits, ctr; | |
| 330 char huffsize[257]; | |
| 331 unsigned int huffcode[257]; | |
| 332 unsigned int code; | |
| 333 | |
| 334 /* Note that huffsize[] and huffcode[] are filled in code-length order, | |
| 335 * paralleling the order of the symbols themselves in htbl->huffval[]. | |
| 336 */ | |
| 337 | |
| 338 /* Find the input Huffman table */ | |
| 339 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) | |
| 340 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | |
| 341 htbl = | |
| 342 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; | |
| 343 if (htbl == NULL) | |
| 344 htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno); | |
| 345 | |
| 346 /* Allocate a workspace if we haven't already done so. */ | |
| 347 if (*pdtbl == NULL) | |
| 348 *pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small) | |
| 349 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(d_derived_tbl)); | |
| 350 dtbl = *pdtbl; | |
| 351 dtbl->pub = htbl; /* fill in back link */ | |
| 352 | |
| 353 /* Figure C.1: make table of Huffman code length for each symbol */ | |
| 354 | |
| 355 p = 0; | |
| 356 for (l = 1; l <= 16; l++) { | |
| 357 i = (int) htbl->bits[l]; | |
| 358 if (i < 0 || p + i > 256) /* protect against table overrun */ | |
| 359 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
| 360 while (i--) | |
| 361 huffsize[p++] = (char) l; | |
| 362 } | |
| 363 huffsize[p] = 0; | |
| 364 numsymbols = p; | |
| 365 | |
| 366 /* Figure C.2: generate the codes themselves */ | |
| 367 /* We also validate that the counts represent a legal Huffman code tree. */ | |
| 368 | |
| 369 code = 0; | |
| 370 si = huffsize[0]; | |
| 371 p = 0; | |
| 372 while (huffsize[p]) { | |
| 373 while (((int) huffsize[p]) == si) { | |
| 374 huffcode[p++] = code; | |
| 375 code++; | |
| 376 } | |
| 377 /* code is now 1 more than the last code used for codelength si; but | |
| 378 * it must still fit in si bits, since no code is allowed to be all ones. | |
| 379 */ | |
| 380 if (((INT32) code) >= (((INT32) 1) << si)) | |
| 381 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
| 382 code <<= 1; | |
| 383 si++; | |
| 384 } | |
| 385 | |
| 386 /* Figure F.15: generate decoding tables for bit-sequential decoding */ | |
| 387 | |
| 388 p = 0; | |
| 389 for (l = 1; l <= 16; l++) { | |
| 390 if (htbl->bits[l]) { | |
| 391 /* valoffset[l] = huffval[] index of 1st symbol of code length l, | |
| 392 * minus the minimum code of length l | |
| 393 */ | |
| 394 dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p]; | |
| 395 p += htbl->bits[l]; | |
| 396 dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */ | |
| 397 } else { | |
| 398 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ | |
| 399 } | |
| 400 } | |
| 401 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ | |
| 402 | |
| 403 /* Compute lookahead tables to speed up decoding. | |
| 404 * First we set all the table entries to 0, indicating "too long"; | |
| 405 * then we iterate through the Huffman codes that are short enough and | |
| 406 * fill in all the entries that correspond to bit sequences starting | |
| 407 * with that code. | |
| 408 */ | |
| 409 | |
| 410 MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits)); | |
| 411 | |
| 412 p = 0; | |
| 413 for (l = 1; l <= HUFF_LOOKAHEAD; l++) { | |
| 414 for (i = 1; i <= (int) htbl->bits[l]; i++, p++) { | |
| 415 /* l = current code's length, p = its index in huffcode[] & huffval[]. */ | |
| 416 /* Generate left-justified code followed by all possible bit sequences */ | |
| 417 lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l); | |
| 418 for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) { | |
| 419 dtbl->look_nbits[lookbits] = l; | |
| 420 dtbl->look_sym[lookbits] = htbl->huffval[p]; | |
| 421 lookbits++; | |
| 422 } | |
| 423 } | |
| 424 } | |
| 425 | |
| 426 /* Validate symbols as being reasonable. | |
| 427 * For AC tables, we make no check, but accept all byte values 0..255. | |
| 428 * For DC tables, we require the symbols to be in range 0..15. | |
| 429 * (Tighter bounds could be applied depending on the data depth and mode, | |
| 430 * but this is sufficient to ensure safe decoding.) | |
| 431 */ | |
| 432 if (isDC) { | |
| 433 for (i = 0; i < numsymbols; i++) { | |
| 434 int sym = htbl->huffval[i]; | |
| 435 if (sym < 0 || sym > 15) | |
| 436 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
| 437 } | |
| 438 } | |
| 439 } | |
| 440 | |
| 441 | |
| 442 /* | |
| 443 * Out-of-line code for bit fetching. | |
| 444 * Note: current values of get_buffer and bits_left are passed as parameters, | |
| 445 * but are returned in the corresponding fields of the state struct. | |
| 446 * | |
| 447 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width | |
| 448 * of get_buffer to be used. (On machines with wider words, an even larger | |
| 449 * buffer could be used.) However, on some machines 32-bit shifts are | |
| 450 * quite slow and take time proportional to the number of places shifted. | |
| 451 * (This is true with most PC compilers, for instance.) In this case it may | |
| 452 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the | |
| 453 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. | |
| 454 */ | |
| 455 | |
| 456 #ifdef SLOW_SHIFT_32 | |
| 457 #define MIN_GET_BITS 15 /* minimum allowable value */ | |
| 458 #else | |
| 459 #define MIN_GET_BITS (BIT_BUF_SIZE-7) | |
| 460 #endif | |
| 461 | |
| 462 | |
| 463 LOCAL(boolean) | |
| 464 jpeg_fill_bit_buffer (bitread_working_state * state, | |
| 465 register bit_buf_type get_buffer, register int bits_left, | |
| 466 int nbits) | |
| 467 /* Load up the bit buffer to a depth of at least nbits */ | |
| 468 { | |
| 469 /* Copy heavily used state fields into locals (hopefully registers) */ | |
