Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jchuff.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jchuff.c | |
| 3 * | |
| 4 * Copyright (C) 1991-1997, Thomas G. Lane. | |
| 5 * Modified 2006-2023 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains Huffman entropy encoding routines. | |
| 10 * Both sequential and progressive modes are supported in this single module. | |
| 11 * | |
| 12 * Much of the complexity here has to do with supporting output suspension. | |
| 13 * If the data destination module demands suspension, we want to be able to | |
| 14 * back up to the start of the current MCU. To do this, we copy state | |
| 15 * variables into local working storage, and update them back to the | |
| 16 * permanent JPEG objects only upon successful completion of an MCU. | |
| 17 * | |
| 18 * We do not support output suspension for the progressive JPEG mode, since | |
| 19 * the library currently does not allow multiple-scan files to be written | |
| 20 * with output suspension. | |
| 21 */ | |
| 22 | |
| 23 #define JPEG_INTERNALS | |
| 24 #include "jinclude.h" | |
| 25 #include "jpeglib.h" | |
| 26 | |
| 27 | |
| 28 /* The legal range of a DCT coefficient is | |
| 29 * -1024 .. +1023 for 8-bit sample data precision; | |
| 30 * -16384 .. +16383 for 12-bit sample data precision. | |
| 31 * Hence the magnitude should always fit in sample data precision + 2 bits. | |
| 32 */ | |
| 33 | |
| 34 /* Derived data constructed for each Huffman table */ | |
| 35 | |
| 36 typedef struct { | |
| 37 unsigned int ehufco[256]; /* code for each symbol */ | |
| 38 char ehufsi[256]; /* length of code for each symbol */ | |
| 39 /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ | |
| 40 } c_derived_tbl; | |
| 41 | |
| 42 | |
| 43 /* Expanded entropy encoder object for Huffman encoding. | |
| 44 * | |
| 45 * The savable_state subrecord contains fields that change within an MCU, | |
| 46 * but must not be updated permanently until we complete the MCU. | |
| 47 */ | |
| 48 | |
| 49 typedef struct { | |
| 50 INT32 put_buffer; /* current bit-accumulation buffer */ | |
| 51 int put_bits; /* # of bits now in it */ | |
| 52 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |
| 53 } savable_state; | |
| 54 | |
| 55 /* This macro is to work around compilers with missing or broken | |
| 56 * structure assignment. You'll need to fix this code if you have | |
| 57 * such a compiler and you change MAX_COMPS_IN_SCAN. | |
| 58 */ | |
| 59 | |
| 60 #ifndef NO_STRUCT_ASSIGN | |
| 61 #define ASSIGN_STATE(dest,src) ((dest) = (src)) | |
| 62 #else | |
| 63 #if MAX_COMPS_IN_SCAN == 4 | |
| 64 #define ASSIGN_STATE(dest,src) \ | |
| 65 ((dest).put_buffer = (src).put_buffer, \ | |
| 66 (dest).put_bits = (src).put_bits, \ | |
| 67 (dest).last_dc_val[0] = (src).last_dc_val[0], \ | |
| 68 (dest).last_dc_val[1] = (src).last_dc_val[1], \ | |
| 69 (dest).last_dc_val[2] = (src).last_dc_val[2], \ | |
| 70 (dest).last_dc_val[3] = (src).last_dc_val[3]) | |
| 71 #endif | |
| 72 #endif | |
| 73 | |
| 74 | |
| 75 typedef struct { | |
| 76 struct jpeg_entropy_encoder pub; /* public fields */ | |
| 77 | |
| 78 savable_state saved; /* Bit buffer & DC state at start of MCU */ | |
| 79 | |
| 80 /* These fields are NOT loaded into local working state. */ | |
| 81 unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |
| 82 int next_restart_num; /* next restart number to write (0-7) */ | |
| 83 | |
| 84 /* Pointers to derived tables (these workspaces have image lifespan) */ | |
| 85 c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; | |
| 86 c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; | |
| 87 | |
| 88 /* Statistics tables for optimization */ | |
| 89 long * dc_count_ptrs[NUM_HUFF_TBLS]; | |
| 90 long * ac_count_ptrs[NUM_HUFF_TBLS]; | |
| 91 | |
| 92 /* Following fields used only in progressive mode */ | |
| 93 | |
| 94 /* Mode flag: TRUE for optimization, FALSE for actual data output */ | |
| 95 boolean gather_statistics; | |
| 96 | |
| 97 /* next_output_byte/free_in_buffer are local copies of cinfo->dest fields. | |
| 98 */ | |
| 99 JOCTET * next_output_byte; /* => next byte to write in buffer */ | |
| 100 size_t free_in_buffer; /* # of byte spaces remaining in buffer */ | |
| 101 j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ | |
| 102 | |
| 103 /* Coding status for AC components */ | |
| 104 int ac_tbl_no; /* the table number of the single component */ | |
| 105 unsigned int EOBRUN; /* run length of EOBs */ | |
| 106 unsigned int BE; /* # of buffered correction bits before MCU */ | |
| 107 char * bit_buffer; /* buffer for correction bits (1 per char) */ | |
| 108 /* packing correction bits tightly would save some space but cost time... */ | |
| 109 } huff_entropy_encoder; | |
| 110 | |
| 111 typedef huff_entropy_encoder * huff_entropy_ptr; | |
| 112 | |
| 113 /* Working state while writing an MCU (sequential mode). | |
| 114 * This struct contains all the fields that are needed by subroutines. | |
| 115 */ | |
| 116 | |
| 117 typedef struct { | |
| 118 JOCTET * next_output_byte; /* => next byte to write in buffer */ | |
| 119 size_t free_in_buffer; /* # of byte spaces remaining in buffer */ | |
| 120 savable_state cur; /* Current bit buffer & DC state */ | |
| 121 j_compress_ptr cinfo; /* dump_buffer needs access to this */ | |
| 122 } working_state; | |
| 123 | |
| 124 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit | |
| 125 * buffer can hold. Larger sizes may slightly improve compression, but | |
| 126 * 1000 is already well into the realm of overkill. | |
| 127 * The minimum safe size is 64 bits. | |
| 128 */ | |
| 129 | |
| 130 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ | |
| 131 | |
| 132 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. | |
| 133 * We assume that int right shift is unsigned if INT32 right shift is, | |
| 134 * which should be safe. | |
| 135 */ | |
| 136 | |
| 137 #ifdef RIGHT_SHIFT_IS_UNSIGNED | |
| 138 #define ISHIFT_TEMPS int ishift_temp; | |
| 139 #define IRIGHT_SHIFT(x,shft) \ | |
| 140 ((ishift_temp = (x)) < 0 ? \ | |
| 141 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ | |
| 142 (ishift_temp >> (shft))) | |
| 143 #else | |
| 144 #define ISHIFT_TEMPS | |
| 145 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) | |
| 146 #endif | |
| 147 | |
| 148 | |
| 149 /* | |
| 150 * Compute the derived values for a Huffman table. | |
| 151 * This routine also performs some validation checks on the table. | |
