Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jdarith.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jdarith.c | |
| 3 * | |
| 4 * Developed 1997-2020 by Guido Vollbeding. | |
| 5 * This file is part of the Independent JPEG Group's software. | |
| 6 * For conditions of distribution and use, see the accompanying README file. | |
| 7 * | |
| 8 * This file contains portable arithmetic entropy decoding routines for JPEG | |
| 9 * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). | |
| 10 * | |
| 11 * Both sequential and progressive modes are supported in this single module. | |
| 12 * | |
| 13 * Suspension is not currently supported in this module. | |
| 14 */ | |
| 15 | |
| 16 #define JPEG_INTERNALS | |
| 17 #include "jinclude.h" | |
| 18 #include "jpeglib.h" | |
| 19 | |
| 20 | |
| 21 /* Expanded entropy decoder object for arithmetic decoding. */ | |
| 22 | |
| 23 typedef struct { | |
| 24 struct jpeg_entropy_decoder pub; /* public fields */ | |
| 25 | |
| 26 INT32 c; /* C register, base of coding interval + input bit buffer */ | |
| 27 INT32 a; /* A register, normalized size of coding interval */ | |
| 28 int ct; /* bit shift counter, # of bits left in bit buffer part of C */ | |
| 29 /* init: ct = -16 */ | |
| 30 /* run: ct = 0..7 */ | |
| 31 /* error: ct = -1 */ | |
| 32 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |
| 33 int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ | |
| 34 | |
| 35 unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |
| 36 | |
| 37 /* Pointers to statistics areas (these workspaces have image lifespan) */ | |
| 38 unsigned char * dc_stats[NUM_ARITH_TBLS]; | |
| 39 unsigned char * ac_stats[NUM_ARITH_TBLS]; | |
| 40 | |
| 41 /* Statistics bin for coding with fixed probability 0.5 */ | |
| 42 unsigned char fixed_bin[4]; | |
| 43 } arith_entropy_decoder; | |
| 44 | |
| 45 typedef arith_entropy_decoder * arith_entropy_ptr; | |
| 46 | |
| 47 /* The following two definitions specify the allocation chunk size | |
| 48 * for the statistics area. | |
| 49 * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least | |
| 50 * 49 statistics bins for DC, and 245 statistics bins for AC coding. | |
| 51 * | |
| 52 * We use a compact representation with 1 byte per statistics bin, | |
| 53 * thus the numbers directly represent byte sizes. | |
| 54 * This 1 byte per statistics bin contains the meaning of the MPS | |
| 55 * (more probable symbol) in the highest bit (mask 0x80), and the | |
| 56 * index into the probability estimation state machine table | |
| 57 * in the lower bits (mask 0x7F). | |
| 58 */ | |
| 59 | |
| 60 #define DC_STAT_BINS 64 | |
| 61 #define AC_STAT_BINS 256 | |
| 62 | |
| 63 | |
| 64 LOCAL(int) | |
| 65 get_byte (j_decompress_ptr cinfo) | |
| 66 /* Read next input byte; we do not support suspension in this module. */ | |
| 67 { | |
| 68 struct jpeg_source_mgr * src = cinfo->src; | |
| 69 | |
| 70 if (src->bytes_in_buffer == 0) | |
| 71 if (! (*src->fill_input_buffer) (cinfo)) | |
| 72 ERREXIT(cinfo, JERR_CANT_SUSPEND); | |
| 73 src->bytes_in_buffer--; | |
| 74 return GETJOCTET(*src->next_input_byte++); | |
| 75 } | |
| 76 | |
| 77 | |
| 78 /* | |
| 79 * The core arithmetic decoding routine (common in JPEG and JBIG). | |
| 80 * This needs to go as fast as possible. | |
| 81 * Machine-dependent optimization facilities | |
| 82 * are not utilized in this portable implementation. | |
| 83 * However, this code should be fairly efficient and | |
| 84 * may be a good base for further optimizations anyway. | |
| 85 * | |
| 86 * Return value is 0 or 1 (binary decision). | |
| 87 * | |
| 88 * Note: I've changed the handling of the code base & bit | |
