Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jcsample.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jcsample.c | |
| 3 * | |
| 4 * Copyright (C) 1991-1996, Thomas G. Lane. | |
| 5 * Modified 2003-2020 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains downsampling routines. | |
| 10 * | |
| 11 * Downsampling input data is counted in "row groups". A row group | |
| 12 * is defined to be max_v_samp_factor pixel rows of each component, | |
| 13 * from which the downsampler produces v_samp_factor sample rows. | |
| 14 * A single row group is processed in each call to the downsampler module. | |
| 15 * | |
| 16 * The downsampler is responsible for edge-expansion of its output data | |
| 17 * to fill an integral number of DCT blocks horizontally. The source buffer | |
| 18 * may be modified if it is helpful for this purpose (the source buffer is | |
| 19 * allocated wide enough to correspond to the desired output width). | |
| 20 * The caller (the prep controller) is responsible for vertical padding. | |
| 21 * | |
| 22 * The downsampler may request "context rows" by setting need_context_rows | |
| 23 * during startup. In this case, the input arrays will contain at least | |
| 24 * one row group's worth of pixels above and below the passed-in data; | |
| 25 * the caller will create dummy rows at image top and bottom by replicating | |
| 26 * the first or last real pixel row. | |
| 27 * | |
| 28 * An excellent reference for image resampling is | |
| 29 * Digital Image Warping, George Wolberg, 1990. | |
| 30 * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. | |
| 31 * | |
| 32 * The downsampling algorithm used here is a simple average of the source | |
| 33 * pixels covered by the output pixel. The hi-falutin sampling literature | |
| 34 * refers to this as a "box filter". In general the characteristics of a box | |
| 35 * filter are not very good, but for the specific cases we normally use (1:1 | |
| 36 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not | |
| 37 * nearly so bad. If you intend to use other sampling ratios, you'd be well | |
| 38 * advised to improve this code. | |
| 39 * | |
| 40 * A simple input-smoothing capability is provided. This is mainly intended | |
| 41 * for cleaning up color-dithered GIF input files (if you find it inadequate, | |
| 42 * we suggest using an external filtering program such as pnmconvol). When | |
| 43 * enabled, each input pixel P is replaced by a weighted sum of itself and its | |
| 44 * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, | |
| 45 * where SF = (smoothing_factor / 1024). | |
| 46 * Currently, smoothing is only supported for 2h2v sampling factors. | |
| 47 */ | |
| 48 | |
| 49 #define JPEG_INTERNALS | |
| 50 #include "jinclude.h" | |
| 51 #include "jpeglib.h" | |
| 52 | |
| 53 | |
| 54 /* Pointer to routine to downsample a single component */ | |
| 55 typedef JMETHOD(void, downsample1_ptr, | |
| 56 (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
| 57 JSAMPARRAY input_data, JSAMPARRAY output_data)); | |
| 58 | |
| 59 /* Private subobject */ | |
| 60 | |
| 61 typedef struct { | |
| 62 struct jpeg_downsampler pub; /* public fields */ | |
| 63 | |
| 64 /* Downsampling method pointers, one per component */ | |
| 65 downsample1_ptr methods[MAX_COMPONENTS]; | |
| 66 | |
| 67 /* Height of an output row group for each component. */ | |
| 68 int rowgroup_height[MAX_COMPONENTS]; | |
| 69 | |
| 70 /* These arrays save pixel expansion factors so that int_downsample need not | |
| 71 * recompute them each time. They are unused for other downsampling methods. | |
| 72 */ | |
| 73 UINT8 h_expand[MAX_COMPONENTS]; | |
| 74 UINT8 v_expand[MAX_COMPONENTS]; | |
| 75 } my_downsampler; | |
| 76 | |
| 77 typedef my_downsampler * my_downsample_ptr; | |
| 78 | |
| 79 | |
| 80 /* | |
| 81 * Initialize for a downsampling pass. | |
| 82 */ | |
| 83 | |
