Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jdct.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jdct.h | |
| 3 * | |
| 4 * Copyright (C) 1994-1996, Thomas G. Lane. | |
| 5 * Modified 2002-2023 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This include file contains common declarations for the forward and | |
| 10 * inverse DCT modules. These declarations are private to the DCT managers | |
| 11 * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. | |
| 12 * The individual DCT algorithms are kept in separate files to ease | |
| 13 * machine-dependent tuning (e.g., assembly coding). | |
| 14 */ | |
| 15 | |
| 16 | |
| 17 /* | |
| 18 * A forward DCT routine is given a pointer to an input sample array and | |
| 19 * a pointer to a work area of type DCTELEM[]; the DCT is to be performed | |
| 20 * in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32 | |
| 21 * for 12-bit samples. (NOTE: Floating-point DCT implementations use an | |
| 22 * array of type FAST_FLOAT, instead.) | |
| 23 * The input data is to be fetched from the sample array starting at a | |
| 24 * specified column. (Any row offset needed will be applied to the array | |
| 25 * pointer before it is passed to the FDCT code.) | |
| 26 * Note that the number of samples fetched by the FDCT routine is | |
| 27 * DCT_h_scaled_size * DCT_v_scaled_size. | |
| 28 * The DCT outputs are returned scaled up by a factor of 8; they therefore | |
| 29 * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This | |
| 30 * convention improves accuracy in integer implementations and saves some | |
| 31 * work in floating-point ones. | |
| 32 * Quantization of the output coefficients is done by jcdctmgr.c. | |
| 33 */ | |
| 34 | |
| 35 #if BITS_IN_JSAMPLE == 8 | |
| 36 typedef int DCTELEM; /* 16 or 32 bits is fine */ | |
| 37 #else | |
| 38 typedef INT32 DCTELEM; /* must have 32 bits */ | |
| 39 #endif | |
| 40 | |
| 41 typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data, | |
| 42 JSAMPARRAY sample_data, | |
| 43 JDIMENSION start_col)); | |
| 44 typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data, | |
| 45 JSAMPARRAY sample_data, | |
| 46 JDIMENSION start_col)); | |
| 47 | |
| 48 | |
| 49 /* | |
| 50 * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer | |
| 51 * to an output sample array. The routine must dequantize the input data as | |
| 52 * well as perform the IDCT; for dequantization, it uses the multiplier table | |
| 53 * pointed to by compptr->dct_table. The output data is to be placed into the | |
| 54 * sample array starting at a specified column. (Any row offset needed will | |
| 55 * be applied to the array pointer before it is passed to the IDCT code.) | |
| 56 * Note that the number of samples emitted by the IDCT routine is | |
| 57 * DCT_h_scaled_size * DCT_v_scaled_size. | |
| 58 */ | |
| 59 | |
| 60 /* typedef inverse_DCT_method_ptr is declared in jpegint.h */ | |
| 61 | |
| 62 /* | |
| 63 * Each IDCT routine has its own ideas about the best dct_table element type. | |
| 64 */ | |
| 65 | |
| 66 typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ | |
| 67 #if BITS_IN_JSAMPLE == 8 | |
| 68 typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ | |
| 69 #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ | |
| 70 #else | |
| 71 typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ | |
| 72 #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ | |
| 73 #endif | |
| 74 typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ | |
| 75 | |
| 76 | |
| 77 /* | |
| 78 * Each IDCT routine is responsible for range-limiting its results and | |
| 79 * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could | |
| 80 * be quite far out of range if the input data is corrupt, so a bulletproof | |
| 81 * range-limiting step is required. We use a mask-and-table-lookup method | |
| 82 * to do the combined operations quickly, assuming that RANGE_CENTER | |
| 83 * (defined in jpegint.h) is a power of 2. See the comments with | |
| 84 * prepare_range_limit_table (in jdmaster.c) for more info. | |
| 85 */ | |
| 86 | |
| 87 #define RANGE_MASK (RANGE_CENTER * 2 - 1) | |
| 88 #define RANGE_SUBSET (RANGE_CENTER - CENTERJSAMPLE) | |
| 89 | |
| 90 #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit - RANGE_SUBSET) | |
| 91 | |
| 92 | |
| 93 /* Short forms of external names for systems with brain-damaged linkers. */ | |
| 94 | |
| 95 #ifdef NEED_SHORT_EXTERNAL_NAMES | |
| 96 #define jpeg_fdct_islow jFDislow | |
| 97 #define jpeg_fdct_ifast jFDifast | |
| 98 #define jpeg_fdct_float jFDfloat | |
| 99 #define jpeg_fdct_7x7 jFD7x7 | |
| 100 #define jpeg_fdct_6x6 jFD6x6 | |
| 101 #define jpeg_fdct_5x5 jFD5x5 | |
| 102 #define jpeg_fdct_4x4 jFD4x4 | |