| 152 */ | |
| 153 | |
| 154 LOCAL(void) | |
| 155 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, | |
| 156 c_derived_tbl ** pdtbl) | |
| 157 { | |
| 158 JHUFF_TBL *htbl; | |
| 159 c_derived_tbl *dtbl; | |
| 160 int p, i, l, lastp, si, maxsymbol; | |
| 161 char huffsize[257]; | |
| 162 unsigned int huffcode[257]; | |
| 163 unsigned int code; | |
| 164 | |
| 165 /* Note that huffsize[] and huffcode[] are filled in code-length order, | |
| 166 * paralleling the order of the symbols themselves in htbl->huffval[]. | |
| 167 */ | |
| 168 | |
| 169 /* Find the input Huffman table */ | |
| 170 if (tblno < 0 || tblno >= NUM_HUFF_TBLS) | |
| 171 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | |
| 172 htbl = | |
| 173 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; | |
| 174 if (htbl == NULL) | |
| 175 htbl = jpeg_std_huff_table((j_common_ptr) cinfo, isDC, tblno); | |
| 176 | |
| 177 /* Allocate a workspace if we haven't already done so. */ | |
| 178 if (*pdtbl == NULL) | |
| 179 *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small) | |
| 180 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(c_derived_tbl)); | |
| 181 dtbl = *pdtbl; | |
| 182 | |
| 183 /* Figure C.1: make table of Huffman code length for each symbol */ | |
| 184 | |
| 185 p = 0; | |
| 186 for (l = 1; l <= 16; l++) { | |
| 187 i = (int) htbl->bits[l]; | |
| 188 if (i < 0 || p + i > 256) /* protect against table overrun */ | |
| 189 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
| 190 while (i--) | |
| 191 huffsize[p++] = (char) l; | |
| 192 } | |
| 193 huffsize[p] = 0; | |
| 194 lastp = p; | |
| 195 | |
| 196 /* Figure C.2: generate the codes themselves */ | |
| 197 /* We also validate that the counts represent a legal Huffman code tree. */ | |
| 198 | |
| 199 code = 0; | |
| 200 si = huffsize[0]; | |
| 201 p = 0; | |
| 202 while (huffsize[p]) { | |
| 203 while (((int) huffsize[p]) == si) { | |
| 204 huffcode[p++] = code; | |
| 205 code++; | |
| 206 } | |
| 207 /* code is now 1 more than the last code used for codelength si; but | |
| 208 * it must still fit in si bits, since no code is allowed to be all ones. | |
| 209 */ | |
| 210 if (((INT32) code) >= (((INT32) 1) << si)) | |
| 211 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
| 212 code <<= 1; | |
| 213 si++; | |
| 214 } | |
| 215 | |
| 216 /* Figure C.3: generate encoding tables */ | |
| 217 /* These are code and size indexed by symbol value */ | |
| 218 | |
| 219 /* Set all codeless symbols to have code length 0; | |
| 220 * this lets us detect duplicate VAL entries here, and later | |
| 221 * allows emit_bits to detect any attempt to emit such symbols. | |
| 222 */ | |
| 223 MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); | |
| 224 | |
| 225 /* This is also a convenient place to check for out-of-range | |
| 226 * and duplicated VAL entries. We allow 0..255 for AC symbols | |
| 227 * but only 0..15 for DC. (We could constrain them further | |
| 228 * based on data depth and mode, but this seems enough.) | |
| 229 */ | |
| 230 maxsymbol = isDC ? 15 : 255; | |
| 231 | |
| 232 for (p = 0; p < lastp; p++) { | |
| 233 i = htbl->huffval[p]; | |
| 234 if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) | |
| 235 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |
| 236 dtbl->ehufco[i] = huffcode[p]; | |
| 237 dtbl->ehufsi[i] = huffsize[p]; | |
| 238 } | |
| 239 } | |
| 240 | |
| 241 | |
| 242 /* Outputting bytes to the file. | |
| 243 * NB: these must be called only when actually outputting, | |
| 244 * that is, entropy->gather_statistics == FALSE. | |
| 245 */ | |
| 246 | |
| 247 /* Emit a byte, taking 'action' if must suspend. */ | |
| 248 #define emit_byte_s(state,val,action) \ | |
| 249 { *(state)->next_output_byte++ = (JOCTET) (val); \ | |
| 250 if (--(state)->free_in_buffer == 0) \ | |
| 251 if (! dump_buffer_s(state)) \ | |
| 252 { action; } } | |
| 253 | |
| 254 /* Emit a byte */ | |
| 255 #define emit_byte_e(entropy,val) \ | |
| 256 { *(entropy)->next_output_byte++ = (JOCTET) (val); \ | |
| 257 if (--(entropy)->free_in_buffer == 0) \ | |
| 258 dump_buffer_e(entropy); } | |
| 259 | |
| 260 | |
| 261 LOCAL(boolean) | |
| 262 dump_buffer_s (working_state * state) | |
| 263 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ | |
| 264 { | |
| 265 struct jpeg_destination_mgr * dest = state->cinfo->dest; | |
| 266 | |
| 267 if (! (*dest->empty_output_buffer) (state->cinfo)) | |
| 268 return FALSE; | |
| 269 /* After a successful buffer dump, must reset buffer pointers */ | |
| 270 state->next_output_byte = dest->next_output_byte; | |
| 271 state->free_in_buffer = dest->free_in_buffer; | |
| 272 return TRUE; | |
| 273 } | |
| 274 | |
| 275 | |
| 276 LOCAL(void) | |
| 277 dump_buffer_e (huff_entropy_ptr entropy) | |
| 278 /* Empty the output buffer; we do not support suspension in this case. */ | |
| 279 { | |
| 280 struct jpeg_destination_mgr * dest = entropy->cinfo->dest; | |
| 281 | |
| 282 if (! (*dest->empty_output_buffer) (entropy->cinfo)) | |
| 283 ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); | |
| 284 /* After a successful buffer dump, must reset buffer pointers */ | |
| 285 entropy->next_output_byte = dest->next_output_byte; | |
| 286 entropy->free_in_buffer = dest->free_in_buffer; | |
| 287 } | |
| 288 | |
| 289 | |
| 290 /* Outputting bits to the file */ | |
| 291 | |
| 292 /* Only the right 24 bits of put_buffer are used; the valid bits are | |
| 293 * left-justified in this part. At most 16 bits can be passed to emit_bits | |
| 294 * in one call, and we never retain more than 7 bits in put_buffer | |
| 295 * between calls, so 24 bits are sufficient. | |
| 296 */ | |
| 297 | |
| 298 INLINE | |
| 299 LOCAL(boolean) | |
| 300 emit_bits_s (working_state * state, unsigned int code, int size) | |
| 301 /* Emit some bits; return TRUE if successful, FALSE if must suspend */ | |
| 302 { | |
| 303 /* This routine is heavily used, so it's worth coding tightly. */ | |
| 304 register INT32 put_buffer; | |
| 305 register int put_bits; | |
| 306 | |
| 307 /* if size is 0, caller used an invalid Huffman table entry */ | |
| 308 if (size == 0) | |
| 309 ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); | |
| 310 | |
| 311 /* mask off any extra bits in code */ | |
| 312 put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); | |
| 313 | |
| 314 /* new number of bits in buffer */ | |
| 315 put_bits = size + state->cur.put_bits; | |