| 89 * buffer register C compared to other implementations | |
| 90 * based on the standards layout & procedures. | |
| 91 * While it also contains both the actual base of the | |
| 92 * coding interval (16 bits) and the next-bits buffer, | |
| 93 * the cut-point between these two parts is floating | |
| 94 * (instead of fixed) with the bit shift counter CT. | |
| 95 * Thus, we also need only one (variable instead of | |
| 96 * fixed size) shift for the LPS/MPS decision, and | |
| 97 * we can do away with any renormalization update | |
| 98 * of C (except for new data insertion, of course). | |
| 99 * | |
| 100 * I've also introduced a new scheme for accessing | |
| 101 * the probability estimation state machine table, | |
| 102 * derived from Markus Kuhn's JBIG implementation. | |
| 103 */ | |
| 104 | |
| 105 LOCAL(int) | |
| 106 arith_decode (j_decompress_ptr cinfo, unsigned char *st) | |
| 107 { | |
| 108 register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; | |
| 109 register unsigned char nl, nm; | |
| 110 register INT32 qe, temp; | |
| 111 register int sv, data; | |
| 112 | |
| 113 /* Renormalization & data input per section D.2.6 */ | |
| 114 while (e->a < 0x8000L) { | |
| 115 if (--e->ct < 0) { | |
| 116 /* Need to fetch next data byte */ | |
| 117 if (cinfo->unread_marker) | |
| 118 data = 0; /* stuff zero data */ | |
| 119 else { | |
| 120 data = get_byte(cinfo); /* read next input byte */ | |
| 121 if (data == 0xFF) { /* zero stuff or marker code */ | |
| 122 do data = get_byte(cinfo); | |
| 123 while (data == 0xFF); /* swallow extra 0xFF bytes */ | |
| 124 if (data == 0) | |
| 125 data = 0xFF; /* discard stuffed zero byte */ | |
| 126 else { | |
| 127 /* Note: Different from the Huffman decoder, hitting | |
| 128 * a marker while processing the compressed data | |
| 129 * segment is legal in arithmetic coding. | |
| 130 * The convention is to supply zero data | |
| 131 * then until decoding is complete. | |
| 132 */ | |
| 133 cinfo->unread_marker = data; | |
| 134 data = 0; | |
| 135 } | |
| 136 } | |
| 137 } | |
| 138 e->c = (e->c << 8) | data; /* insert data into C register */ | |
| 139 if ((e->ct += 8) < 0) /* update bit shift counter */ | |
| 140 /* Need more initial bytes */ | |
| 141 if (++e->ct == 0) | |
| 142 /* Got 2 initial bytes -> re-init A and exit loop */ | |
| 143 e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ | |
| 144 } | |
| 145 e->a <<= 1; | |
| 146 } | |
| 147 | |
| 148 /* Fetch values from our compact representation of Table D.3(D.2): | |
| 149 * Qe values and probability estimation state machine | |
| 150 */ | |
| 151 sv = *st; | |
| 152 qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ | |
| 153 nl = (unsigned char)(qe & 0xFF); qe >>= 8; /* Next_Index_LPS + Switch_MPS */ | |
| 154 nm = (unsigned char)(qe & 0xFF); qe >>= 8; /* Next_Index_MPS */ | |
| 155 | |
| 156 /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ | |
| 157 temp = e->a - qe; | |
| 158 e->a = temp; | |
| 159 temp <<= e->ct; | |
| 160 if (e->c >= temp) { | |
| 161 e->c -= temp; | |
| 162 /* Conditional LPS (less probable symbol) exchange */ | |
| 163 if (e->a < qe) { | |
| 164 e->a = qe; | |
| 165 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ | |
| 166 } else { | |
| 167 e->a = qe; | |
| 168 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ | |
| 169 sv ^= 0x80; /* Exchange LPS/MPS */ | |
| 170 } | |
| 171 } else if (e->a < 0x8000L) { | |
| 172 /* Conditional MPS (more probable symbol) exchange */ | |
| 173 if (e->a < qe) { | |
| 174 *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ | |
| 175 sv ^= 0x80; /* Exchange LPS/MPS */ | |
| 176 } else { | |
| 177 *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ | |
| 178 } | |