| 103 #define jpeg_fdct_3x3 jFD3x3 | |
| 104 #define jpeg_fdct_2x2 jFD2x2 | |
| 105 #define jpeg_fdct_1x1 jFD1x1 | |
| 106 #define jpeg_fdct_9x9 jFD9x9 | |
| 107 #define jpeg_fdct_10x10 jFD10x10 | |
| 108 #define jpeg_fdct_11x11 jFD11x11 | |
| 109 #define jpeg_fdct_12x12 jFD12x12 | |
| 110 #define jpeg_fdct_13x13 jFD13x13 | |
| 111 #define jpeg_fdct_14x14 jFD14x14 | |
| 112 #define jpeg_fdct_15x15 jFD15x15 | |
| 113 #define jpeg_fdct_16x16 jFD16x16 | |
| 114 #define jpeg_fdct_16x8 jFD16x8 | |
| 115 #define jpeg_fdct_14x7 jFD14x7 | |
| 116 #define jpeg_fdct_12x6 jFD12x6 | |
| 117 #define jpeg_fdct_10x5 jFD10x5 | |
| 118 #define jpeg_fdct_8x4 jFD8x4 | |
| 119 #define jpeg_fdct_6x3 jFD6x3 | |
| 120 #define jpeg_fdct_4x2 jFD4x2 | |
| 121 #define jpeg_fdct_2x1 jFD2x1 | |
| 122 #define jpeg_fdct_8x16 jFD8x16 | |
| 123 #define jpeg_fdct_7x14 jFD7x14 | |
| 124 #define jpeg_fdct_6x12 jFD6x12 | |
| 125 #define jpeg_fdct_5x10 jFD5x10 | |
| 126 #define jpeg_fdct_4x8 jFD4x8 | |
| 127 #define jpeg_fdct_3x6 jFD3x6 | |
| 128 #define jpeg_fdct_2x4 jFD2x4 | |
| 129 #define jpeg_fdct_1x2 jFD1x2 | |
| 130 #define jpeg_idct_islow jRDislow | |
| 131 #define jpeg_idct_ifast jRDifast | |
| 132 #define jpeg_idct_float jRDfloat | |
| 133 #define jpeg_idct_7x7 jRD7x7 | |
| 134 #define jpeg_idct_6x6 jRD6x6 | |
| 135 #define jpeg_idct_5x5 jRD5x5 | |
| 136 #define jpeg_idct_4x4 jRD4x4 | |
| 137 #define jpeg_idct_3x3 jRD3x3 | |
| 138 #define jpeg_idct_2x2 jRD2x2 | |
| 139 #define jpeg_idct_1x1 jRD1x1 | |
| 140 #define jpeg_idct_9x9 jRD9x9 | |
| 141 #define jpeg_idct_10x10 jRD10x10 | |
| 142 #define jpeg_idct_11x11 jRD11x11 | |
| 143 #define jpeg_idct_12x12 jRD12x12 | |
| 144 #define jpeg_idct_13x13 jRD13x13 | |
| 145 #define jpeg_idct_14x14 jRD14x14 | |
| 146 #define jpeg_idct_15x15 jRD15x15 | |
| 147 #define jpeg_idct_16x16 jRD16x16 | |
| 148 #define jpeg_idct_16x8 jRD16x8 | |
| 149 #define jpeg_idct_14x7 jRD14x7 | |
| 150 #define jpeg_idct_12x6 jRD12x6 | |
| 151 #define jpeg_idct_10x5 jRD10x5 | |
| 152 #define jpeg_idct_8x4 jRD8x4 | |
| 153 #define jpeg_idct_6x3 jRD6x3 | |
| 154 #define jpeg_idct_4x2 jRD4x2 | |
| 155 #define jpeg_idct_2x1 jRD2x1 | |
| 156 #define jpeg_idct_8x16 jRD8x16 | |
| 157 #define jpeg_idct_7x14 jRD7x14 | |
| 158 #define jpeg_idct_6x12 jRD6x12 | |
| 159 #define jpeg_idct_5x10 jRD5x10 | |
| 160 #define jpeg_idct_4x8 jRD4x8 | |
| 161 #define jpeg_idct_3x6 jRD3x6 | |
| 162 #define jpeg_idct_2x4 jRD2x4 | |
| 163 #define jpeg_idct_1x2 jRD1x2 | |
| 164 #endif /* NEED_SHORT_EXTERNAL_NAMES */ | |
| 165 | |
| 166 /* Extern declarations for the forward and inverse DCT routines. */ | |
| 167 | |
| 168 EXTERN(void) jpeg_fdct_islow | |
| 169 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 170 EXTERN(void) jpeg_fdct_ifast | |
| 171 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 172 EXTERN(void) jpeg_fdct_float | |
| 173 JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 174 EXTERN(void) jpeg_fdct_7x7 | |
| 175 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 176 EXTERN(void) jpeg_fdct_6x6 | |
| 177 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 178 EXTERN(void) jpeg_fdct_5x5 | |
| 179 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 180 EXTERN(void) jpeg_fdct_4x4 | |
| 181 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 182 EXTERN(void) jpeg_fdct_3x3 | |
| 183 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 184 EXTERN(void) jpeg_fdct_2x2 | |
| 185 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 186 EXTERN(void) jpeg_fdct_1x1 | |
| 187 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 188 EXTERN(void) jpeg_fdct_9x9 | |
| 189 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 190 EXTERN(void) jpeg_fdct_10x10 | |
| 191 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 192 EXTERN(void) jpeg_fdct_11x11 | |
| 193 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 194 EXTERN(void) jpeg_fdct_12x12 | |
| 195 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 196 EXTERN(void) jpeg_fdct_13x13 | |
| 197 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 198 EXTERN(void) jpeg_fdct_14x14 | |
| 199 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 200 EXTERN(void) jpeg_fdct_15x15 | |
| 201 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 202 EXTERN(void) jpeg_fdct_16x16 | |
| 203 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 204 EXTERN(void) jpeg_fdct_16x8 | |
| 205 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 206 EXTERN(void) jpeg_fdct_14x7 | |
| 207 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 208 EXTERN(void) jpeg_fdct_12x6 | |
| 209 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 210 EXTERN(void) jpeg_fdct_10x5 | |