| 470 register const JOCTET * next_input_byte = state->next_input_byte; | |
| 471 register size_t bytes_in_buffer = state->bytes_in_buffer; | |
| 472 j_decompress_ptr cinfo = state->cinfo; | |
| 473 | |
| 474 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ | |
| 475 /* (It is assumed that no request will be for more than that many bits.) */ | |
| 476 /* We fail to do so only if we hit a marker or are forced to suspend. */ | |
| 477 | |
| 478 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ | |
| 479 while (bits_left < MIN_GET_BITS) { | |
| 480 register int c; | |
| 481 | |
| 482 /* Attempt to read a byte */ | |
| 483 if (bytes_in_buffer == 0) { | |
| 484 if (! (*cinfo->src->fill_input_buffer) (cinfo)) | |
| 485 return FALSE; | |
| 486 next_input_byte = cinfo->src->next_input_byte; | |
| 487 bytes_in_buffer = cinfo->src->bytes_in_buffer; | |
| 488 } | |
| 489 bytes_in_buffer--; | |
| 490 c = GETJOCTET(*next_input_byte++); | |
| 491 | |
| 492 /* If it's 0xFF, check and discard stuffed zero byte */ | |
| 493 if (c == 0xFF) { | |
| 494 /* Loop here to discard any padding FF's on terminating marker, | |
| 495 * so that we can save a valid unread_marker value. NOTE: we will | |
| 496 * accept multiple FF's followed by a 0 as meaning a single FF data | |
| 497 * byte. This data pattern is not valid according to the standard. | |
| 498 */ | |
| 499 do { | |
| 500 if (bytes_in_buffer == 0) { | |
| 501 if (! (*cinfo->src->fill_input_buffer) (cinfo)) | |
| 502 return FALSE; | |
| 503 next_input_byte = cinfo->src->next_input_byte; | |
| 504 bytes_in_buffer = cinfo->src->bytes_in_buffer; | |
| 505 } | |
| 506 bytes_in_buffer--; | |
| 507 c = GETJOCTET(*next_input_byte++); | |
| 508 } while (c == 0xFF); | |
| 509 | |
| 510 if (c == 0) { | |
| 511 /* Found FF/00, which represents an FF data byte */ | |
| 512 c = 0xFF; | |
| 513 } else { | |
| 514 /* Oops, it's actually a marker indicating end of compressed data. | |
| 515 * Save the marker code for later use. | |
| 516 * Fine point: it might appear that we should save the marker into | |
| 517 * bitread working state, not straight into permanent state. But | |
| 518 * once we have hit a marker, we cannot need to suspend within the | |
| 519 * current MCU, because we will read no more bytes from the data | |
| 520 * source. So it is OK to update permanent state right away. | |
| 521 */ | |
| 522 cinfo->unread_marker = c; | |
| 523 /* See if we need to insert some fake zero bits. */ | |
| 524 goto no_more_bytes; | |
| 525 } | |
| 526 } | |
| 527 | |
| 528 /* OK, load c into get_buffer */ | |
| 529 get_buffer = (get_buffer << 8) | c; | |
| 530 bits_left += 8; | |
| 531 } /* end while */ | |
| 532 } else { | |
| 533 no_more_bytes: | |
| 534 /* We get here if we've read the marker that terminates the compressed | |
| 535 * data segment. There should be enough bits in the buffer register | |
| 536 * to satisfy the request; if so, no problem. | |
| 537 */ | |
| 538 if (nbits > bits_left) { | |
| 539 /* Uh-oh. Report corrupted data to user and stuff zeroes into | |
| 540 * the data stream, so that we can produce some kind of image. | |
| 541 * We use a nonvolatile flag to ensure that only one warning message | |
| 542 * appears per data segment. | |
| 543 */ | |
| 544 if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) { | |
| 545 WARNMS(cinfo, JWRN_HIT_MARKER); | |
| 546 ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE; | |
| 547 } | |
| 548 /* Fill the buffer with zero bits */ | |
| 549 get_buffer <<= MIN_GET_BITS - bits_left; | |
| 550 bits_left = MIN_GET_BITS; | |
| 551 } | |
| 552 } | |
| 553 | |
| 554 /* Unload the local registers */ | |
| 555 state->next_input_byte = next_input_byte; | |
| 556 state->bytes_in_buffer = bytes_in_buffer; | |
| 557 state->get_buffer = get_buffer; | |
| 558 state->bits_left = bits_left; | |
| 559 | |
| 560 return TRUE; | |
| 561 } | |
| 562 | |
| 563 | |
| 564 /* | |
| 565 * Figure F.12: extend sign bit. | |
| 566 * On some machines, a shift and sub will be faster than a table lookup. | |
| 567 */ | |
| 568 | |
| 569 #ifdef AVOID_TABLES | |
| 570 | |
| 571 #define BIT_MASK(nbits) ((1<<(nbits))-1) | |
| 572 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x)) | |
| 573 | |
| 574 #else | |
| 575 | |
| 576 #define BIT_MASK(nbits) bmask[nbits] | |
| 577 #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x)) | |
| 578 | |
| 579 static const int bmask[16] = /* bmask[n] is mask for n rightmost bits */ | |
| 580 { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, | |
| 581 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF }; | |
| 582 | |
| 583 #endif /* AVOID_TABLES */ | |
| 584 | |
| 585 | |
| 586 /* | |
| 587 * Out-of-line code for Huffman code decoding. | |
| 588 */ | |
| 589 | |
| 590 LOCAL(int) | |
| 591 jpeg_huff_decode (bitread_working_state * state, | |
| 592 register bit_buf_type get_buffer, register int bits_left, | |
| 593 d_derived_tbl * htbl, int min_bits) | |
| 594 { | |
| 595 register int l = min_bits; | |
| 596 register INT32 code; | |
| 597 | |
| 598 /* HUFF_DECODE has determined that the code is at least min_bits */ | |
| 599 /* bits long, so fetch that many bits in one swoop. */ | |
| 600 | |
| 601 CHECK_BIT_BUFFER(*state, l, return -1); | |
| 602 code = GET_BITS(l); | |
| 603 | |
| 604 /* Collect the rest of the Huffman code one bit at a time. */ | |
| 605 /* This is per Figure F.16 in the JPEG spec. */ | |
| 606 | |
| 607 while (code > htbl->maxcode[l]) { | |
| 608 code <<= 1; | |
| 609 CHECK_BIT_BUFFER(*state, 1, return -1); | |
| 610 code |= GET_BITS(1); | |
| 611 l++; | |
| 612 } | |
| 613 | |
| 614 /* Unload the local registers */ | |
| 615 state->get_buffer = get_buffer; | |