| 84 METHODDEF(void) | |
| 85 start_pass_downsample (j_compress_ptr cinfo) | |
| 86 { | |
| 87 /* no work for now */ | |
| 88 } | |
| 89 | |
| 90 | |
| 91 /* | |
| 92 * Expand a component horizontally from width input_cols to width output_cols, | |
| 93 * by duplicating the rightmost samples. | |
| 94 */ | |
| 95 | |
| 96 LOCAL(void) | |
| 97 expand_right_edge (JSAMPARRAY image_data, int num_rows, | |
| 98 JDIMENSION input_cols, JDIMENSION output_cols) | |
| 99 { | |
| 100 register JSAMPROW ptr; | |
| 101 register JSAMPLE pixval; | |
| 102 register int count; | |
| 103 int row; | |
| 104 int numcols = (int) (output_cols - input_cols); | |
| 105 | |
| 106 if (numcols > 0) { | |
| 107 for (row = 0; row < num_rows; row++) { | |
| 108 ptr = image_data[row] + input_cols; | |
| 109 pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ | |
| 110 for (count = numcols; count > 0; count--) | |
| 111 *ptr++ = pixval; | |
| 112 } | |
| 113 } | |
| 114 } | |
| 115 | |
| 116 | |
| 117 /* | |
| 118 * Do downsampling for a whole row group (all components). | |
| 119 * | |
| 120 * In this version we simply downsample each component independently. | |
| 121 */ | |
| 122 | |
| 123 METHODDEF(void) | |
| 124 sep_downsample (j_compress_ptr cinfo, | |
| 125 JSAMPIMAGE input_buf, JDIMENSION in_row_index, | |
| 126 JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) | |
| 127 { | |
| 128 my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; | |
| 129 int ci; | |
| 130 jpeg_component_info * compptr; | |
| 131 JSAMPARRAY in_ptr, out_ptr; | |
| 132 | |
| 133 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 134 ci++, compptr++) { | |
| 135 in_ptr = input_buf[ci] + in_row_index; | |
| 136 out_ptr = output_buf[ci] + | |
| 137 (out_row_group_index * downsample->rowgroup_height[ci]); | |
| 138 (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); | |
| 139 } | |
| 140 } | |
| 141 | |
| 142 | |
| 143 /* | |
| 144 * Downsample pixel values of a single component. | |
| 145 * One row group is processed per call. | |
| 146 * This version handles arbitrary integral sampling ratios, without smoothing. | |
| 147 * Note that this version is not actually used for customary sampling ratios. | |
| 148 */ | |
| 149 | |
| 150 METHODDEF(void) | |
| 151 int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
| 152 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
| 153 { | |
| 154 my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; | |
| 155 int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; | |
| 156 JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ | |
| 157 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |
| 158 JSAMPROW inptr, outptr; | |
| 159 INT32 outvalue; | |
| 160 | |
| 161 h_expand = downsample->h_expand[compptr->component_index]; | |
| 162 v_expand = downsample->v_expand[compptr->component_index]; | |
| 163 numpix = h_expand * v_expand; | |
| 164 numpix2 = numpix/2; | |
| 165 | |
| 166 /* Expand input data enough to let all the output samples be generated | |
| 167 * by the standard loop. Special-casing padded output would be more | |
| 168 * efficient. | |
| 169 */ | |
| 170 expand_right_edge(input_data, cinfo->max_v_samp_factor, | |
| 171 cinfo->image_width, output_cols * h_expand); | |
| 172 | |
| 173 inrow = outrow = 0; | |
| 174 while (inrow < cinfo->max_v_samp_factor) { | |
| 175 outptr = output_data[outrow]; | |
| 176 for (outcol = 0, outcol_h = 0; outcol < output_cols; | |
| 177 outcol++, outcol_h += h_expand) { | |
| 178 outvalue = 0; | |
| 179 for (v = 0; v < v_expand; v++) { | |
| 180 inptr = input_data[inrow+v] + outcol_h; | |
| 181 for (h = 0; h < h_expand; h++) { | |
| 182 outvalue += (INT32) GETJSAMPLE(*inptr++); | |
| 183 } | |
| 184 } | |
| 185 *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); | |
| 186 } | |
| 187 inrow += v_expand; | |
| 188 outrow++; | |
| 189 } | |
| 190 } | |