| 211 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 212 EXTERN(void) jpeg_fdct_8x4 | |
| 213 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 214 EXTERN(void) jpeg_fdct_6x3 | |
| 215 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 216 EXTERN(void) jpeg_fdct_4x2 | |
| 217 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 218 EXTERN(void) jpeg_fdct_2x1 | |
| 219 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 220 EXTERN(void) jpeg_fdct_8x16 | |
| 221 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 222 EXTERN(void) jpeg_fdct_7x14 | |
| 223 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 224 EXTERN(void) jpeg_fdct_6x12 | |
| 225 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 226 EXTERN(void) jpeg_fdct_5x10 | |
| 227 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 228 EXTERN(void) jpeg_fdct_4x8 | |
| 229 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 230 EXTERN(void) jpeg_fdct_3x6 | |
| 231 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 232 EXTERN(void) jpeg_fdct_2x4 | |
| 233 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 234 EXTERN(void) jpeg_fdct_1x2 | |
| 235 JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |
| 236 | |
| 237 EXTERN(void) jpeg_idct_islow | |
| 238 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 239 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 240 EXTERN(void) jpeg_idct_ifast | |
| 241 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 242 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 243 EXTERN(void) jpeg_idct_float | |
| 244 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 245 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 246 EXTERN(void) jpeg_idct_7x7 | |
| 247 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 248 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 249 EXTERN(void) jpeg_idct_6x6 | |
| 250 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 251 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 252 EXTERN(void) jpeg_idct_5x5 | |
| 253 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 254 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 255 EXTERN(void) jpeg_idct_4x4 | |
| 256 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 257 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 258 EXTERN(void) jpeg_idct_3x3 | |
| 259 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 260 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 261 EXTERN(void) jpeg_idct_2x2 | |
| 262 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 263 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 264 EXTERN(void) jpeg_idct_1x1 | |
| 265 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 266 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 267 EXTERN(void) jpeg_idct_9x9 | |
| 268 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 269 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 270 EXTERN(void) jpeg_idct_10x10 | |
| 271 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 272 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 273 EXTERN(void) jpeg_idct_11x11 | |
| 274 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 275 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 276 EXTERN(void) jpeg_idct_12x12 | |
| 277 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 278 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 279 EXTERN(void) jpeg_idct_13x13 | |
| 280 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 281 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 282 EXTERN(void) jpeg_idct_14x14 | |
| 283 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 284 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 285 EXTERN(void) jpeg_idct_15x15 | |
| 286 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 287 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 288 EXTERN(void) jpeg_idct_16x16 | |
| 289 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 290 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 291 EXTERN(void) jpeg_idct_16x8 | |
| 292 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 293 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 294 EXTERN(void) jpeg_idct_14x7 | |
| 295 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 296 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 297 EXTERN(void) jpeg_idct_12x6 | |
| 298 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 299 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 300 EXTERN(void) jpeg_idct_10x5 | |
| 301 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 302 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 303 EXTERN(void) jpeg_idct_8x4 | |
| 304 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 305 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 306 EXTERN(void) jpeg_idct_6x3 | |