| 616 state->bits_left = bits_left; | |
| 617 | |
| 618 /* With garbage input we may reach the sentinel value l = 17. */ | |
| 619 | |
| 620 if (l > 16) { | |
| 621 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); | |
| 622 return 0; /* fake a zero as the safest result */ | |
| 623 } | |
| 624 | |
| 625 return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ]; | |
| 626 } | |
| 627 | |
| 628 | |
| 629 /* | |
| 630 * Finish up at the end of a Huffman-compressed scan. | |
| 631 */ | |
| 632 | |
| 633 METHODDEF(void) | |
| 634 finish_pass_huff (j_decompress_ptr cinfo) | |
| 635 { | |
| 636 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 637 | |
| 638 /* Throw away any unused bits remaining in bit buffer; */ | |
| 639 /* include any full bytes in next_marker's count of discarded bytes */ | |
| 640 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; | |
| 641 entropy->bitstate.bits_left = 0; | |
| 642 } | |
| 643 | |
| 644 | |
| 645 /* | |
| 646 * Check for a restart marker & resynchronize decoder. | |
| 647 * Returns FALSE if must suspend. | |
| 648 */ | |
| 649 | |
| 650 LOCAL(boolean) | |
| 651 process_restart (j_decompress_ptr cinfo) | |
| 652 { | |
| 653 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 654 int ci; | |
| 655 | |
| 656 finish_pass_huff(cinfo); | |
| 657 | |
| 658 /* Advance past the RSTn marker */ | |
| 659 if (! (*cinfo->marker->read_restart_marker) (cinfo)) | |
| 660 return FALSE; | |
| 661 | |
| 662 /* Re-initialize DC predictions to 0 */ | |
| 663 for (ci = 0; ci < cinfo->comps_in_scan; ci++) | |
| 664 entropy->saved.last_dc_val[ci] = 0; | |
| 665 /* Re-init EOB run count, too */ | |
| 666 entropy->saved.EOBRUN = 0; | |
| 667 | |
| 668 /* Reset restart counter */ | |
| 669 entropy->restarts_to_go = cinfo->restart_interval; | |
| 670 | |
| 671 /* Reset out-of-data flag, unless read_restart_marker left us smack up | |
| 672 * against a marker. In that case we will end up treating the next data | |
| 673 * segment as empty, and we can avoid producing bogus output pixels by | |
| 674 * leaving the flag set. | |
| 675 */ | |
| 676 if (cinfo->unread_marker == 0) | |
| 677 entropy->insufficient_data = FALSE; | |
| 678 | |
| 679 return TRUE; | |
| 680 } | |
| 681 | |
| 682 | |
| 683 /* | |
| 684 * Huffman MCU decoding. | |
| 685 * Each of these routines decodes and returns one MCU's worth of | |
| 686 * Huffman-compressed coefficients. | |
| 687 * The coefficients are reordered from zigzag order into natural array order, | |
| 688 * but are not dequantized. | |
| 689 * | |
| 690 * The i'th block of the MCU is stored into the block pointed to by | |
| 691 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | |
| 692 * (Wholesale zeroing is usually a little faster than retail...) | |
| 693 * | |
| 694 * We return FALSE if data source requested suspension. In that case no | |
| 695 * changes have been made to permanent state. (Exception: some output | |
| 696 * coefficients may already have been assigned. This is harmless for | |
| 697 * spectral selection, since we'll just re-assign them on the next call. | |
| 698 * Successive approximation AC refinement has to be more careful, however.) | |
| 699 */ | |
| 700 | |
| 701 /* | |
| 702 * MCU decoding for DC initial scan (either spectral selection, | |
| 703 * or first pass of successive approximation). | |
| 704 */ | |
| 705 | |
| 706 METHODDEF(boolean) | |
| 707 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 708 { | |
| 709 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 710 int Al = cinfo->Al; | |
| 711 register int s, r; | |
| 712 int blkn, ci; | |
| 713 JBLOCKROW block; | |
| 714 BITREAD_STATE_VARS; | |
| 715 savable_state state; | |
| 716 d_derived_tbl * tbl; | |
| 717 jpeg_component_info * compptr; | |
| 718 | |
| 719 /* Process restart marker if needed; may have to suspend */ | |
| 720 if (cinfo->restart_interval) { | |
| 721 if (entropy->restarts_to_go == 0) | |
| 722 if (! process_restart(cinfo)) | |
| 723 return FALSE; | |
| 724 } | |
| 725 | |
| 726 /* If we've run out of data, just leave the MCU set to zeroes. | |
| 727 * This way, we return uniform gray for the remainder of the segment. | |
| 728 */ | |
| 729 if (! entropy->insufficient_data) { | |
| 730 | |
| 731 /* Load up working state */ | |
| 732 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); | |
| 733 ASSIGN_STATE(state, entropy->saved); | |
| 734 | |
| 735 /* Outer loop handles each block in the MCU */ | |
| 736 | |
| 737 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 738 block = MCU_data[blkn]; | |
| 739 ci = cinfo->MCU_membership[blkn]; | |
| 740 compptr = cinfo->cur_comp_info[ci]; | |
| 741 tbl = entropy->derived_tbls[compptr->dc_tbl_no]; | |
| 742 | |
| 743 /* Decode a single block's worth of coefficients */ | |
| 744 | |
| 745 /* Section F.2.2.1: decode the DC coefficient difference */ | |
| 746 HUFF_DECODE(s, br_state, tbl, return FALSE, label1); | |
| 747 if (s) { | |
| 748 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 749 r = GET_BITS(s); | |
| 750 s = HUFF_EXTEND(r, s); | |
| 751 } | |
| 752 | |
| 753 /* Convert DC difference to actual value, update last_dc_val */ | |
| 754 s += state.last_dc_val[ci]; | |
| 755 state.last_dc_val[ci] = s; | |
| 756 /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ | |
| 757 (*block)[0] = (JCOEF) (s << Al); | |
| 758 } | |
| 759 | |
| 760 /* Completed MCU, so update state */ | |
| 761 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); | |
| 762 ASSIGN_STATE(entropy->saved, state); | |
| 763 } | |
| 764 | |
| 765 /* Account for restart interval if using restarts */ | |
| 766 if (cinfo->restart_interval) | |
| 767 entropy->restarts_to_go--; | |
| 768 | |
| 769 return TRUE; | |
| 770 } | |
| 771 | |
| 772 | |
| 773 /* | |