| 179 } | |
| 180 | |
| 181 return sv >> 7; | |
| 182 } | |
| 183 | |
| 184 | |
| 185 /* | |
| 186 * Check for a restart marker & resynchronize decoder. | |
| 187 */ | |
| 188 | |
| 189 LOCAL(void) | |
| 190 process_restart (j_decompress_ptr cinfo) | |
| 191 { | |
| 192 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |
| 193 int ci; | |
| 194 jpeg_component_info * compptr; | |
| 195 | |
| 196 /* Advance past the RSTn marker */ | |
| 197 if (! (*cinfo->marker->read_restart_marker) (cinfo)) | |
| 198 ERREXIT(cinfo, JERR_CANT_SUSPEND); | |
| 199 | |
| 200 /* Re-initialize statistics areas */ | |
| 201 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 202 compptr = cinfo->cur_comp_info[ci]; | |
| 203 if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | |
| 204 MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); | |
| 205 /* Reset DC predictions to 0 */ | |
| 206 entropy->last_dc_val[ci] = 0; | |
| 207 entropy->dc_context[ci] = 0; | |
| 208 } | |
| 209 if ((! cinfo->progressive_mode && cinfo->lim_Se) || | |
| 210 (cinfo->progressive_mode && cinfo->Ss)) { | |
| 211 MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); | |
| 212 } | |
| 213 } | |
| 214 | |
| 215 /* Reset arithmetic decoding variables */ | |
| 216 entropy->c = 0; | |
| 217 entropy->a = 0; | |
| 218 entropy->ct = -16; /* force reading 2 initial bytes to fill C */ | |
| 219 | |
| 220 /* Reset restart counter */ | |
| 221 entropy->restarts_to_go = cinfo->restart_interval; | |
| 222 } | |
| 223 | |
| 224 | |
| 225 /* | |
| 226 * Arithmetic MCU decoding. | |
| 227 * Each of these routines decodes and returns one MCU's worth of | |
| 228 * arithmetic-compressed coefficients. | |
| 229 * The coefficients are reordered from zigzag order into natural array order, | |
| 230 * but are not dequantized. | |
| 231 * | |
| 232 * The i'th block of the MCU is stored into the block pointed to by | |
| 233 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | |
| 234 */ | |
| 235 | |
| 236 /* | |
| 237 * MCU decoding for DC initial scan (either spectral selection, | |
| 238 * or first pass of successive approximation). | |
| 239 */ | |
| 240 | |
| 241 METHODDEF(boolean) | |
| 242 decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 243 { | |
| 244 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |
| 245 JBLOCKROW block; | |
| 246 unsigned char *st; | |
| 247 int blkn, ci, tbl, sign; | |
| 248 int v, m; | |
| 249 | |
| 250 /* Process restart marker if needed */ | |
| 251 if (cinfo->restart_interval) { | |
| 252 if (entropy->restarts_to_go == 0) | |
| 253 process_restart(cinfo); | |
| 254 entropy->restarts_to_go--; | |
| 255 } | |
| 256 | |
| 257 if (entropy->ct == -1) return TRUE; /* if error do nothing */ | |
| 258 | |
| 259 /* Outer loop handles each block in the MCU */ | |
| 260 | |
| 261 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 262 block = MCU_data[blkn]; | |
| 263 ci = cinfo->MCU_membership[blkn]; | |
| 264 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | |
| 265 | |
| 266 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ | |
| 267 | |
| 268 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | |
| 269 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | |
| 270 | |
| 271 /* Figure F.19: Decode_DC_DIFF */ | |
| 272 if (arith_decode(cinfo, st) == 0) | |
| 273 entropy->dc_context[ci] = 0; | |
| 274 else { | |
| 275 /* Figure F.21: Decoding nonzero value v */ | |
| 276 /* Figure F.22: Decoding the sign of v */ | |
| 277 sign = arith_decode(cinfo, st + 1); | |
| 278 st += 2; st += sign; | |
| 279 /* Figure F.23: Decoding the magnitude category of v */ | |
| 280 if ((m = arith_decode(cinfo, st)) != 0) { | |
| 281 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | |
| 282 while (arith_decode(cinfo, st)) { | |
| 283 if ((m <<= 1) == (int) 0x8000U) { | |
| 284 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |
| 285 entropy->ct = -1; /* magnitude overflow */ | |
| 286 return TRUE; | |
| 287 } | |
| 288 st += 1; | |
| 289 } | |
| 290 } | |
| 291 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | |
| 292 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | |
| 293 entropy->dc_context[ci] = 0; /* zero diff category */ | |
| 294 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | |
| 295 entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ | |
| 296 else | |
| 297 entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ | |
| 298 v = m; | |
| 299 /* Figure F.24: Decoding the magnitude bit pattern of v */ | |
| 300 st += 14; | |
| 301 while (m >>= 1) | |
| 302 if (arith_decode(cinfo, st)) v |= m; | |
| 303 v += 1; if (sign) v = -v; | |
| 304 entropy->last_dc_val[ci] += v; | |
| 305 } | |
| 306 | |
| 307 /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ | |
| 308 (*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); | |
| 309 } | |
| 310 | |
| 311 return TRUE; | |
| 312 } | |
| 313 | |
| 314 | |
| 315 /* | |
| 316 * MCU decoding for AC initial scan (either spectral selection, | |
| 317 * or first pass of successive approximation). | |
| 318 */ | |
| 319 | |
| 320 METHODDEF(boolean) | |
| 321 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 322 { | |
| 323 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |
| 324 JBLOCKROW block; | |
| 325 unsigned char *st; | |
| 326 int tbl, sign, k; | |
| 327 int v, m; | |
| 328 const int * natural_order; | |
| 329 | |
| 330 /* Process restart marker if needed */ | |
| 331 if (cinfo->restart_interval) { | |
| 332 if (entropy->restarts_to_go == 0) | |
| 333 process_restart(cinfo); | |
| 334 entropy->restarts_to_go--; | |
| 335 } | |
| 336 | |
| 337 if (entropy->ct == -1) return TRUE; /* if error do nothing */ | |
| 338 | |
| 339 natural_order = cinfo->natural_order; | |
| 340 | |
| 341 /* There is always only one block per MCU */ | |
| 342 block = MCU_data[0]; | |
| 343 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | |
| 344 | |
| 345 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ | |
| 346 | |
| 347 /* Figure F.20: Decode_AC_coefficients */ | |
| 348 k = cinfo->Ss - 1; | |
| 349 do { | |
| 350 st = entropy->ac_stats[tbl] + 3 * k; | |
| 351 if (arith_decode(cinfo, st)) break; /* EOB flag */ | |
| 352 for (;;) { | |
| 353 k++; | |
| 354 if (arith_decode(cinfo, st + 1)) break; | |
| 355 st += 3; | |
| 356 if (k >= cinfo->Se) { | |
| 357 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |
| 358 entropy->ct = -1; /* spectral overflow */ | |
| 359 return TRUE; | |
| 360 } | |
| 361 } | |
| 362 /* Figure F.21: Decoding nonzero value v */ | |
| 363 /* Figure F.22: Decoding the sign of v */ | |
| 364 sign = arith_decode(cinfo, entropy->fixed_bin); | |
| 365 st += 2; | |
| 366 /* Figure F.23: Decoding the magnitude category of v */ | |
| 367 if ((m = arith_decode(cinfo, st)) != 0) { | |
| 368 if (arith_decode(cinfo, st)) { | |
| 369 m <<= 1; | |
| 370 st = entropy->ac_stats[tbl] + | |
| 371 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | |
| 372 while (arith_decode(cinfo, st)) { | |
| 373 if ((m <<= 1) == (int) 0x8000U) { | |
| 374 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |
| 375 entropy->ct = -1; /* magnitude overflow */ | |
| 376 return TRUE; | |
| 377 } | |
| 378 st += 1; | |
| 379 } | |
| 380 } | |
| 381 } | |
| 382 v = m; | |
| 383 /* Figure F.24: Decoding the magnitude bit pattern of v */ | |
| 384 st += 14; | |
| 385 while (m >>= 1) | |
| 386 if (arith_decode(cinfo, st)) v |= m; | |