| 316 | |
| 317 put_buffer <<= 24 - put_bits; /* align incoming bits */ | |
| 318 | |
| 319 /* and merge with old buffer contents */ | |
| 320 put_buffer |= state->cur.put_buffer; | |
| 321 | |
| 322 while (put_bits >= 8) { | |
| 323 int c = (int) ((put_buffer >> 16) & 0xFF); | |
| 324 | |
| 325 emit_byte_s(state, c, return FALSE); | |
| 326 if (c == 0xFF) { /* need to stuff a zero byte? */ | |
| 327 emit_byte_s(state, 0, return FALSE); | |
| 328 } | |
| 329 put_buffer <<= 8; | |
| 330 put_bits -= 8; | |
| 331 } | |
| 332 | |
| 333 state->cur.put_buffer = put_buffer; /* update state variables */ | |
| 334 state->cur.put_bits = put_bits; | |
| 335 | |
| 336 return TRUE; | |
| 337 } | |
| 338 | |
| 339 | |
| 340 INLINE | |
| 341 LOCAL(void) | |
| 342 emit_bits_e (huff_entropy_ptr entropy, unsigned int code, int size) | |
| 343 /* Emit some bits, unless we are in gather mode */ | |
| 344 { | |
| 345 /* This routine is heavily used, so it's worth coding tightly. */ | |
| 346 register INT32 put_buffer; | |
| 347 register int put_bits; | |
| 348 | |
| 349 /* if size is 0, caller used an invalid Huffman table entry */ | |
| 350 if (size == 0) | |
| 351 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); | |
| 352 | |
| 353 if (entropy->gather_statistics) | |
| 354 return; /* do nothing if we're only getting stats */ | |
| 355 | |
| 356 /* mask off any extra bits in code */ | |
| 357 put_buffer = ((INT32) code) & ((((INT32) 1) << size) - 1); | |
| 358 | |
| 359 /* new number of bits in buffer */ | |
| 360 put_bits = size + entropy->saved.put_bits; | |
| 361 | |
| 362 put_buffer <<= 24 - put_bits; /* align incoming bits */ | |
| 363 | |
| 364 /* and merge with old buffer contents */ | |
| 365 put_buffer |= entropy->saved.put_buffer; | |
| 366 | |
| 367 while (put_bits >= 8) { | |
| 368 int c = (int) ((put_buffer >> 16) & 0xFF); | |
| 369 | |
| 370 emit_byte_e(entropy, c); | |
| 371 if (c == 0xFF) { /* need to stuff a zero byte? */ | |
| 372 emit_byte_e(entropy, 0); | |
| 373 } | |
| 374 put_buffer <<= 8; | |
| 375 put_bits -= 8; | |
| 376 } | |
| 377 | |
| 378 entropy->saved.put_buffer = put_buffer; /* update variables */ | |
| 379 entropy->saved.put_bits = put_bits; | |
| 380 } | |
| 381 | |
| 382 | |
| 383 LOCAL(boolean) | |
| 384 flush_bits_s (working_state * state) | |
| 385 { | |
| 386 if (! emit_bits_s(state, 0x7F, 7)) /* fill any partial byte with ones */ | |
| 387 return FALSE; | |
| 388 state->cur.put_buffer = 0; /* and reset bit-buffer to empty */ | |
| 389 state->cur.put_bits = 0; | |
| 390 return TRUE; | |
| 391 } | |
| 392 | |
| 393 | |
| 394 LOCAL(void) | |
| 395 flush_bits_e (huff_entropy_ptr entropy) | |
| 396 { | |
| 397 emit_bits_e(entropy, 0x7F, 7); /* fill any partial byte with ones */ | |
| 398 entropy->saved.put_buffer = 0; /* and reset bit-buffer to empty */ | |
| 399 entropy->saved.put_bits = 0; | |
| 400 } | |
| 401 | |
| 402 | |
| 403 /* | |
| 404 * Emit (or just count) a Huffman symbol. | |
| 405 */ | |
| 406 | |
| 407 INLINE | |
| 408 LOCAL(void) | |
| 409 emit_dc_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) | |
| 410 { | |
| 411 if (entropy->gather_statistics) | |
| 412 entropy->dc_count_ptrs[tbl_no][symbol]++; | |
| 413 else { | |
| 414 c_derived_tbl * tbl = entropy->dc_derived_tbls[tbl_no]; | |
| 415 emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); | |
| 416 } | |
| 417 } | |
| 418 | |
| 419 | |
| 420 INLINE | |
| 421 LOCAL(void) | |
| 422 emit_ac_symbol (huff_entropy_ptr entropy, int tbl_no, int symbol) | |
| 423 { | |
| 424 if (entropy->gather_statistics) | |
| 425 entropy->ac_count_ptrs[tbl_no][symbol]++; | |
| 426 else { | |
| 427 c_derived_tbl * tbl = entropy->ac_derived_tbls[tbl_no]; | |
| 428 emit_bits_e(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); | |
| 429 } | |
| 430 } | |
| 431 | |
| 432 | |
| 433 /* | |
| 434 * Emit bits from a correction bit buffer. | |
| 435 */ | |
| 436 | |
| 437 LOCAL(void) | |
| 438 emit_buffered_bits (huff_entropy_ptr entropy, char * bufstart, | |
| 439 unsigned int nbits) | |
| 440 { | |
| 441 if (entropy->gather_statistics) | |
| 442 return; /* no real work */ | |
| 443 | |
| 444 while (nbits > 0) { | |
| 445 emit_bits_e(entropy, (unsigned int) (*bufstart), 1); | |
| 446 bufstart++; | |
| 447 nbits--; | |
| 448 } | |
| 449 } | |
| 450 | |
| 451 | |
| 452 /* | |
| 453 * Emit any pending EOBRUN symbol. | |
| 454 */ | |
| 455 | |
| 456 LOCAL(void) | |
| 457 emit_eobrun (huff_entropy_ptr entropy) | |
| 458 { | |
| 459 register int temp, nbits; | |
| 460 | |
| 461 if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ | |
| 462 temp = entropy->EOBRUN; | |
| 463 nbits = 0; | |
| 464 while ((temp >>= 1)) | |
| 465 nbits++; | |
| 466 /* safety check: shouldn't happen given limited correction-bit buffer */ | |
| 467 if (nbits > 14) | |
| 468 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); | |
| 469 | |
| 470 emit_ac_symbol(entropy, entropy->ac_tbl_no, nbits << 4); | |
| 471 if (nbits) | |
| 472 emit_bits_e(entropy, entropy->EOBRUN, nbits); | |
| 473 | |
| 474 entropy->EOBRUN = 0; | |
| 475 | |
| 476 /* Emit any buffered correction bits */ | |
| 477 emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); | |
| 478 entropy->BE = 0; | |
| 479 } | |
| 480 } | |
| 481 | |
| 482 | |
| 483 /* | |
| 484 * Emit a restart marker & resynchronize predictions. | |
| 485 */ | |
| 486 | |
| 487 LOCAL(boolean) | |
| 488 emit_restart_s (working_state * state, int restart_num) | |
| 489 { | |
| 490 int ci; | |
| 491 | |
| 492 if (! flush_bits_s(state)) | |
| 493 return FALSE; | |
| 494 | |
| 495 emit_byte_s(state, 0xFF, return FALSE); | |
| 496 emit_byte_s(state, JPEG_RST0 + restart_num, return FALSE); | |
| 497 | |
| 498 /* Re-initialize DC predictions to 0 */ | |
| 499 for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) | |
| 500 state->cur.last_dc_val[ci] = 0; | |
| 501 | |
| 502 /* The restart counter is not updated until we successfully write the MCU. */ | |
| 503 | |
| 504 return TRUE; | |
| 505 } | |
| 506 | |
| 507 | |
| 508 LOCAL(void) | |
| 509 emit_restart_e (huff_entropy_ptr entropy, int restart_num) | |
| 510 { | |
| 511 int ci; | |
| 512 | |
| 513 emit_eobrun(entropy); | |
| 514 | |
| 515 if (! entropy->gather_statistics) { | |
| 516 flush_bits_e(entropy); | |
| 517 emit_byte_e(entropy, 0xFF); | |
| 518 emit_byte_e(entropy, JPEG_RST0 + restart_num); | |
| 519 } | |
| 520 | |
| 521 if (entropy->cinfo->Ss == 0) { | |