| 191 | |
| 192 | |
| 193 /* | |
| 194 * Downsample pixel values of a single component. | |
| 195 * This version handles the special case of a full-size component, | |
| 196 * without smoothing. | |
| 197 */ | |
| 198 | |
| 199 METHODDEF(void) | |
| 200 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
| 201 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
| 202 { | |
| 203 /* Copy the data */ | |
| 204 jcopy_sample_rows(input_data, output_data, | |
| 205 cinfo->max_v_samp_factor, cinfo->image_width); | |
| 206 /* Edge-expand */ | |
| 207 expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, | |
| 208 compptr->width_in_blocks * compptr->DCT_h_scaled_size); | |
| 209 } | |
| 210 | |
| 211 | |
| 212 /* | |
| 213 * Downsample pixel values of a single component. | |
| 214 * This version handles the common case of 2:1 horizontal and 1:1 vertical, | |
| 215 * without smoothing. | |
| 216 * | |
| 217 * A note about the "bias" calculations: when rounding fractional values to | |
| 218 * integer, we do not want to always round 0.5 up to the next integer. | |
| 219 * If we did that, we'd introduce a noticeable bias towards larger values. | |
| 220 * Instead, this code is arranged so that 0.5 will be rounded up or down at | |
| 221 * alternate pixel locations (a simple ordered dither pattern). | |
| 222 */ | |
| 223 | |
| 224 METHODDEF(void) | |
| 225 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
| 226 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
| 227 { | |
| 228 int inrow; | |
| 229 JDIMENSION outcol; | |
| 230 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |
| 231 register JSAMPROW inptr, outptr; | |
| 232 register int bias; | |
| 233 | |
| 234 /* Expand input data enough to let all the output samples be generated | |
| 235 * by the standard loop. Special-casing padded output would be more | |
| 236 * efficient. | |
| 237 */ | |
| 238 expand_right_edge(input_data, cinfo->max_v_samp_factor, | |
| 239 cinfo->image_width, output_cols * 2); | |
| 240 | |
| 241 for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | |
| 242 outptr = output_data[inrow]; | |
| 243 inptr = input_data[inrow]; | |
| 244 bias = 0; /* bias = 0,1,0,1,... for successive samples */ | |
| 245 for (outcol = 0; outcol < output_cols; outcol++) { | |
| 246 *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) | |
| 247 + bias) >> 1); | |
| 248 bias ^= 1; /* 0=>1, 1=>0 */ | |
| 249 inptr += 2; | |
| 250 } | |
| 251 } | |
| 252 } | |
| 253 | |
| 254 | |
| 255 /* | |
| 256 * Downsample pixel values of a single component. | |
| 257 * This version handles the standard case of 2:1 horizontal and 2:1 vertical, | |
| 258 * without smoothing. | |
| 259 */ | |
| 260 | |
| 261 METHODDEF(void) | |
| 262 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
| 263 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
| 264 { | |
| 265 int inrow, outrow; | |
| 266 JDIMENSION outcol; | |
| 267 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |
| 268 register JSAMPROW inptr0, inptr1, outptr; | |
| 269 register int bias; | |
| 270 | |
| 271 /* Expand input data enough to let all the output samples be generated | |
| 272 * by the standard loop. Special-casing padded output would be more | |
| 273 * efficient. | |
| 274 */ | |
| 275 expand_right_edge(input_data, cinfo->max_v_samp_factor, | |
| 276 cinfo->image_width, output_cols * 2); | |
| 277 | |
| 278 inrow = outrow = 0; | |
| 279 while (inrow < cinfo->max_v_samp_factor) { | |
| 280 outptr = output_data[outrow]; | |
| 281 inptr0 = input_data[inrow]; | |
| 282 inptr1 = input_data[inrow+1]; | |
| 283 bias = 1; /* bias = 1,2,1,2,... for successive samples */ | |
| 284 for (outcol = 0; outcol < output_cols; outcol++) { | |
| 285 *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |
| 286 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) | |
| 287 + bias) >> 2); | |