| 774 * MCU decoding for AC initial scan (either spectral selection, | |
| 775 * or first pass of successive approximation). | |
| 776 */ | |
| 777 | |
| 778 METHODDEF(boolean) | |
| 779 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 780 { | |
| 781 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 782 register int s, k, r; | |
| 783 unsigned int EOBRUN; | |
| 784 int Se, Al; | |
| 785 const int * natural_order; | |
| 786 JBLOCKROW block; | |
| 787 BITREAD_STATE_VARS; | |
| 788 d_derived_tbl * tbl; | |
| 789 | |
| 790 /* Process restart marker if needed; may have to suspend */ | |
| 791 if (cinfo->restart_interval) { | |
| 792 if (entropy->restarts_to_go == 0) | |
| 793 if (! process_restart(cinfo)) | |
| 794 return FALSE; | |
| 795 } | |
| 796 | |
| 797 /* If we've run out of data, just leave the MCU set to zeroes. | |
| 798 * This way, we return uniform gray for the remainder of the segment. | |
| 799 */ | |
| 800 if (! entropy->insufficient_data) { | |
| 801 | |
| 802 /* Load up working state. | |
| 803 * We can avoid loading/saving bitread state if in an EOB run. | |
| 804 */ | |
| 805 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | |
| 806 | |
| 807 /* There is always only one block per MCU */ | |
| 808 | |
| 809 if (EOBRUN) /* if it's a band of zeroes... */ | |
| 810 EOBRUN--; /* ...process it now (we do nothing) */ | |
| 811 else { | |
| 812 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); | |
| 813 Se = cinfo->Se; | |
| 814 Al = cinfo->Al; | |
| 815 natural_order = cinfo->natural_order; | |
| 816 block = MCU_data[0]; | |
| 817 tbl = entropy->ac_derived_tbl; | |
| 818 | |
| 819 for (k = cinfo->Ss; k <= Se; k++) { | |
| 820 HUFF_DECODE(s, br_state, tbl, return FALSE, label2); | |
| 821 r = s >> 4; | |
| 822 s &= 15; | |
| 823 if (s) { | |
| 824 k += r; | |
| 825 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 826 r = GET_BITS(s); | |
| 827 s = HUFF_EXTEND(r, s); | |
| 828 /* Scale and output coefficient in natural (dezigzagged) order */ | |
| 829 (*block)[natural_order[k]] = (JCOEF) (s << Al); | |
| 830 } else { | |
| 831 if (r != 15) { /* EOBr, run length is 2^r + appended bits */ | |
| 832 if (r) { /* EOBr, r > 0 */ | |
| 833 EOBRUN = 1 << r; | |
| 834 CHECK_BIT_BUFFER(br_state, r, return FALSE); | |
| 835 r = GET_BITS(r); | |
| 836 EOBRUN += r; | |
| 837 EOBRUN--; /* this band is processed at this moment */ | |
| 838 } | |
| 839 break; /* force end-of-band */ | |
| 840 } | |
| 841 k += 15; /* ZRL: skip 15 zeroes in band */ | |
| 842 } | |
| 843 } | |
| 844 | |
| 845 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); | |
| 846 } | |
| 847 | |
| 848 /* Completed MCU, so update state */ | |
| 849 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | |
| 850 } | |
| 851 | |
| 852 /* Account for restart interval if using restarts */ | |
| 853 if (cinfo->restart_interval) | |
| 854 entropy->restarts_to_go--; | |
| 855 | |
| 856 return TRUE; | |
| 857 } | |
| 858 | |
| 859 | |
| 860 /* | |
| 861 * MCU decoding for DC successive approximation refinement scan. | |
| 862 * Note: we assume such scans can be multi-component, | |
| 863 * although the spec is not very clear on the point. | |
| 864 */ | |
| 865 | |
| 866 METHODDEF(boolean) | |
| 867 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 868 { | |
| 869 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 870 JCOEF p1; | |
| 871 int blkn; | |
| 872 BITREAD_STATE_VARS; | |
| 873 | |
| 874 /* Process restart marker if needed; may have to suspend */ | |
| 875 if (cinfo->restart_interval) { | |
| 876 if (entropy->restarts_to_go == 0) | |
| 877 if (! process_restart(cinfo)) | |
| 878 return FALSE; | |
| 879 } | |
| 880 | |
| 881 /* Not worth the cycles to check insufficient_data here, | |
| 882 * since we will not change the data anyway if we read zeroes. | |
| 883 */ | |
| 884 | |
| 885 /* Load up working state */ | |
| 886 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); | |
| 887 | |
| 888 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |
| 889 | |
| 890 /* Outer loop handles each block in the MCU */ | |
| 891 | |
| 892 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 893 /* Encoded data is simply the next bit of the two's-complement DC value */ | |
| 894 CHECK_BIT_BUFFER(br_state, 1, return FALSE); | |
| 895 if (GET_BITS(1)) | |
| 896 MCU_data[blkn][0][0] |= p1; | |
| 897 /* Note: since we use |=, repeating the assignment later is safe */ | |
| 898 } | |
| 899 | |
| 900 /* Completed MCU, so update state */ | |
| 901 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); | |
| 902 | |
| 903 /* Account for restart interval if using restarts */ | |
| 904 if (cinfo->restart_interval) | |
| 905 entropy->restarts_to_go--; | |
| 906 | |
| 907 return TRUE; | |
| 908 } | |
| 909 | |
| 910 | |
| 911 /* | |
| 912 * MCU decoding for AC successive approximation refinement scan. | |
| 913 */ | |
| 914 | |
| 915 METHODDEF(boolean) | |
| 916 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 917 { | |
| 918 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 919 register int s, k, r; | |
| 920 unsigned int EOBRUN; | |
| 921 int Se; | |
| 922 JCOEF p1, m1; | |
| 923 const int * natural_order; | |
| 924 JBLOCKROW block; | |
| 925 JCOEFPTR thiscoef; | |
| 926 BITREAD_STATE_VARS; | |
| 927 d_derived_tbl * tbl; | |
| 928 int num_newnz; | |
| 929 int newnz_pos[DCTSIZE2]; | |
| 930 | |
| 931 /* Process restart marker if needed; may have to suspend */ | |
| 932 if (cinfo->restart_interval) { | |
| 933 if (entropy->restarts_to_go == 0) | |
| 934 if (! process_restart(cinfo)) | |
| 935 return FALSE; | |
| 936 } | |
| 937 | |
| 938 /* If we've run out of data, don't modify the MCU. | |
| 939 */ | |
| 940 if (! entropy->insufficient_data) { | |