| 522 /* Re-initialize DC predictions to 0 */ | |
| 523 for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) | |
| 524 entropy->saved.last_dc_val[ci] = 0; | |
| 525 } else { | |
| 526 /* Re-initialize all AC-related fields to 0 */ | |
| 527 entropy->EOBRUN = 0; | |
| 528 entropy->BE = 0; | |
| 529 } | |
| 530 } | |
| 531 | |
| 532 | |
| 533 /* | |
| 534 * MCU encoding for DC initial scan (either spectral selection, | |
| 535 * or first pass of successive approximation). | |
| 536 */ | |
| 537 | |
| 538 METHODDEF(boolean) | |
| 539 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 540 { | |
| 541 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 542 register int temp, temp2; | |
| 543 register int nbits; | |
| 544 int max_coef_bits; | |
| 545 int blkn, ci, tbl; | |
| 546 ISHIFT_TEMPS | |
| 547 | |
| 548 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
| 549 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
| 550 | |
| 551 /* Emit restart marker if needed */ | |
| 552 if (cinfo->restart_interval) | |
| 553 if (entropy->restarts_to_go == 0) | |
| 554 emit_restart_e(entropy, entropy->next_restart_num); | |
| 555 | |
| 556 /* Since we're encoding a difference, the range limit is twice as much. */ | |
| 557 max_coef_bits = cinfo->data_precision + 3; | |
| 558 | |
| 559 /* Encode the MCU data blocks */ | |
| 560 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 561 ci = cinfo->MCU_membership[blkn]; | |
| 562 tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | |
| 563 | |
| 564 /* Compute the DC value after the required point transform by Al. | |
| 565 * This is simply an arithmetic right shift. | |
| 566 */ | |
| 567 temp = IRIGHT_SHIFT((int) (MCU_data[blkn][0][0]), cinfo->Al); | |
| 568 | |
| 569 /* DC differences are figured on the point-transformed values. */ | |
| 570 if ((temp2 = temp - entropy->saved.last_dc_val[ci]) == 0) { | |
| 571 /* Count/emit the Huffman-coded symbol for the number of bits */ | |
| 572 emit_dc_symbol(entropy, tbl, 0); | |
| 573 | |
| 574 continue; | |
| 575 } | |
| 576 | |
| 577 entropy->saved.last_dc_val[ci] = temp; | |
| 578 | |
| 579 /* Encode the DC coefficient difference per section G.1.2.1 */ | |
| 580 if ((temp = temp2) < 0) { | |
| 581 temp = -temp; /* temp is abs value of input */ | |
| 582 /* For a negative input, want temp2 = bitwise complement of abs(input) */ | |
| 583 /* This code assumes we are on a two's complement machine */ | |
| 584 temp2--; | |
| 585 } | |
| 586 | |
| 587 /* Find the number of bits needed for the magnitude of the coefficient */ | |
| 588 nbits = 0; | |
| 589 do nbits++; /* there must be at least one 1 bit */ | |
| 590 while ((temp >>= 1)); | |
| 591 /* Check for out-of-range coefficient values */ | |
| 592 if (nbits > max_coef_bits) | |
| 593 ERREXIT(cinfo, JERR_BAD_DCT_COEF); | |
| 594 | |
| 595 /* Count/emit the Huffman-coded symbol for the number of bits */ | |
| 596 emit_dc_symbol(entropy, tbl, nbits); | |
| 597 | |
| 598 /* Emit that number of bits of the value, if positive, */ | |
| 599 /* or the complement of its magnitude, if negative. */ | |
| 600 emit_bits_e(entropy, (unsigned int) temp2, nbits); | |
| 601 } | |
| 602 | |
| 603 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
| 604 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
| 605 | |
| 606 /* Update restart-interval state too */ | |
| 607 if (cinfo->restart_interval) { | |
| 608 if (entropy->restarts_to_go == 0) { | |
| 609 entropy->restarts_to_go = cinfo->restart_interval; | |
| 610 entropy->next_restart_num++; | |
| 611 entropy->next_restart_num &= 7; | |
| 612 } | |
| 613 entropy->restarts_to_go--; | |
| 614 } | |
| 615 | |
| 616 return TRUE; | |
| 617 } | |
| 618 | |
| 619 | |
| 620 /* | |
| 621 * MCU encoding for AC initial scan (either spectral selection, | |
| 622 * or first pass of successive approximation). | |
| 623 */ | |
| 624 | |
| 625 METHODDEF(boolean) | |
| 626 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 627 { | |
| 628 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 629 const int * natural_order; | |
| 630 JBLOCKROW block; | |
| 631 register int temp, temp2; | |
| 632 register int nbits; | |
| 633 register int r, k; | |
| 634 int Se, Al, max_coef_bits; | |
| 635 | |
| 636 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
| 637 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
| 638 | |
| 639 /* Emit restart marker if needed */ | |
| 640 if (cinfo->restart_interval) | |
| 641 if (entropy->restarts_to_go == 0) | |
| 642 emit_restart_e(entropy, entropy->next_restart_num); | |
| 643 | |
| 644 Se = cinfo->Se; | |
| 645 Al = cinfo->Al; | |
| 646 natural_order = cinfo->natural_order; | |
| 647 max_coef_bits = cinfo->data_precision + 2; | |
| 648 | |
| 649 /* Encode the MCU data block */ | |
| 650 block = MCU_data[0]; | |
| 651 | |
| 652 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ | |
| 653 | |
| 654 r = 0; /* r = run length of zeros */ | |
| 655 | |
| 656 for (k = cinfo->Ss; k <= Se; k++) { | |
| 657 if ((temp = (*block)[natural_order[k]]) == 0) { | |
| 658 r++; | |
| 659 continue; | |
| 660 } | |
| 661 /* We must apply the point transform by Al. For AC coefficients this | |
| 662 * is an integer division with rounding towards 0. To do this portably | |
| 663 * in C, we shift after obtaining the absolute value; so the code is | |
| 664 * interwoven with finding the abs value (temp) and output bits (temp2). | |
| 665 */ | |
| 666 if (temp < 0) { | |
| 667 temp = -temp; /* temp is abs value of input */ | |
| 668 /* Apply the point transform, and watch out for case */ | |
| 669 /* that nonzero coef is zero after point transform. */ | |
| 670 if ((temp >>= Al) == 0) { | |
| 671 r++; | |
| 672 continue; | |
| 673 } | |
| 674 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ | |
| 675 temp2 = ~temp; | |
| 676 } else { | |
| 677 /* Apply the point transform, and watch out for case */ | |
| 678 /* that nonzero coef is zero after point transform. */ | |
| 679 if ((temp >>= Al) == 0) { | |
| 680 r++; | |
| 681 continue; | |
| 682 } | |
| 683 temp2 = temp; | |
| 684 } | |
| 685 | |
| 686 /* Emit any pending EOBRUN */ | |
| 687 if (entropy->EOBRUN > 0) | |
| 688 emit_eobrun(entropy); | |
| 689 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | |
| 690 while (r > 15) { | |
| 691 emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); | |
| 692 r -= 16; | |
| 693 } | |
| 694 | |
| 695 /* Find the number of bits needed for the magnitude of the coefficient */ | |