| 288 bias ^= 3; /* 1=>2, 2=>1 */ | |
| 289 inptr0 += 2; inptr1 += 2; | |
| 290 } | |
| 291 inrow += 2; | |
| 292 outrow++; | |
| 293 } | |
| 294 } | |
| 295 | |
| 296 | |
| 297 #ifdef INPUT_SMOOTHING_SUPPORTED | |
| 298 | |
| 299 /* | |
| 300 * Downsample pixel values of a single component. | |
| 301 * This version handles the standard case of 2:1 horizontal and 2:1 vertical, | |
| 302 * with smoothing. One row of context is required. | |
| 303 */ | |
| 304 | |
| 305 METHODDEF(void) | |
| 306 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
| 307 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
| 308 { | |
| 309 int inrow, outrow; | |
| 310 JDIMENSION colctr; | |
| 311 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |
| 312 register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; | |
| 313 INT32 membersum, neighsum, memberscale, neighscale; | |
| 314 | |
| 315 /* Expand input data enough to let all the output samples be generated | |
| 316 * by the standard loop. Special-casing padded output would be more | |
| 317 * efficient. | |
| 318 */ | |
| 319 expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, | |
| 320 cinfo->image_width, output_cols * 2); | |
| 321 | |
| 322 /* We don't bother to form the individual "smoothed" input pixel values; | |
| 323 * we can directly compute the output which is the average of the four | |
| 324 * smoothed values. Each of the four member pixels contributes a fraction | |
| 325 * (1-8*SF) to its own smoothed image and a fraction SF to each of the three | |
| 326 * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final | |
| 327 * output. The four corner-adjacent neighbor pixels contribute a fraction | |
| 328 * SF to just one smoothed pixel, or SF/4 to the final output; while the | |
| 329 * eight edge-adjacent neighbors contribute SF to each of two smoothed | |
| 330 * pixels, or SF/2 overall. In order to use integer arithmetic, these | |
| 331 * factors are scaled by 2^16 = 65536. | |
| 332 * Also recall that SF = smoothing_factor / 1024. | |
| 333 */ | |
| 334 | |
| 335 memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ | |
| 336 neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ | |
| 337 | |
| 338 inrow = outrow = 0; | |
| 339 while (inrow < cinfo->max_v_samp_factor) { | |
| 340 outptr = output_data[outrow]; | |
| 341 inptr0 = input_data[inrow]; | |
| 342 inptr1 = input_data[inrow+1]; | |
| 343 above_ptr = input_data[inrow-1]; | |
| 344 below_ptr = input_data[inrow+2]; | |
| 345 | |
| 346 /* Special case for first column: pretend column -1 is same as column 0 */ | |
| 347 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |
| 348 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |
| 349 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |
| 350 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |
| 351 GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + | |
| 352 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); | |
| 353 neighsum += neighsum; | |
| 354 neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + | |
| 355 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); | |
| 356 membersum = membersum * memberscale + neighsum * neighscale; | |
| 357 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |
| 358 inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; | |
| 359 | |
| 360 for (colctr = output_cols - 2; colctr > 0; colctr--) { | |
| 361 /* sum of pixels directly mapped to this output element */ | |
| 362 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |
| 363 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |
| 364 /* sum of edge-neighbor pixels */ | |
| 365 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |
| 366 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |
| 367 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + | |
| 368 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); | |