| 387 v += 1; if (sign) v = -v; | |
| 388 /* Scale and output coefficient in natural (dezigzagged) order */ | |
| 389 (*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); | |
| 390 } while (k < cinfo->Se); | |
| 391 | |
| 392 return TRUE; | |
| 393 } | |
| 394 | |
| 395 | |
| 396 /* | |
| 397 * MCU decoding for DC successive approximation refinement scan. | |
| 398 * Note: we assume such scans can be multi-component, | |
| 399 * although the spec is not very clear on the point. | |
| 400 */ | |
| 401 | |
| 402 METHODDEF(boolean) | |
| 403 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 404 { | |
| 405 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |
| 406 unsigned char *st; | |
| 407 JCOEF p1; | |
| 408 int blkn; | |
| 409 | |
| 410 /* Process restart marker if needed */ | |
| 411 if (cinfo->restart_interval) { | |
| 412 if (entropy->restarts_to_go == 0) | |
| 413 process_restart(cinfo); | |
| 414 entropy->restarts_to_go--; | |
| 415 } | |
| 416 | |
| 417 st = entropy->fixed_bin; /* use fixed probability estimation */ | |
| 418 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |
| 419 | |
| 420 /* Outer loop handles each block in the MCU */ | |
| 421 | |
| 422 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 423 /* Encoded data is simply the next bit of the two's-complement DC value */ | |
| 424 if (arith_decode(cinfo, st)) | |
| 425 MCU_data[blkn][0][0] |= p1; | |
| 426 } | |
| 427 | |
| 428 return TRUE; | |
| 429 } | |
| 430 | |
| 431 | |
| 432 /* | |
| 433 * MCU decoding for AC successive approximation refinement scan. | |
| 434 */ | |
| 435 | |
| 436 METHODDEF(boolean) | |
| 437 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 438 { | |
| 439 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |
| 440 JBLOCKROW block; | |
| 441 JCOEFPTR thiscoef; | |
| 442 unsigned char *st; | |
| 443 int tbl, k, kex; | |
| 444 JCOEF p1, m1; | |
| 445 const int * natural_order; | |
| 446 | |
| 447 /* Process restart marker if needed */ | |
| 448 if (cinfo->restart_interval) { | |
| 449 if (entropy->restarts_to_go == 0) | |
| 450 process_restart(cinfo); | |
| 451 entropy->restarts_to_go--; | |
| 452 } | |
| 453 | |
| 454 if (entropy->ct == -1) return TRUE; /* if error do nothing */ | |
| 455 | |
| 456 natural_order = cinfo->natural_order; | |
| 457 | |
| 458 /* There is always only one block per MCU */ | |
| 459 block = MCU_data[0]; | |
| 460 tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | |
| 461 | |
| 462 p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |
| 463 m1 = -p1; /* -1 in the bit position being coded */ | |
| 464 | |
| 465 /* Establish EOBx (previous stage end-of-block) index */ | |
| 466 kex = cinfo->Se; | |
| 467 do { | |
| 468 if ((*block)[natural_order[kex]]) break; | |
| 469 } while (--kex); | |
| 470 | |
| 471 k = cinfo->Ss - 1; | |
| 472 do { | |
| 473 st = entropy->ac_stats[tbl] + 3 * k; | |
| 474 if (k >= kex) | |
| 475 if (arith_decode(cinfo, st)) break; /* EOB flag */ | |
| 476 for (;;) { | |
| 477 thiscoef = *block + natural_order[++k]; | |
| 478 if (*thiscoef) { /* previously nonzero coef */ | |
| 479 if (arith_decode(cinfo, st + 2)) { | |
| 480 if (*thiscoef < 0) | |
| 481 *thiscoef += m1; | |
| 482 else | |
| 483 *thiscoef += p1; | |
| 484 } | |
| 485 break; | |
| 486 } | |
| 487 if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ | |
| 488 if (arith_decode(cinfo, entropy->fixed_bin)) | |
| 489 *thiscoef = m1; | |
| 490 else | |
| 491 *thiscoef = p1; | |
| 492 break; | |
| 493 } | |
| 494 st += 3; | |
| 495 if (k >= cinfo->Se) { | |
| 496 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |
| 497 entropy->ct = -1; /* spectral overflow */ | |
| 498 return TRUE; | |