| 696 nbits = 0; | |
| 697 do nbits++; /* there must be at least one 1 bit */ | |
| 698 while ((temp >>= 1)); | |
| 699 /* Check for out-of-range coefficient values */ | |
| 700 if (nbits > max_coef_bits) | |
| 701 ERREXIT(cinfo, JERR_BAD_DCT_COEF); | |
| 702 | |
| 703 /* Count/emit Huffman symbol for run length / number of bits */ | |
| 704 emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); | |
| 705 | |
| 706 /* Emit that number of bits of the value, if positive, */ | |
| 707 /* or the complement of its magnitude, if negative. */ | |
| 708 emit_bits_e(entropy, (unsigned int) temp2, nbits); | |
| 709 | |
| 710 r = 0; /* reset zero run length */ | |
| 711 } | |
| 712 | |
| 713 if (r > 0) { /* If there are trailing zeroes, */ | |
| 714 entropy->EOBRUN++; /* count an EOB */ | |
| 715 if (entropy->EOBRUN == 0x7FFF) | |
| 716 emit_eobrun(entropy); /* force it out to avoid overflow */ | |
| 717 } | |
| 718 | |
| 719 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
| 720 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
| 721 | |
| 722 /* Update restart-interval state too */ | |
| 723 if (cinfo->restart_interval) { | |
| 724 if (entropy->restarts_to_go == 0) { | |
| 725 entropy->restarts_to_go = cinfo->restart_interval; | |
| 726 entropy->next_restart_num++; | |
| 727 entropy->next_restart_num &= 7; | |
| 728 } | |
| 729 entropy->restarts_to_go--; | |
| 730 } | |
| 731 | |
| 732 return TRUE; | |
| 733 } | |
| 734 | |
| 735 | |
| 736 /* | |
| 737 * MCU encoding for DC successive approximation refinement scan. | |
| 738 * Note: we assume such scans can be multi-component, | |
| 739 * although the spec is not very clear on the point. | |
| 740 */ | |
| 741 | |
| 742 METHODDEF(boolean) | |
| 743 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 744 { | |
| 745 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 746 int Al, blkn; | |
| 747 | |
| 748 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
| 749 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
| 750 | |
| 751 /* Emit restart marker if needed */ | |
| 752 if (cinfo->restart_interval) | |
| 753 if (entropy->restarts_to_go == 0) | |
| 754 emit_restart_e(entropy, entropy->next_restart_num); | |
| 755 | |
| 756 Al = cinfo->Al; | |
| 757 | |
| 758 /* Encode the MCU data blocks */ | |
| 759 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 760 /* We simply emit the Al'th bit of the DC coefficient value. */ | |
| 761 emit_bits_e(entropy, (unsigned int) (MCU_data[blkn][0][0] >> Al), 1); | |
| 762 } | |
| 763 | |
| 764 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
| 765 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
| 766 | |
| 767 /* Update restart-interval state too */ | |
| 768 if (cinfo->restart_interval) { | |
| 769 if (entropy->restarts_to_go == 0) { | |
| 770 entropy->restarts_to_go = cinfo->restart_interval; | |
| 771 entropy->next_restart_num++; | |
| 772 entropy->next_restart_num &= 7; | |
| 773 } | |
| 774 entropy->restarts_to_go--; | |
| 775 } | |
| 776 | |
| 777 return TRUE; | |
| 778 } | |
| 779 | |
| 780 | |
| 781 /* | |
| 782 * MCU encoding for AC successive approximation refinement scan. | |
| 783 */ | |
| 784 | |
| 785 METHODDEF(boolean) | |
| 786 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 787 { | |
| 788 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 789 const int * natural_order; | |
| 790 JBLOCKROW block; | |
| 791 register int temp; | |
| 792 register int r, k; | |
| 793 int Se, Al; | |
| 794 int EOB; | |
| 795 char *BR_buffer; | |
| 796 unsigned int BR; | |
| 797 int absvalues[DCTSIZE2]; | |
| 798 | |
| 799 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
| 800 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
| 801 | |
| 802 /* Emit restart marker if needed */ | |
| 803 if (cinfo->restart_interval) | |
| 804 if (entropy->restarts_to_go == 0) | |
| 805 emit_restart_e(entropy, entropy->next_restart_num); | |
| 806 | |
| 807 Se = cinfo->Se; | |
| 808 Al = cinfo->Al; | |
| 809 natural_order = cinfo->natural_order; | |
| 810 | |
| 811 /* Encode the MCU data block */ | |
| 812 block = MCU_data[0]; | |
| 813 | |
| 814 /* It is convenient to make a pre-pass to determine the transformed | |
| 815 * coefficients' absolute values and the EOB position. | |
| 816 */ | |
| 817 EOB = 0; | |
| 818 for (k = cinfo->Ss; k <= Se; k++) { | |
| 819 temp = (*block)[natural_order[k]]; | |
| 820 /* We must apply the point transform by Al. For AC coefficients this | |
| 821 * is an integer division with rounding towards 0. To do this portably | |
| 822 * in C, we shift after obtaining the absolute value. | |
| 823 */ | |
| 824 if (temp < 0) | |
| 825 temp = -temp; /* temp is abs value of input */ | |
| 826 temp >>= Al; /* apply the point transform */ | |
| 827 absvalues[k] = temp; /* save abs value for main pass */ | |
| 828 if (temp == 1) | |
| 829 EOB = k; /* EOB = index of last newly-nonzero coef */ | |
| 830 } | |
| 831 | |
| 832 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ | |
| 833 | |
| 834 r = 0; /* r = run length of zeros */ | |
| 835 BR = 0; /* BR = count of buffered bits added now */ | |
| 836 BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ | |
| 837 | |
| 838 for (k = cinfo->Ss; k <= Se; k++) { | |
| 839 if ((temp = absvalues[k]) == 0) { | |
| 840 r++; | |
| 841 continue; | |
| 842 } | |
| 843 | |
| 844 /* Emit any required ZRLs, but not if they can be folded into EOB */ | |
| 845 while (r > 15 && k <= EOB) { | |
| 846 /* emit any pending EOBRUN and the BE correction bits */ | |
| 847 emit_eobrun(entropy); | |
| 848 /* Emit ZRL */ | |
| 849 emit_ac_symbol(entropy, entropy->ac_tbl_no, 0xF0); | |
| 850 r -= 16; | |
| 851 /* Emit buffered correction bits that must be associated with ZRL */ | |
| 852 emit_buffered_bits(entropy, BR_buffer, BR); | |
| 853 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ | |
| 854 BR = 0; | |
| 855 } | |
| 856 | |
| 857 /* If the coef was previously nonzero, it only needs a correction bit. | |
| 858 * NOTE: a straight translation of the spec's figure G.7 would suggest | |
| 859 * that we also need to test r > 15. But if r > 15, we can only get here | |
| 860 * if k > EOB, which implies that this coefficient is not 1. | |
| 861 */ | |
| 862 if (temp > 1) { | |
| 863 /* The correction bit is the next bit of the absolute value. */ | |
| 864 BR_buffer[BR++] = (char) (temp & 1); | |
| 865 continue; | |
| 866 } | |
| 867 | |
| 868 /* Emit any pending EOBRUN and the BE correction bits */ | |