| 369 /* The edge-neighbors count twice as much as corner-neighbors */ | |
| 370 neighsum += neighsum; | |
| 371 /* Add in the corner-neighbors */ | |
| 372 neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + | |
| 373 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); | |
| 374 /* form final output scaled up by 2^16 */ | |
| 375 membersum = membersum * memberscale + neighsum * neighscale; | |
| 376 /* round, descale and output it */ | |
| 377 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |
| 378 inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; | |
| 379 } | |
| 380 | |
| 381 /* Special case for last column */ | |
| 382 membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |
| 383 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |
| 384 neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |
| 385 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |
| 386 GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + | |
| 387 GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); | |
| 388 neighsum += neighsum; | |
| 389 neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + | |
| 390 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); | |
| 391 membersum = membersum * memberscale + neighsum * neighscale; | |
| 392 *outptr = (JSAMPLE) ((membersum + 32768) >> 16); | |
| 393 | |
| 394 inrow += 2; | |
| 395 outrow++; | |
| 396 } | |
| 397 } | |
| 398 | |
| 399 | |
| 400 /* | |
| 401 * Downsample pixel values of a single component. | |
| 402 * This version handles the special case of a full-size component, | |
| 403 * with smoothing. One row of context is required. | |
| 404 */ | |
| 405 | |
| 406 METHODDEF(void) | |
| 407 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, | |
| 408 JSAMPARRAY input_data, JSAMPARRAY output_data) | |
| 409 { | |
| 410 int inrow; | |
| 411 JDIMENSION colctr; | |
| 412 JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |
| 413 register JSAMPROW inptr, above_ptr, below_ptr, outptr; | |
| 414 INT32 membersum, neighsum, memberscale, neighscale; | |
| 415 int colsum, lastcolsum, nextcolsum; | |
| 416 | |
| 417 /* Expand input data enough to let all the output samples be generated | |
| 418 * by the standard loop. Special-casing padded output would be more | |
| 419 * efficient. | |
| 420 */ | |
| 421 expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, | |
| 422 cinfo->image_width, output_cols); | |
| 423 | |
| 424 /* Each of the eight neighbor pixels contributes a fraction SF to the | |
| 425 * smoothed pixel, while the main pixel contributes (1-8*SF). In order | |
| 426 * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. | |
| 427 * Also recall that SF = smoothing_factor / 1024. | |
| 428 */ | |
| 429 | |
| 430 memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ | |
| 431 neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ | |
| 432 | |
| 433 for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | |
| 434 outptr = output_data[inrow]; | |
| 435 inptr = input_data[inrow]; | |
| 436 above_ptr = input_data[inrow-1]; | |
| 437 below_ptr = input_data[inrow+1]; | |
| 438 | |
| 439 /* Special case for first column */ | |
| 440 colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + | |
| 441 GETJSAMPLE(*inptr); | |
| 442 membersum = GETJSAMPLE(*inptr++); | |
| 443 nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + | |
| 444 GETJSAMPLE(*inptr); | |
| 445 neighsum = colsum + (colsum - membersum) + nextcolsum; | |
| 446 membersum = membersum * memberscale + neighsum * neighscale; | |
| 447 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |
| 448 lastcolsum = colsum; colsum = nextcolsum; | |
| 449 | |
| 450 for (colctr = output_cols - 2; colctr > 0; colctr--) { | |
| 451 membersum = GETJSAMPLE(*inptr++); | |
| 452 above_ptr++; below_ptr++; | |
| 453 nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + | |
| 454 GETJSAMPLE(*inptr); | |