| 307 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 308 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 309 EXTERN(void) jpeg_idct_4x2 | |
| 310 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 311 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 312 EXTERN(void) jpeg_idct_2x1 | |
| 313 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 314 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 315 EXTERN(void) jpeg_idct_8x16 | |
| 316 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 317 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 318 EXTERN(void) jpeg_idct_7x14 | |
| 319 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 320 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 321 EXTERN(void) jpeg_idct_6x12 | |
| 322 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 323 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 324 EXTERN(void) jpeg_idct_5x10 | |
| 325 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 326 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 327 EXTERN(void) jpeg_idct_4x8 | |
| 328 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 329 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 330 EXTERN(void) jpeg_idct_3x6 | |
| 331 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 332 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 333 EXTERN(void) jpeg_idct_2x4 | |
| 334 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 335 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 336 EXTERN(void) jpeg_idct_1x2 | |
| 337 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
| 338 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |
| 339 | |
| 340 | |
| 341 /* | |
| 342 * Macros for handling fixed-point arithmetic; these are used by many | |
| 343 * but not all of the DCT/IDCT modules. | |
| 344 * | |
| 345 * All values are expected to be of type INT32. | |
| 346 * Fractional constants are scaled left by CONST_BITS bits. | |
| 347 * CONST_BITS is defined within each module using these macros, | |
| 348 * and may differ from one module to the next. | |
| 349 */ | |
| 350 | |
| 351 #define ONE ((INT32) 1) | |
| 352 #define CONST_SCALE (ONE << CONST_BITS) | |
| 353 | |
| 354 /* Convert a positive real constant to an integer scaled by CONST_SCALE. | |
| 355 * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, | |
| 356 * thus causing a lot of useless floating-point operations at run time. | |
| 357 */ | |
| 358 | |
| 359 #define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) | |
| 360 | |
| 361 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |
| 362 * This macro is used only when the two inputs will actually be no more than | |
| 363 * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a | |
| 364 * full 32x32 multiply. This provides a useful speedup on many machines. | |
| 365 * Unfortunately there is no way to specify a 16x16->32 multiply portably | |
| 366 * in C, but some C compilers will do the right thing if you provide the | |
| 367 * correct combination of casts. | |
| 368 */ | |
| 369 | |
| 370 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |
| 371 #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) | |
| 372 #endif | |
| 373 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ | |
| 374 #define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) | |
| 375 #endif | |
| 376 | |
| 377 #ifndef MULTIPLY16C16 /* default definition */ | |
| 378 #define MULTIPLY16C16(var,const) ((var) * (const)) | |
| 379 #endif | |
| 380 | |
| 381 /* Same except both inputs are variables. */ | |
| 382 | |
| 383 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |
| 384 #define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) | |
| 385 #endif | |
| 386 | |
| 387 #ifndef MULTIPLY16V16 /* default definition */ | |
| 388 #define MULTIPLY16V16(var1,var2) ((var1) * (var2)) | |
| 389 #endif | |
| 390 | |
| 391 /* Like RIGHT_SHIFT, but applies to a DCTELEM. | |
| 392 * We assume that int right shift is unsigned if INT32 right shift is. | |
| 393 */ | |
| 394 | |
| 395 #ifdef RIGHT_SHIFT_IS_UNSIGNED | |
| 396 #define ISHIFT_TEMPS DCTELEM ishift_temp; | |
| 397 #if BITS_IN_JSAMPLE == 8 | |
| 398 #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ | |
| 399 #else | |
| 400 #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ | |
| 401 #endif | |
| 402 #define IRIGHT_SHIFT(x,shft) \ | |
| 403 ((ishift_temp = (x)) < 0 ? \ | |
| 404 (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ | |
| 405 (ishift_temp >> (shft))) | |
| 406 #else | |
| 407 #define ISHIFT_TEMPS | |
| 408 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) | |
| 409 #endif |