| 869 emit_eobrun(entropy); | |
| 870 | |
| 871 /* Count/emit Huffman symbol for run length / number of bits */ | |
| 872 emit_ac_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); | |
| 873 | |
| 874 /* Emit output bit for newly-nonzero coef */ | |
| 875 temp = ((*block)[natural_order[k]] < 0) ? 0 : 1; | |
| 876 emit_bits_e(entropy, (unsigned int) temp, 1); | |
| 877 | |
| 878 /* Emit buffered correction bits that must be associated with this code */ | |
| 879 emit_buffered_bits(entropy, BR_buffer, BR); | |
| 880 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ | |
| 881 BR = 0; | |
| 882 r = 0; /* reset zero run length */ | |
| 883 } | |
| 884 | |
| 885 if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ | |
| 886 entropy->EOBRUN++; /* count an EOB */ | |
| 887 entropy->BE += BR; /* concat my correction bits to older ones */ | |
| 888 /* We force out the EOB if we risk either: | |
| 889 * 1. overflow of the EOB counter; | |
| 890 * 2. overflow of the correction bit buffer during the next MCU. | |
| 891 */ | |
| 892 if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) | |
| 893 emit_eobrun(entropy); | |
| 894 } | |
| 895 | |
| 896 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
| 897 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
| 898 | |
| 899 /* Update restart-interval state too */ | |
| 900 if (cinfo->restart_interval) { | |
| 901 if (entropy->restarts_to_go == 0) { | |
| 902 entropy->restarts_to_go = cinfo->restart_interval; | |
| 903 entropy->next_restart_num++; | |
| 904 entropy->next_restart_num &= 7; | |
| 905 } | |
| 906 entropy->restarts_to_go--; | |
| 907 } | |
| 908 | |
| 909 return TRUE; | |
| 910 } | |
| 911 | |
| 912 | |
| 913 /* Encode a single block's worth of coefficients */ | |
| 914 | |
| 915 LOCAL(boolean) | |
| 916 encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, | |
| 917 c_derived_tbl *dctbl, c_derived_tbl *actbl) | |
| 918 { | |
| 919 register int temp, temp2; | |
| 920 register int nbits; | |
| 921 register int r, k; | |
| 922 int Se = state->cinfo->lim_Se; | |
| 923 int max_coef_bits = state->cinfo->data_precision + 3; | |
| 924 const int * natural_order = state->cinfo->natural_order; | |
| 925 | |
| 926 /* Encode the DC coefficient difference per section F.1.2.1 */ | |
| 927 | |
| 928 if ((temp = block[0] - last_dc_val) == 0) { | |
| 929 /* Emit the Huffman-coded symbol for the number of bits */ | |
| 930 if (! emit_bits_s(state, dctbl->ehufco[0], dctbl->ehufsi[0])) | |
| 931 return FALSE; | |
| 932 } else { | |
| 933 if ((temp2 = temp) < 0) { | |
| 934 temp = -temp; /* temp is abs value of input */ | |
| 935 /* For a negative input, want temp2 = bitwise complement of abs(input) */ | |
| 936 /* This code assumes we are on a two's complement machine */ | |
| 937 temp2--; | |
| 938 } | |
| 939 | |
| 940 /* Find the number of bits needed for the magnitude of the coefficient */ | |
| 941 nbits = 0; | |
| 942 do nbits++; /* there must be at least one 1 bit */ | |
| 943 while ((temp >>= 1)); | |
| 944 /* Check for out-of-range coefficient values. | |
| 945 * Since we're encoding a difference, the range limit is twice as much. | |
| 946 */ | |
| 947 if (nbits > max_coef_bits) | |
| 948 ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); | |
| 949 | |
| 950 /* Emit the Huffman-coded symbol for the number of bits */ | |
| 951 if (! emit_bits_s(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) | |
| 952 return FALSE; | |
| 953 | |
| 954 /* Emit that number of bits of the value, if positive, */ | |
| 955 /* or the complement of its magnitude, if negative. */ | |
| 956 if (! emit_bits_s(state, (unsigned int) temp2, nbits)) | |
| 957 return FALSE; | |
| 958 } | |
| 959 | |
| 960 /* Encode the AC coefficients per section F.1.2.2 */ | |
| 961 | |
| 962 r = 0; /* r = run length of zeros */ | |
| 963 | |
| 964 for (k = 1; k <= Se; k++) { | |
| 965 if ((temp = block[natural_order[k]]) == 0) { | |
| 966 r++; | |
| 967 continue; | |
| 968 } | |
| 969 | |
| 970 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | |
| 971 while (r > 15) { | |
| 972 if (! emit_bits_s(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) | |
| 973 return FALSE; | |
| 974 r -= 16; | |
| 975 } | |
| 976 | |
| 977 if ((temp2 = temp) < 0) { | |
| 978 temp = -temp; /* temp is abs value of input */ | |
| 979 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ | |
| 980 /* This code assumes we are on a two's complement machine */ | |
| 981 temp2--; | |
| 982 } | |
| 983 | |
| 984 /* Find the number of bits needed for the magnitude of the coefficient */ | |
| 985 nbits = 0; | |
| 986 do nbits++; /* there must be at least one 1 bit */ | |
| 987 while ((temp >>= 1)); | |
| 988 /* Check for out-of-range coefficient values. | |
| 989 * Use ">=" instead of ">" so can use the | |
| 990 * same one larger limit from DC check here. | |
| 991 */ | |
| 992 if (nbits >= max_coef_bits) | |
| 993 ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); | |
| 994 | |
| 995 /* Emit Huffman symbol for run length / number of bits */ | |
| 996 temp = (r << 4) + nbits; | |
| 997 if (! emit_bits_s(state, actbl->ehufco[temp], actbl->ehufsi[temp])) | |
| 998 return FALSE; | |
| 999 | |
| 1000 /* Emit that number of bits of the value, if positive, */ | |
| 1001 /* or the complement of its magnitude, if negative. */ | |
| 1002 if (! emit_bits_s(state, (unsigned int) temp2, nbits)) | |
| 1003 return FALSE; | |
| 1004 | |
| 1005 r = 0; /* reset zero run length */ | |
| 1006 } | |
| 1007 | |
| 1008 /* If the last coef(s) were zero, emit an end-of-block code */ | |
| 1009 if (r > 0) | |
| 1010 if (! emit_bits_s(state, actbl->ehufco[0], actbl->ehufsi[0])) | |
| 1011 return FALSE; | |
| 1012 | |
| 1013 return TRUE; | |
| 1014 } | |
| 1015 | |
| 1016 | |
| 1017 /* | |
| 1018 * Encode and output one MCU's worth of Huffman-compressed coefficients. | |
| 1019 */ | |
| 1020 | |
| 1021 METHODDEF(boolean) | |
| 1022 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 1023 { | |
| 1024 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 1025 working_state state; | |
| 1026 int blkn, ci; | |
| 1027 jpeg_component_info * compptr; | |
| 1028 | |
| 1029 /* Load up working state */ | |
| 1030 state.next_output_byte = cinfo->dest->next_output_byte; | |
| 1031 state.free_in_buffer = cinfo->dest->free_in_buffer; | |
| 1032 ASSIGN_STATE(state.cur, entropy->saved); | |
| 1033 state.cinfo = cinfo; | |
| 1034 | |