| 455 neighsum = lastcolsum + (colsum - membersum) + nextcolsum; | |
| 456 membersum = membersum * memberscale + neighsum * neighscale; | |
| 457 *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |
| 458 lastcolsum = colsum; colsum = nextcolsum; | |
| 459 } | |
| 460 | |
| 461 /* Special case for last column */ | |
| 462 membersum = GETJSAMPLE(*inptr); | |
| 463 neighsum = lastcolsum + (colsum - membersum) + colsum; | |
| 464 membersum = membersum * memberscale + neighsum * neighscale; | |
| 465 *outptr = (JSAMPLE) ((membersum + 32768) >> 16); | |
| 466 | |
| 467 } | |
| 468 } | |
| 469 | |
| 470 #endif /* INPUT_SMOOTHING_SUPPORTED */ | |
| 471 | |
| 472 | |
| 473 /* | |
| 474 * Module initialization routine for downsampling. | |
| 475 * Note that we must select a routine for each component. | |
| 476 */ | |
| 477 | |
| 478 GLOBAL(void) | |
| 479 jinit_downsampler (j_compress_ptr cinfo) | |
| 480 { | |
| 481 my_downsample_ptr downsample; | |
| 482 int ci; | |
| 483 jpeg_component_info * compptr; | |
| 484 boolean smoothok = TRUE; | |
| 485 int h_in_group, v_in_group, h_out_group, v_out_group; | |
| 486 | |
| 487 downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small) | |
| 488 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_downsampler)); | |
| 489 cinfo->downsample = &downsample->pub; | |
| 490 downsample->pub.start_pass = start_pass_downsample; | |
| 491 downsample->pub.downsample = sep_downsample; | |
| 492 downsample->pub.need_context_rows = FALSE; | |
| 493 | |
| 494 if (cinfo->CCIR601_sampling) | |
| 495 ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); | |
| 496 | |
| 497 /* Verify we can handle the sampling factors, and set up method pointers */ | |
| 498 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 499 ci++, compptr++) { | |
| 500 /* Compute size of an "output group" for DCT scaling. This many samples | |
| 501 * are to be converted from max_h_samp_factor * max_v_samp_factor pixels. | |
| 502 */ | |
| 503 h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / | |
| 504 cinfo->min_DCT_h_scaled_size; | |
| 505 v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |
| 506 cinfo->min_DCT_v_scaled_size; | |
| 507 h_in_group = cinfo->max_h_samp_factor; | |
| 508 v_in_group = cinfo->max_v_samp_factor; | |
| 509 downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ | |
| 510 if (h_in_group == h_out_group && v_in_group == v_out_group) { | |
| 511 #ifdef INPUT_SMOOTHING_SUPPORTED | |
| 512 if (cinfo->smoothing_factor) { | |
| 513 downsample->methods[ci] = fullsize_smooth_downsample; | |
| 514 downsample->pub.need_context_rows = TRUE; | |
| 515 } else | |
| 516 #endif | |
| 517 downsample->methods[ci] = fullsize_downsample; | |
| 518 } else if (h_in_group == h_out_group * 2 && | |
| 519 v_in_group == v_out_group) { | |
| 520 smoothok = FALSE; | |
| 521 downsample->methods[ci] = h2v1_downsample; | |
| 522 } else if (h_in_group == h_out_group * 2 && | |
| 523 v_in_group == v_out_group * 2) { | |
| 524 #ifdef INPUT_SMOOTHING_SUPPORTED | |
| 525 if (cinfo->smoothing_factor) { | |
| 526 downsample->methods[ci] = h2v2_smooth_downsample; | |
| 527 downsample->pub.need_context_rows = TRUE; | |
| 528 } else | |
| 529 #endif | |
| 530 downsample->methods[ci] = h2v2_downsample; | |
| 531 } else if ((h_in_group % h_out_group) == 0 && | |
| 532 (v_in_group % v_out_group) == 0) { | |
| 533 smoothok = FALSE; | |
| 534 downsample->methods[ci] = int_downsample; | |
| 535 downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); | |
| 536 downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); | |
| 537 } else | |
| 538 ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); | |
| 539 } | |
| 540 | |
| 541 #ifdef INPUT_SMOOTHING_SUPPORTED | |
| 542 if (cinfo->smoothing_factor && !smoothok) | |
| 543 TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); | |
| 544 #endif | |
| 545 } |