| 499 } | |
| 500 } | |
| 501 } while (k < cinfo->Se); | |
| 502 | |
| 503 return TRUE; | |
| 504 } | |
| 505 | |
| 506 | |
| 507 /* | |
| 508 * Decode one MCU's worth of arithmetic-compressed coefficients. | |
| 509 */ | |
| 510 | |
| 511 METHODDEF(boolean) | |
| 512 decode_mcu (j_decompress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 513 { | |
| 514 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |
| 515 jpeg_component_info * compptr; | |
| 516 JBLOCKROW block; | |
| 517 unsigned char *st; | |
| 518 int blkn, ci, tbl, sign, k; | |
| 519 int v, m; | |
| 520 const int * natural_order; | |
| 521 | |
| 522 /* Process restart marker if needed */ | |
| 523 if (cinfo->restart_interval) { | |
| 524 if (entropy->restarts_to_go == 0) | |
| 525 process_restart(cinfo); | |
| 526 entropy->restarts_to_go--; | |
| 527 } | |
| 528 | |
| 529 if (entropy->ct == -1) return TRUE; /* if error do nothing */ | |
| 530 | |
| 531 natural_order = cinfo->natural_order; | |
| 532 | |
| 533 /* Outer loop handles each block in the MCU */ | |
| 534 | |
| 535 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 536 block = MCU_data[blkn]; | |
| 537 ci = cinfo->MCU_membership[blkn]; | |
| 538 compptr = cinfo->cur_comp_info[ci]; | |
| 539 | |
| 540 /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ | |
| 541 | |
| 542 tbl = compptr->dc_tbl_no; | |
| 543 | |
| 544 /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | |
| 545 st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | |
| 546 | |
| 547 /* Figure F.19: Decode_DC_DIFF */ | |
| 548 if (arith_decode(cinfo, st) == 0) | |
| 549 entropy->dc_context[ci] = 0; | |
| 550 else { | |
| 551 /* Figure F.21: Decoding nonzero value v */ | |
| 552 /* Figure F.22: Decoding the sign of v */ | |
| 553 sign = arith_decode(cinfo, st + 1); | |
| 554 st += 2; st += sign; | |
| 555 /* Figure F.23: Decoding the magnitude category of v */ | |
| 556 if ((m = arith_decode(cinfo, st)) != 0) { | |
| 557 st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | |
| 558 while (arith_decode(cinfo, st)) { | |
| 559 if ((m <<= 1) == (int) 0x8000U) { | |
| 560 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |
| 561 entropy->ct = -1; /* magnitude overflow */ | |
| 562 return TRUE; | |
| 563 } | |
| 564 st += 1; | |
| 565 } | |
| 566 } | |
| 567 /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | |
| 568 if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | |
| 569 entropy->dc_context[ci] = 0; /* zero diff category */ | |
| 570 else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | |
| 571 entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ | |
| 572 else | |
| 573 entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ | |
| 574 v = m; | |
| 575 /* Figure F.24: Decoding the magnitude bit pattern of v */ | |
| 576 st += 14; | |
| 577 while (m >>= 1) | |
| 578 if (arith_decode(cinfo, st)) v |= m; | |
| 579 v += 1; if (sign) v = -v; | |
| 580 entropy->last_dc_val[ci] += v; | |
| 581 } | |
| 582 | |
| 583 (*block)[0] = (JCOEF) entropy->last_dc_val[ci]; | |
| 584 | |
| 585 /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ | |
| 586 | |
| 587 if (cinfo->lim_Se == 0) continue; | |
| 588 tbl = compptr->ac_tbl_no; | |
| 589 k = 0; | |
| 590 | |
| 591 /* Figure F.20: Decode_AC_coefficients */ | |
| 592 do { | |
| 593 st = entropy->ac_stats[tbl] + 3 * k; | |
| 594 if (arith_decode(cinfo, st)) break; /* EOB flag */ | |
| 595 for (;;) { | |
| 596 k++; | |
| 597 if (arith_decode(cinfo, st + 1)) break; | |
| 598 st += 3; | |
| 599 if (k >= cinfo->lim_Se) { | |
| 600 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |
| 601 entropy->ct = -1; /* spectral overflow */ | |
| 602 return TRUE; | |
| 603 } | |
| 604 } | |