| 1035 /* Emit restart marker if needed */ | |
| 1036 if (cinfo->restart_interval) { | |
| 1037 if (entropy->restarts_to_go == 0) | |
| 1038 if (! emit_restart_s(&state, entropy->next_restart_num)) | |
| 1039 return FALSE; | |
| 1040 } | |
| 1041 | |
| 1042 /* Encode the MCU data blocks */ | |
| 1043 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 1044 ci = cinfo->MCU_membership[blkn]; | |
| 1045 compptr = cinfo->cur_comp_info[ci]; | |
| 1046 if (! encode_one_block(&state, | |
| 1047 MCU_data[blkn][0], state.cur.last_dc_val[ci], | |
| 1048 entropy->dc_derived_tbls[compptr->dc_tbl_no], | |
| 1049 entropy->ac_derived_tbls[compptr->ac_tbl_no])) | |
| 1050 return FALSE; | |
| 1051 /* Update last_dc_val */ | |
| 1052 state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; | |
| 1053 } | |
| 1054 | |
| 1055 /* Completed MCU, so update state */ | |
| 1056 cinfo->dest->next_output_byte = state.next_output_byte; | |
| 1057 cinfo->dest->free_in_buffer = state.free_in_buffer; | |
| 1058 ASSIGN_STATE(entropy->saved, state.cur); | |
| 1059 | |
| 1060 /* Update restart-interval state too */ | |
| 1061 if (cinfo->restart_interval) { | |
| 1062 if (entropy->restarts_to_go == 0) { | |
| 1063 entropy->restarts_to_go = cinfo->restart_interval; | |
| 1064 entropy->next_restart_num++; | |
| 1065 entropy->next_restart_num &= 7; | |
| 1066 } | |
| 1067 entropy->restarts_to_go--; | |
| 1068 } | |
| 1069 | |
| 1070 return TRUE; | |
| 1071 } | |
| 1072 | |
| 1073 | |
| 1074 /* | |
| 1075 * Finish up at the end of a Huffman-compressed scan. | |
| 1076 */ | |
| 1077 | |
| 1078 METHODDEF(void) | |
| 1079 finish_pass_huff (j_compress_ptr cinfo) | |
| 1080 { | |
| 1081 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 1082 working_state state; | |
| 1083 | |
| 1084 if (cinfo->progressive_mode) { | |
| 1085 entropy->next_output_byte = cinfo->dest->next_output_byte; | |
| 1086 entropy->free_in_buffer = cinfo->dest->free_in_buffer; | |
| 1087 | |
| 1088 /* Flush out any buffered data */ | |
| 1089 emit_eobrun(entropy); | |
| 1090 flush_bits_e(entropy); | |
| 1091 | |
| 1092 cinfo->dest->next_output_byte = entropy->next_output_byte; | |
| 1093 cinfo->dest->free_in_buffer = entropy->free_in_buffer; | |
| 1094 } else { | |
| 1095 /* Load up working state ... flush_bits needs it */ | |
| 1096 state.next_output_byte = cinfo->dest->next_output_byte; | |
| 1097 state.free_in_buffer = cinfo->dest->free_in_buffer; | |
| 1098 ASSIGN_STATE(state.cur, entropy->saved); | |
| 1099 state.cinfo = cinfo; | |
| 1100 | |
| 1101 /* Flush out the last data */ | |
| 1102 if (! flush_bits_s(&state)) | |
| 1103 ERREXIT(cinfo, JERR_CANT_SUSPEND); | |
| 1104 | |
| 1105 /* Update state */ | |
| 1106 cinfo->dest->next_output_byte = state.next_output_byte; | |
| 1107 cinfo->dest->free_in_buffer = state.free_in_buffer; | |
| 1108 ASSIGN_STATE(entropy->saved, state.cur); | |
| 1109 } | |
| 1110 } | |
| 1111 | |
| 1112 | |
| 1113 /* | |
| 1114 * Huffman coding optimization. | |
| 1115 * | |
| 1116 * We first scan the supplied data and count the number of uses of each symbol | |
| 1117 * that is to be Huffman-coded. (This process MUST agree with the code above.) | |
| 1118 * Then we build a Huffman coding tree for the observed counts. | |
| 1119 * Symbols which are not needed at all for the particular image are not | |
| 1120 * assigned any code, which saves space in the DHT marker as well as in | |
| 1121 * the compressed data. | |
| 1122 */ | |
| 1123 | |
| 1124 | |
| 1125 /* Process a single block's worth of coefficients */ | |
| 1126 | |
| 1127 LOCAL(void) | |
| 1128 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, | |
| 1129 long dc_counts[], long ac_counts[]) | |
| 1130 { | |
| 1131 register int temp; | |
| 1132 register int nbits; | |
| 1133 register int r, k; | |
| 1134 int Se = cinfo->lim_Se; | |
| 1135 int max_coef_bits = cinfo->data_precision + 3; | |
| 1136 const int * natural_order = cinfo->natural_order; | |
| 1137 | |
| 1138 /* Encode the DC coefficient difference per section F.1.2.1 */ | |
| 1139 | |
| 1140 if ((temp = block[0] - last_dc_val) == 0) { | |
| 1141 /* Count the Huffman symbol for the number of bits */ | |
| 1142 dc_counts[0]++; | |
| 1143 } else { | |
| 1144 if (temp < 0) | |
| 1145 temp = -temp; /* temp is abs value of input */ | |
| 1146 | |
| 1147 /* Find the number of bits needed for the magnitude of the coefficient */ | |
| 1148 nbits = 0; | |
| 1149 do nbits++; /* there must be at least one 1 bit */ | |
| 1150 while ((temp >>= 1)); | |
| 1151 /* Check for out-of-range coefficient values. | |
| 1152 * Since we're encoding a difference, the range limit is twice as much. | |
| 1153 */ | |
| 1154 if (nbits > max_coef_bits) | |
| 1155 ERREXIT(cinfo, JERR_BAD_DCT_COEF); | |
| 1156 | |
| 1157 /* Count the Huffman symbol for the number of bits */ | |
| 1158 dc_counts[nbits]++; | |
| 1159 } | |
| 1160 | |
| 1161 /* Encode the AC coefficients per section F.1.2.2 */ | |
| 1162 | |
| 1163 r = 0; /* r = run length of zeros */ | |
| 1164 | |
| 1165 for (k = 1; k <= Se; k++) { | |
| 1166 if ((temp = block[natural_order[k]]) == 0) { | |
| 1167 r++; | |
| 1168 continue; | |
| 1169 } | |
| 1170 | |
| 1171 /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | |
| 1172 while (r > 15) { | |
| 1173 ac_counts[0xF0]++; | |
| 1174 r -= 16; | |
| 1175 } | |
| 1176 | |
| 1177 if (temp < 0) | |
| 1178 temp = -temp; /* temp is abs value of input */ | |
| 1179 | |
| 1180 /* Find the number of bits needed for the magnitude of the coefficient */ | |
| 1181 nbits = 0; | |
| 1182 do nbits++; /* there must be at least one 1 bit */ | |
| 1183 while ((temp >>= 1)); | |
| 1184 /* Check for out-of-range coefficient values. | |
| 1185 * Use ">=" instead of ">" so can use the | |
| 1186 * same one larger limit from DC check here. | |
| 1187 */ | |
| 1188 if (nbits >= max_coef_bits) | |
| 1189 ERREXIT(cinfo, JERR_BAD_DCT_COEF); | |
| 1190 | |
| 1191 /* Count Huffman symbol for run length / number of bits */ | |
| 1192 ac_counts[(r << 4) + nbits]++; | |
| 1193 | |
| 1194 r = 0; /* reset zero run length */ | |
| 1195 } | |
| 1196 | |
| 1197 /* If the last coef(s) were zero, emit an end-of-block code */ | |
| 1198 if (r > 0) | |
| 1199 ac_counts[0]++; | |
| 1200 } | |
| 1201 | |
| 1202 | |
| 1203 /* | |
| 1204 * Trial-encode one MCU's worth of Huffman-compressed coefficients. | |
| 1205 * No data is actually output, so no suspension return is possible. | |
| 1206 */ | |
| 1207 | |