| 941 | |
| 942 Se = cinfo->Se; | |
| 943 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |
| 944 m1 = -p1; /* -1 in the bit position being coded */ | |
| 945 natural_order = cinfo->natural_order; | |
| 946 | |
| 947 /* Load up working state */ | |
| 948 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); | |
| 949 EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | |
| 950 | |
| 951 /* There is always only one block per MCU */ | |
| 952 block = MCU_data[0]; | |
| 953 tbl = entropy->ac_derived_tbl; | |
| 954 | |
| 955 /* If we are forced to suspend, we must undo the assignments to any newly | |
| 956 * nonzero coefficients in the block, because otherwise we'd get confused | |
| 957 * next time about which coefficients were already nonzero. | |
| 958 * But we need not undo addition of bits to already-nonzero coefficients; | |
| 959 * instead, we can test the current bit to see if we already did it. | |
| 960 */ | |
| 961 num_newnz = 0; | |
| 962 | |
| 963 /* initialize coefficient loop counter to start of band */ | |
| 964 k = cinfo->Ss; | |
| 965 | |
| 966 if (EOBRUN == 0) { | |
| 967 do { | |
| 968 HUFF_DECODE(s, br_state, tbl, goto undoit, label3); | |
| 969 r = s >> 4; | |
| 970 s &= 15; | |
| 971 if (s) { | |
| 972 if (s != 1) /* size of new coef should always be 1 */ | |
| 973 WARNMS(cinfo, JWRN_HUFF_BAD_CODE); | |
| 974 CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
| 975 if (GET_BITS(1)) | |
| 976 s = p1; /* newly nonzero coef is positive */ | |
| 977 else | |
| 978 s = m1; /* newly nonzero coef is negative */ | |
| 979 } else { | |
| 980 if (r != 15) { | |
| 981 EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ | |
| 982 if (r) { | |
| 983 CHECK_BIT_BUFFER(br_state, r, goto undoit); | |
| 984 r = GET_BITS(r); | |
| 985 EOBRUN += r; | |
| 986 } | |
| 987 break; /* rest of block is handled by EOB logic */ | |
| 988 } | |
| 989 /* note s = 0 for processing ZRL */ | |
| 990 } | |
| 991 /* Advance over already-nonzero coefs and r still-zero coefs, | |
| 992 * appending correction bits to the nonzeroes. A correction bit is 1 | |
| 993 * if the absolute value of the coefficient must be increased. | |
| 994 */ | |
| 995 do { | |
| 996 thiscoef = *block + natural_order[k]; | |
| 997 if (*thiscoef) { | |
| 998 CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
| 999 if (GET_BITS(1)) { | |
| 1000 if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ | |
| 1001 if (*thiscoef >= 0) | |
| 1002 *thiscoef += p1; | |
| 1003 else | |
| 1004 *thiscoef += m1; | |
| 1005 } | |
| 1006 } | |
| 1007 } else { | |
| 1008 if (--r < 0) | |
| 1009 break; /* reached target zero coefficient */ | |
| 1010 } | |
| 1011 k++; | |
| 1012 } while (k <= Se); | |
| 1013 if (s) { | |
| 1014 int pos = natural_order[k]; | |
| 1015 /* Output newly nonzero coefficient */ | |
| 1016 (*block)[pos] = (JCOEF) s; | |
| 1017 /* Remember its position in case we have to suspend */ | |
| 1018 newnz_pos[num_newnz++] = pos; | |
| 1019 } | |
| 1020 k++; | |
| 1021 } while (k <= Se); | |
| 1022 } | |
| 1023 | |
| 1024 if (EOBRUN) { | |
| 1025 /* Scan any remaining coefficient positions after the end-of-band | |
| 1026 * (the last newly nonzero coefficient, if any). Append a correction | |
| 1027 * bit to each already-nonzero coefficient. A correction bit is 1 | |
| 1028 * if the absolute value of the coefficient must be increased. | |
| 1029 */ | |
| 1030 do { | |
| 1031 thiscoef = *block + natural_order[k]; | |
| 1032 if (*thiscoef) { | |
| 1033 CHECK_BIT_BUFFER(br_state, 1, goto undoit); | |
| 1034 if (GET_BITS(1)) { | |
| 1035 if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ | |
| 1036 if (*thiscoef >= 0) | |
| 1037 *thiscoef += p1; | |
| 1038 else | |
| 1039 *thiscoef += m1; | |
| 1040 } | |
| 1041 } | |
| 1042 } | |
| 1043 k++; | |
| 1044 } while (k <= Se); | |
| 1045 /* Count one block completed in EOB run */ | |
| 1046 EOBRUN--; | |
| 1047 } | |
| 1048 | |
| 1049 /* Completed MCU, so update state */ | |
| 1050 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); | |
| 1051 entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | |
| 1052 } | |
| 1053 | |
| 1054 /* Account for restart interval if using restarts */ | |
| 1055 if (cinfo->restart_interval) | |
| 1056 entropy->restarts_to_go--; | |
| 1057 | |
| 1058 return TRUE; | |
| 1059 | |
| 1060 undoit: | |
| 1061 /* Re-zero any output coefficients that we made newly nonzero */ | |
| 1062 while (num_newnz) | |
| 1063 (*block)[newnz_pos[--num_newnz]] = 0; | |
| 1064 | |
| 1065 return FALSE; | |
| 1066 } | |
| 1067 | |
| 1068 | |
| 1069 /* | |
| 1070 * Decode one MCU's worth of Huffman-compressed coefficients, | |
| 1071 * partial blocks. | |
| 1072 */ | |
| 1073 | |
| 1074 METHODDEF(boolean) | |
| 1075 decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 1076 { | |
| 1077 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 1078 const int * natural_order; | |
| 1079 int Se, blkn; | |
| 1080 BITREAD_STATE_VARS; | |
| 1081 savable_state state; | |
| 1082 | |
| 1083 /* Process restart marker if needed; may have to suspend */ | |
| 1084 if (cinfo->restart_interval) { | |
| 1085 if (entropy->restarts_to_go == 0) | |
| 1086 if (! process_restart(cinfo)) | |
| 1087 return FALSE; | |
| 1088 } | |
| 1089 | |
| 1090 /* If we've run out of data, just leave the MCU set to zeroes. | |
| 1091 * This way, we return uniform gray for the remainder of the segment. | |
| 1092 */ | |
| 1093 if (! entropy->insufficient_data) { | |
| 1094 | |
| 1095 natural_order = cinfo->natural_order; | |
| 1096 Se = cinfo->lim_Se; | |
| 1097 | |
| 1098 /* Load up working state */ | |
| 1099 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); | |
| 1100 ASSIGN_STATE(state, entropy->saved); | |
| 1101 | |