| 605 /* Figure F.21: Decoding nonzero value v */ | |
| 606 /* Figure F.22: Decoding the sign of v */ | |
| 607 sign = arith_decode(cinfo, entropy->fixed_bin); | |
| 608 st += 2; | |
| 609 /* Figure F.23: Decoding the magnitude category of v */ | |
| 610 if ((m = arith_decode(cinfo, st)) != 0) { | |
| 611 if (arith_decode(cinfo, st)) { | |
| 612 m <<= 1; | |
| 613 st = entropy->ac_stats[tbl] + | |
| 614 (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | |
| 615 while (arith_decode(cinfo, st)) { | |
| 616 if ((m <<= 1) == (int) 0x8000U) { | |
| 617 WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |
| 618 entropy->ct = -1; /* magnitude overflow */ | |
| 619 return TRUE; | |
| 620 } | |
| 621 st += 1; | |
| 622 } | |
| 623 } | |
| 624 } | |
| 625 v = m; | |
| 626 /* Figure F.24: Decoding the magnitude bit pattern of v */ | |
| 627 st += 14; | |
| 628 while (m >>= 1) | |
| 629 if (arith_decode(cinfo, st)) v |= m; | |
| 630 v += 1; if (sign) v = -v; | |
| 631 (*block)[natural_order[k]] = (JCOEF) v; | |
| 632 } while (k < cinfo->lim_Se); | |
| 633 } | |
| 634 | |
| 635 return TRUE; | |
| 636 } | |
| 637 | |
| 638 | |
| 639 /* | |
| 640 * Initialize for an arithmetic-compressed scan. | |
| 641 */ | |
| 642 | |
| 643 METHODDEF(void) | |
| 644 start_pass (j_decompress_ptr cinfo) | |
| 645 { | |
| 646 arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |
| 647 int ci, tbl; | |
| 648 jpeg_component_info * compptr; | |
| 649 | |
| 650 if (cinfo->progressive_mode) { | |
| 651 /* Validate progressive scan parameters */ | |
| 652 if (cinfo->Ss == 0) { | |
| 653 if (cinfo->Se != 0) | |
| 654 goto bad; | |
| 655 } else { | |
| 656 /* need not check Ss/Se < 0 since they came from unsigned bytes */ | |
| 657 if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) | |
| 658 goto bad; | |
| 659 /* AC scans may have only one component */ | |
| 660 if (cinfo->comps_in_scan != 1) | |
| 661 goto bad; | |
| 662 } | |
| 663 if (cinfo->Ah != 0) { | |
| 664 /* Successive approximation refinement scan: must have Al = Ah-1. */ | |
| 665 if (cinfo->Ah-1 != cinfo->Al) | |
| 666 goto bad; | |
| 667 } | |
| 668 if (cinfo->Al > 13) { /* need not check for < 0 */ | |
| 669 bad: | |
| 670 ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | |
| 671 cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | |
| 672 } | |
| 673 /* Update progression status, and verify that scan order is legal. | |
| 674 * Note that inter-scan inconsistencies are treated as warnings | |
| 675 * not fatal errors ... not clear if this is right way to behave. | |
| 676 */ | |
| 677 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 678 int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; | |
| 679 int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | |
| 680 if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | |
| 681 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | |
| 682 for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | |
| 683 int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | |
| 684 if (cinfo->Ah != expected) | |
| 685 WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | |
| 686 coef_bit_ptr[coefi] = cinfo->Al; | |
| 687 } | |
| 688 } | |
| 689 /* Select MCU decoding routine */ | |
| 690 if (cinfo->Ah == 0) { | |
| 691 if (cinfo->Ss == 0) | |
| 692 entropy->pub.decode_mcu = decode_mcu_DC_first; | |
| 693 else | |
| 694 entropy->pub.decode_mcu = decode_mcu_AC_first; | |
| 695 } else { | |
| 696 if (cinfo->Ss == 0) | |
| 697 entropy->pub.decode_mcu = decode_mcu_DC_refine; | |
| 698 else | |
| 699 entropy->pub.decode_mcu = decode_mcu_AC_refine; | |
| 700 } | |
| 701 } else { | |
| 702 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. | |