| 1102 /* Outer loop handles each block in the MCU */ | |
| 1103 | |
| 1104 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 1105 JBLOCKROW block = MCU_data[blkn]; | |
| 1106 d_derived_tbl * htbl; | |
| 1107 register int s, k, r; | |
| 1108 int coef_limit, ci; | |
| 1109 | |
| 1110 /* Decode a single block's worth of coefficients */ | |
| 1111 | |
| 1112 /* Section F.2.2.1: decode the DC coefficient difference */ | |
| 1113 htbl = entropy->dc_cur_tbls[blkn]; | |
| 1114 HUFF_DECODE(s, br_state, htbl, return FALSE, label1); | |
| 1115 | |
| 1116 htbl = entropy->ac_cur_tbls[blkn]; | |
| 1117 k = 1; | |
| 1118 coef_limit = entropy->coef_limit[blkn]; | |
| 1119 if (coef_limit) { | |
| 1120 /* Convert DC difference to actual value, update last_dc_val */ | |
| 1121 if (s) { | |
| 1122 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 1123 r = GET_BITS(s); | |
| 1124 s = HUFF_EXTEND(r, s); | |
| 1125 } | |
| 1126 ci = cinfo->MCU_membership[blkn]; | |
| 1127 s += state.last_dc_val[ci]; | |
| 1128 state.last_dc_val[ci] = s; | |
| 1129 /* Output the DC coefficient */ | |
| 1130 (*block)[0] = (JCOEF) s; | |
| 1131 | |
| 1132 /* Section F.2.2.2: decode the AC coefficients */ | |
| 1133 /* Since zeroes are skipped, output area must be cleared beforehand */ | |
| 1134 for (; k < coef_limit; k++) { | |
| 1135 HUFF_DECODE(s, br_state, htbl, return FALSE, label2); | |
| 1136 | |
| 1137 r = s >> 4; | |
| 1138 s &= 15; | |
| 1139 | |
| 1140 if (s) { | |
| 1141 k += r; | |
| 1142 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 1143 r = GET_BITS(s); | |
| 1144 s = HUFF_EXTEND(r, s); | |
| 1145 /* Output coefficient in natural (dezigzagged) order. | |
| 1146 * Note: the extra entries in natural_order[] will save us | |
| 1147 * if k > Se, which could happen if the data is corrupted. | |
| 1148 */ | |
| 1149 (*block)[natural_order[k]] = (JCOEF) s; | |
| 1150 } else { | |
| 1151 if (r != 15) | |
| 1152 goto EndOfBlock; | |
| 1153 k += 15; | |
| 1154 } | |
| 1155 } | |
| 1156 } else { | |
| 1157 if (s) { | |
| 1158 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 1159 DROP_BITS(s); | |
| 1160 } | |
| 1161 } | |
| 1162 | |
| 1163 /* Section F.2.2.2: decode the AC coefficients */ | |
| 1164 /* In this path we just discard the values */ | |
| 1165 for (; k <= Se; k++) { | |
| 1166 HUFF_DECODE(s, br_state, htbl, return FALSE, label3); | |
| 1167 | |
| 1168 r = s >> 4; | |
| 1169 s &= 15; | |
| 1170 | |
| 1171 if (s) { | |
| 1172 k += r; | |
| 1173 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 1174 DROP_BITS(s); | |
| 1175 } else { | |
| 1176 if (r != 15) | |
| 1177 break; | |
| 1178 k += 15; | |
| 1179 } | |
| 1180 } | |
| 1181 | |
| 1182 EndOfBlock: ; | |
| 1183 } | |
| 1184 | |
| 1185 /* Completed MCU, so update state */ | |
| 1186 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); | |
| 1187 ASSIGN_STATE(entropy->saved, state); | |
| 1188 } | |
| 1189 | |
| 1190 /* Account for restart interval if using restarts */ | |
| 1191 if (cinfo->restart_interval) | |
| 1192 entropy->restarts_to_go--; | |
| 1193 | |
| 1194 return TRUE; | |
| 1195 } | |
| 1196 | |
| 1197 | |
| 1198 /* | |
| 1199 * Decode one MCU's worth of Huffman-compressed coefficients, | |
| 1200 * full-size blocks. | |
| 1201 */ | |
| 1202 | |
| 1203 METHODDEF(boolean) | |
| 1204 decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 1205 { | |
| 1206 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 1207 int blkn; | |
| 1208 BITREAD_STATE_VARS; | |
| 1209 savable_state state; | |
| 1210 | |
| 1211 /* Process restart marker if needed; may have to suspend */ | |
| 1212 if (cinfo->restart_interval) { | |
| 1213 if (entropy->restarts_to_go == 0) | |
| 1214 if (! process_restart(cinfo)) | |
| 1215 return FALSE; | |
| 1216 } | |
| 1217 | |
| 1218 /* If we've run out of data, just leave the MCU set to zeroes. | |
| 1219 * This way, we return uniform gray for the remainder of the segment. | |
| 1220 */ | |
| 1221 if (! entropy->insufficient_data) { | |
| 1222 | |
| 1223 /* Load up working state */ | |
| 1224 BITREAD_LOAD_STATE(cinfo, entropy->bitstate); | |
| 1225 ASSIGN_STATE(state, entropy->saved); | |
| 1226 | |
| 1227 /* Outer loop handles each block in the MCU */ | |
| 1228 | |
| 1229 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 1230 JBLOCKROW block = MCU_data[blkn]; | |
| 1231 d_derived_tbl * htbl; | |
| 1232 register int s, k, r; | |
| 1233 int coef_limit, ci; | |
| 1234 | |
| 1235 /* Decode a single block's worth of coefficients */ | |
| 1236 | |
| 1237 /* Section F.2.2.1: decode the DC coefficient difference */ | |
| 1238 htbl = entropy->dc_cur_tbls[blkn]; | |
| 1239 HUFF_DECODE(s, br_state, htbl, return FALSE, label1); | |
| 1240 | |
| 1241 htbl = entropy->ac_cur_tbls[blkn]; | |
| 1242 k = 1; | |
| 1243 coef_limit = entropy->coef_limit[blkn]; | |
| 1244 if (coef_limit) { | |
| 1245 /* Convert DC difference to actual value, update last_dc_val */ | |
| 1246 if (s) { | |
| 1247 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 1248 r = GET_BITS(s); | |
| 1249 s = HUFF_EXTEND(r, s); | |
| 1250 } | |
| 1251 ci = cinfo->MCU_membership[blkn]; | |
| 1252 s += state.last_dc_val[ci]; | |
| 1253 state.last_dc_val[ci] = s; | |
| 1254 /* Output the DC coefficient */ | |
| 1255 (*block)[0] = (JCOEF) s; | |
| 1256 | |
| 1257 /* Section F.2.2.2: decode the AC coefficients */ | |
| 1258 /* Since zeroes are skipped, output area must be cleared beforehand */ | |
| 1259 for (; k < coef_limit; k++) { | |
| 1260 HUFF_DECODE(s, br_state, htbl, return FALSE, label2); | |
| 1261 | |
| 1262 r = s >> 4; | |
| 1263 s &= 15; | |
| 1264 | |
| 1265 if (s) { | |
| 1266 k += r; | |
| 1267 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 1268 r = GET_BITS(s); | |
| 1269 s = HUFF_EXTEND(r, s); | |