| 703 * This ought to be an error condition, but we make it a warning. | |
| 704 */ | |
| 705 if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || | |
| 706 (cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) | |
| 707 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); | |
| 708 /* Select MCU decoding routine */ | |
| 709 entropy->pub.decode_mcu = decode_mcu; | |
| 710 } | |
| 711 | |
| 712 /* Allocate & initialize requested statistics areas */ | |
| 713 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 714 compptr = cinfo->cur_comp_info[ci]; | |
| 715 if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | |
| 716 tbl = compptr->dc_tbl_no; | |
| 717 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | |
| 718 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | |
| 719 if (entropy->dc_stats[tbl] == NULL) | |
| 720 entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | |
| 721 ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); | |
| 722 MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); | |
| 723 /* Initialize DC predictions to 0 */ | |
| 724 entropy->last_dc_val[ci] = 0; | |
| 725 entropy->dc_context[ci] = 0; | |
| 726 } | |
| 727 if ((! cinfo->progressive_mode && cinfo->lim_Se) || | |
| 728 (cinfo->progressive_mode && cinfo->Ss)) { | |
| 729 tbl = compptr->ac_tbl_no; | |
| 730 if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | |
| 731 ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | |
| 732 if (entropy->ac_stats[tbl] == NULL) | |
| 733 entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | |
| 734 ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); | |
| 735 MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); | |
| 736 } | |
| 737 } | |
| 738 | |
| 739 /* Initialize arithmetic decoding variables */ | |
| 740 entropy->c = 0; | |
| 741 entropy->a = 0; | |
| 742 entropy->ct = -16; /* force reading 2 initial bytes to fill C */ | |
| 743 | |
| 744 /* Initialize restart counter */ | |
| 745 entropy->restarts_to_go = cinfo->restart_interval; | |
| 746 } | |
| 747 | |
| 748 | |
| 749 /* | |
| 750 * Finish up at the end of an arithmetic-compressed scan. | |
| 751 */ | |
| 752 | |
| 753 METHODDEF(void) | |
| 754 finish_pass (j_decompress_ptr cinfo) | |
| 755 { | |
| 756 /* no work necessary here */ | |
| 757 } | |
| 758 | |
| 759 | |
| 760 /* | |
| 761 * Module initialization routine for arithmetic entropy decoding. | |
| 762 */ | |
| 763 | |
| 764 GLOBAL(void) | |
| 765 jinit_arith_decoder (j_decompress_ptr cinfo) | |
| 766 { | |
| 767 arith_entropy_ptr entropy; | |
| 768 int i; | |
| 769 | |
| 770 entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) | |
| 771 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_decoder)); | |
| 772 cinfo->entropy = &entropy->pub; | |
| 773 entropy->pub.start_pass = start_pass; | |
| 774 entropy->pub.finish_pass = finish_pass; | |
| 775 | |
| 776 /* Mark tables unallocated */ | |
| 777 for (i = 0; i < NUM_ARITH_TBLS; i++) { | |
| 778 entropy->dc_stats[i] = NULL; | |
| 779 entropy->ac_stats[i] = NULL; | |
| 780 } | |
| 781 | |
| 782 /* Initialize index for fixed probability estimation */ | |
| 783 entropy->fixed_bin[0] = 113; | |
| 784 | |
| 785 if (cinfo->progressive_mode) { | |
| 786 /* Create progression status table */ | |
| 787 int *coef_bit_ptr, ci; | |
| 788 cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) | |
| 789 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 790 cinfo->num_components * DCTSIZE2 * SIZEOF(int)); | |
| 791 coef_bit_ptr = & cinfo->coef_bits[0][0]; | |
| 792 for (ci = 0; ci < cinfo->num_components; ci++) | |
| 793 for (i = 0; i < DCTSIZE2; i++) | |
| 794 *coef_bit_ptr++ = -1; | |
| 795 } | |
| 796 } |