| 1270 /* Output coefficient in natural (dezigzagged) order. | |
| 1271 * Note: the extra entries in jpeg_natural_order[] will save us | |
| 1272 * if k >= DCTSIZE2, which could happen if the data is corrupted. | |
| 1273 */ | |
| 1274 (*block)[jpeg_natural_order[k]] = (JCOEF) s; | |
| 1275 } else { | |
| 1276 if (r != 15) | |
| 1277 goto EndOfBlock; | |
| 1278 k += 15; | |
| 1279 } | |
| 1280 } | |
| 1281 } else { | |
| 1282 if (s) { | |
| 1283 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 1284 DROP_BITS(s); | |
| 1285 } | |
| 1286 } | |
| 1287 | |
| 1288 /* Section F.2.2.2: decode the AC coefficients */ | |
| 1289 /* In this path we just discard the values */ | |
| 1290 for (; k < DCTSIZE2; k++) { | |
| 1291 HUFF_DECODE(s, br_state, htbl, return FALSE, label3); | |
| 1292 | |
| 1293 r = s >> 4; | |
| 1294 s &= 15; | |
| 1295 | |
| 1296 if (s) { | |
| 1297 k += r; | |
| 1298 CHECK_BIT_BUFFER(br_state, s, return FALSE); | |
| 1299 DROP_BITS(s); | |
| 1300 } else { | |
| 1301 if (r != 15) | |
| 1302 break; | |
| 1303 k += 15; | |
| 1304 } | |
| 1305 } | |
| 1306 | |
| 1307 EndOfBlock: ; | |
| 1308 } | |
| 1309 | |
| 1310 /* Completed MCU, so update state */ | |
| 1311 BITREAD_SAVE_STATE(cinfo, entropy->bitstate); | |
| 1312 ASSIGN_STATE(entropy->saved, state); | |
| 1313 } | |
| 1314 | |
| 1315 /* Account for restart interval if using restarts */ | |
| 1316 if (cinfo->restart_interval) | |
| 1317 entropy->restarts_to_go--; | |
| 1318 | |
| 1319 return TRUE; | |
| 1320 } | |
| 1321 | |
| 1322 | |
| 1323 /* | |
| 1324 * Initialize for a Huffman-compressed scan. | |
| 1325 */ | |
| 1326 | |
| 1327 METHODDEF(void) | |
| 1328 start_pass_huff_decoder (j_decompress_ptr cinfo) | |
| 1329 { | |
| 1330 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 1331 int ci, blkn, tbl, i; | |
| 1332 jpeg_component_info * compptr; | |
| 1333 | |
| 1334 if (cinfo->progressive_mode) { | |
| 1335 /* Validate progressive scan parameters */ | |
| 1336 if (cinfo->Ss == 0) { | |
| 1337 if (cinfo->Se != 0) | |
| 1338 goto bad; | |
| 1339 } else { | |
| 1340 /* need not check Ss/Se < 0 since they came from unsigned bytes */ | |
| 1341 if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) | |
| 1342 goto bad; | |
| 1343 /* AC scans may have only one component */ | |
| 1344 if (cinfo->comps_in_scan != 1) | |
| 1345 goto bad; | |
| 1346 } | |
| 1347 if (cinfo->Ah != 0) { | |
| 1348 /* Successive approximation refinement scan: must have Al = Ah-1. */ | |
| 1349 if (cinfo->Ah-1 != cinfo->Al) | |
| 1350 goto bad; | |
| 1351 } | |
| 1352 if (cinfo->Al > 13) { /* need not check for < 0 */ | |
| 1353 /* Arguably the maximum Al value should be less than 13 for 8-bit | |
| 1354 * precision, but the spec doesn't say so, and we try to be liberal | |
| 1355 * about what we accept. Note: large Al values could result in | |
| 1356 * out-of-range DC coefficients during early scans, leading to bizarre | |
| 1357 * displays due to overflows in the IDCT math. But we won't crash. | |
| 1358 */ | |
| 1359 bad: | |
| 1360 ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | |
| 1361 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | |
| 1362 } | |
| 1363 /* Update progression status, and verify that scan order is legal. | |
| 1364 * Note that inter-scan inconsistencies are treated as warnings | |
| 1365 * not fatal errors ... not clear if this is right way to behave. | |
| 1366 */ | |
| 1367 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 1368 int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; | |
| 1369 int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | |
| 1370 if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | |
| 1371 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | |
| 1372 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | |
| 1373 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | |
| 1374 if (cinfo->Ah != expected) | |
| 1375 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | |
| 1376 coef_bit_ptr[coefi] = cinfo->Al; | |
| 1377 } | |
| 1378 } | |
| 1379 | |
| 1380 /* Select MCU decoding routine */ | |
| 1381 if (cinfo->Ah == 0) { | |
| 1382 if (cinfo->Ss == 0) | |
| 1383 entropy->pub.decode_mcu = decode_mcu_DC_first; | |
| 1384 else | |
| 1385 entropy->pub.decode_mcu = decode_mcu_AC_first; | |
| 1386 } else { | |
| 1387 if (cinfo->Ss == 0) | |
| 1388 entropy->pub.decode_mcu = decode_mcu_DC_refine; | |
| 1389 else | |
| 1390 entropy->pub.decode_mcu = decode_mcu_AC_refine; | |
| 1391 } | |
| 1392 | |
| 1393 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 1394 compptr = cinfo->cur_comp_info[ci]; | |
| 1395 /* Make sure requested tables are present, and compute derived tables. | |
| 1396 * We may build same derived table more than once, but it's not expensive. | |
| 1397 */ | |
| 1398 if (cinfo->Ss == 0) { | |
| 1399 if (cinfo->Ah == 0) { /* DC refinement needs no table */ | |
| 1400 tbl = compptr->dc_tbl_no; | |
| 1401 jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, | |
| 1402 & entropy->derived_tbls[tbl]); | |
| 1403 } | |
| 1404 } else { | |
| 1405 tbl = compptr->ac_tbl_no; | |
| 1406 jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, | |
| 1407 & entropy->derived_tbls[tbl]); | |
| 1408 /* remember the single active table */ | |
| 1409 entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; | |
| 1410 } | |
| 1411 /* Initialize DC predictions to 0 */ | |
| 1412 entropy->saved.last_dc_val[ci] = 0; | |
| 1413 } | |
| 1414 | |
| 1415 /* Initialize private state variables */ | |
| 1416 entropy->saved.EOBRUN = 0; | |
| 1417 } else { | |
| 1418 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. | |
| 1419 * This ought to be an error condition, but we make it a warning because | |
| 1420 * there are some baseline files out there with all zeroes in these bytes. | |
| 1421 */ | |
| 1422 if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || | |
| 1423 ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) && | |
| 1424 cinfo->Se != cinfo->lim_Se)) | |
| 1425 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); | |
| 1426 | |
| 1427 /* Select MCU decoding routine */ | |
| 1428 /* We retain the hard-coded case for full-size blocks. | |
| 1429 * This is not necessary, but it appears that this version is slightly | |
| 1430 * more performant in the given implementation. | |
| 1431 * With an improved implementation we would prefer a single optimized | |
| 1432 * function. | |
| 1433 */ | |
| 1434 if (cinfo->lim_Se != DCTSIZE2-1) | |
| 1435 entropy->pub.decode_mcu = decode_mcu_sub; | |
| 1436 else | |
| 1437 entropy->pub.decode_mcu = decode_mcu; | |
| 1438 | |
| 1439 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 1440 compptr = cinfo->cur_comp_info[ci]; | |
| 1441 /* Compute derived values for Huffman tables */ | |
| 1442 /* We may do this more than once for a table, but it's not expensive */ | |
| 1443 tbl = compptr->dc_tbl_no; | |
| 1444 jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, | |
| 1445 & entropy->dc_derived_tbls[tbl]); | |
| 1446 if (cinfo->lim_Se) { /* AC needs no table when not present */ | |
| 1447 tbl = compptr->ac_tbl_no; | |
| 1448 jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, | |
| 1449 & entropy->ac_derived_tbls[tbl]); | |
| 1450 } | |
| 1451 /* Initialize DC predictions to 0 */ | |
| 1452 entropy->saved.last_dc_val[ci] = 0; | |
| 1453 } | |
| 1454 | |
| 1455 /* Precalculate decoding info for each block in an MCU of this scan */ | |
| 1456 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 1457 ci = cinfo->MCU_membership[blkn]; | |
| 1458 compptr = cinfo->cur_comp_info[ci]; | |
| 1459 /* Precalculate which table to use for each block */ | |
| 1460 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; | |
| 1461 entropy->ac_cur_tbls[blkn] = /* AC needs no table when not present */ | |
| 1462 cinfo->lim_Se ? entropy->ac_derived_tbls[compptr->ac_tbl_no] : NULL; | |
| 1463 /* Decide whether we really care about the coefficient values */ | |
| 1464 if (compptr->component_needed) { | |
| 1465 ci = compptr->DCT_v_scaled_size; | |
| 1466 i = compptr->DCT_h_scaled_size; | |
| 1467 switch (cinfo->lim_Se) { | |
| 1468 case (1*1-1): | |
| 1469 entropy->coef_limit[blkn] = 1; | |
| 1470 break; | |
| 1471 case (2*2-1): | |
| 1472 if (ci <= 0 || ci > 2) ci = 2; | |
| 1473 if (i <= 0 || i > 2) i = 2; | |
| 1474 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1]; | |
| 1475 break; | |
| 1476 case (3*3-1): | |
| 1477 if (ci <= 0 || ci > 3) ci = 3; | |
| 1478 if (i <= 0 || i > 3) i = 3; | |
| 1479 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1]; | |
| 1480 break; | |
| 1481 case (4*4-1): | |
| 1482 if (ci <= 0 || ci > 4) ci = 4; | |
| 1483 if (i <= 0 || i > 4) i = 4; | |
| 1484 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1]; | |
| 1485 break; | |
| 1486 case (5*5-1): | |
| 1487 if (ci <= 0 || ci > 5) ci = 5; | |
| 1488 if (i <= 0 || i > 5) i = 5; | |
| 1489 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1]; | |
| 1490 break; | |
| 1491 case (6*6-1): | |
| 1492 if (ci <= 0 || ci > 6) ci = 6; | |
| 1493 if (i <= 0 || i > 6) i = 6; | |
| 1494 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1]; | |
| 1495 break; | |
| 1496 case (7*7-1): | |
| 1497 if (ci <= 0 || ci > 7) ci = 7; | |
| 1498 if (i <= 0 || i > 7) i = 7; | |
| 1499 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1]; | |
| 1500 break; | |
| 1501 default: | |
| 1502 if (ci <= 0 || ci > 8) ci = 8; | |
| 1503 if (i <= 0 || i > 8) i = 8; | |
| 1504 entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1]; | |
| 1505 } | |
| 1506 } else { | |
| 1507 entropy->coef_limit[blkn] = 0; | |
| 1508 } | |
| 1509 } | |
| 1510 } | |
| 1511 | |
| 1512 /* Initialize bitread state variables */ | |
| 1513 entropy->bitstate.bits_left = 0; | |
| 1514 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ | |
| 1515 entropy->insufficient_data = FALSE; | |
| 1516 | |
| 1517 /* Initialize restart counter */ | |
| 1518 entropy->restarts_to_go = cinfo->restart_interval; | |
| 1519 } | |
| 1520 | |
| 1521 | |
| 1522 /* | |
| 1523 * Module initialization routine for Huffman entropy decoding. | |
| 1524 */ | |
| 1525 | |
| 1526 GLOBAL(void) | |
| 1527 jinit_huff_decoder (j_decompress_ptr cinfo) | |
| 1528 { | |
| 1529 huff_entropy_ptr entropy; | |
| 1530 int i; | |
| 1531 | |
| 1532 entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) | |
| 1533 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_decoder)); | |
| 1534 cinfo->entropy = &entropy->pub; | |
| 1535 entropy->pub.start_pass = start_pass_huff_decoder; | |
| 1536 entropy->pub.finish_pass = finish_pass_huff; | |
| 1537 | |
| 1538 if (cinfo->progressive_mode) { | |
| 1539 /* Create progression status table */ | |
| 1540 int *coef_bit_ptr, ci; | |
| 1541 cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) | |
| 1542 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 1543 cinfo->num_components * DCTSIZE2 * SIZEOF(int)); | |
| 1544 coef_bit_ptr = & cinfo->coef_bits[0][0]; | |
| 1545 for (ci = 0; ci < cinfo->num_components; ci++) | |
| 1546 for (i = 0; i < DCTSIZE2; i++) | |
| 1547 *coef_bit_ptr++ = -1; | |
| 1548 | |
| 1549 /* Mark derived tables unallocated */ | |
| 1550 for (i = 0; i < NUM_HUFF_TBLS; i++) { | |
| 1551 entropy->derived_tbls[i] = NULL; | |
| 1552 } | |
| 1553 } else { | |
| 1554 /* Mark derived tables unallocated */ | |
| 1555 for (i = 0; i < NUM_HUFF_TBLS; i++) { | |
| 1556 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; | |
| 1557 } | |
| 1558 } | |
| 1559 } |