| 1208 METHODDEF(boolean) | |
| 1209 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKARRAY MCU_data) | |
| 1210 { | |
| 1211 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 1212 int blkn, ci; | |
| 1213 jpeg_component_info * compptr; | |
| 1214 | |
| 1215 /* Take care of restart intervals if needed */ | |
| 1216 if (cinfo->restart_interval) { | |
| 1217 if (entropy->restarts_to_go == 0) { | |
| 1218 /* Re-initialize DC predictions to 0 */ | |
| 1219 for (ci = 0; ci < cinfo->comps_in_scan; ci++) | |
| 1220 entropy->saved.last_dc_val[ci] = 0; | |
| 1221 /* Update restart state */ | |
| 1222 entropy->restarts_to_go = cinfo->restart_interval; | |
| 1223 } | |
| 1224 entropy->restarts_to_go--; | |
| 1225 } | |
| 1226 | |
| 1227 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |
| 1228 ci = cinfo->MCU_membership[blkn]; | |
| 1229 compptr = cinfo->cur_comp_info[ci]; | |
| 1230 htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], | |
| 1231 entropy->dc_count_ptrs[compptr->dc_tbl_no], | |
| 1232 entropy->ac_count_ptrs[compptr->ac_tbl_no]); | |
| 1233 entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; | |
| 1234 } | |
| 1235 | |
| 1236 return TRUE; | |
| 1237 } | |
| 1238 | |
| 1239 | |
| 1240 /* | |
| 1241 * Generate the best Huffman code table for the given counts, fill htbl. | |
| 1242 * | |
| 1243 * The JPEG standard requires that no symbol be assigned a codeword of all | |
| 1244 * one bits (so that padding bits added at the end of a compressed segment | |
| 1245 * can't look like a valid code). Because of the canonical ordering of | |
| 1246 * codewords, this just means that there must be an unused slot in the | |
| 1247 * longest codeword length category. Section K.2 of the JPEG spec suggests | |
| 1248 * reserving such a slot by pretending that symbol 256 is a valid symbol | |
| 1249 * with count 1. In theory that's not optimal; giving it count zero but | |
| 1250 * including it in the symbol set anyway should give a better Huffman code. | |
| 1251 * But the theoretically better code actually seems to come out worse in | |
| 1252 * practice, because it produces more all-ones bytes (which incur stuffed | |
| 1253 * zero bytes in the final file). In any case the difference is tiny. | |
| 1254 * | |
| 1255 * The JPEG standard requires Huffman codes to be no more than 16 bits long. | |
| 1256 * If some symbols have a very small but nonzero probability, the Huffman tree | |
| 1257 * must be adjusted to meet the code length restriction. We currently use | |
| 1258 * the adjustment method suggested in JPEG section K.2. This method is *not* | |
| 1259 * optimal; it may not choose the best possible limited-length code. But | |
| 1260 * typically only very-low-frequency symbols will be given less-than-optimal | |
| 1261 * lengths, so the code is almost optimal. Experimental comparisons against | |
| 1262 * an optimal limited-length-code algorithm indicate that the difference is | |
| 1263 * microscopic --- usually less than a hundredth of a percent of total size. | |
| 1264 * So the extra complexity of an optimal algorithm doesn't seem worthwhile. | |
| 1265 */ | |
| 1266 | |
| 1267 LOCAL(void) | |
| 1268 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) | |
| 1269 { | |
| 1270 #define MAX_CLEN 32 /* assumed maximum initial code length */ | |
| 1271 UINT8 bits[MAX_CLEN+1]; /* bits[k] = # of symbols with code length k */ | |
| 1272 int codesize[257]; /* codesize[k] = code length of symbol k */ | |
| 1273 int others[257]; /* next symbol in current branch of tree */ | |
| 1274 int c1, c2, i, j; | |
| 1275 UINT8 *p; | |
| 1276 long v; | |
| 1277 | |
| 1278 freq[256] = 1; /* make sure 256 has a nonzero count */ | |
| 1279 /* Including the pseudo-symbol 256 in the Huffman procedure guarantees | |
| 1280 * that no real symbol is given code-value of all ones, because 256 | |
| 1281 * will be placed last in the largest codeword category. | |
| 1282 * In the symbol list build procedure this element serves as sentinel | |
| 1283 * for the zero run loop. | |
| 1284 */ | |
| 1285 | |
| 1286 #ifndef DONT_USE_FANCY_HUFF_OPT | |
| 1287 | |
| 1288 /* Build list of symbols sorted in order of descending frequency */ | |
| 1289 /* This approach has several benefits (thank to John Korejwa for the idea): | |
| 1290 * 1. | |
| 1291 * If a codelength category is split during the length limiting procedure | |
| 1292 * below, the feature that more frequent symbols are assigned shorter | |
| 1293 * codewords remains valid for the adjusted code. | |
| 1294 * 2. | |
| 1295 * To reduce consecutive ones in a Huffman data stream (thus reducing the | |
| 1296 * number of stuff bytes in JPEG) it is preferable to follow 0 branches | |
| 1297 * (and avoid 1 branches) as much as possible. This is easily done by | |
| 1298 * assigning symbols to leaves of the Huffman tree in order of decreasing | |
| 1299 * frequency, with no secondary sort based on codelengths. | |
| 1300 * 3. | |
| 1301 * The symbol list can be built independently from the assignment of code | |
| 1302 * lengths by the Huffman procedure below. | |
| 1303 * Note: The symbol list build procedure must be performed first, because | |
| 1304 * the Huffman procedure assigning the codelengths clobbers the frequency | |
| 1305 * counts! | |
| 1306 */ | |
| 1307 | |
| 1308 /* Here we use the others array as a linked list of nonzero frequencies | |
| 1309 * to be sorted. Already sorted elements are removed from the list. | |
| 1310 */ | |
| 1311 | |
| 1312 /* Building list */ | |
| 1313 | |
| 1314 /* This item does not correspond to a valid symbol frequency and is used | |
| 1315 * as starting index. | |
| 1316 */ | |
| 1317 j = 256; | |
| 1318 | |
| 1319 for (i = 0;; i++) { | |
| 1320 if (freq[i] == 0) /* skip zero frequencies */ | |
| 1321 continue; | |
| 1322 if (i > 255) | |
| 1323 break; | |
| 1324 others[j] = i; /* this symbol value */ | |
| 1325 j = i; /* previous symbol value */ | |
| 1326 } | |
| 1327 others[j] = -1; /* mark end of list */ | |
| 1328 | |
| 1329 /* Sorting list */ | |
| 1330 | |
| 1331 p = htbl->huffval; | |
| 1332 while ((c1 = others[256]) >= 0) { | |
| 1333 v = freq[c1]; | |
| 1334 i = c1; /* first symbol value */ | |
| 1335 j = 256; /* pseudo symbol value for starting index */ | |
| 1336 while ((c2 = others[c1]) >= 0) { | |
| 1337 if (freq[c2] > v) { | |
| 1338 v = freq[c2]; | |
| 1339 i = c2; /* this symbol value */ | |
| 1340 j = c1; /* previous symbol value */ | |
| 1341 } | |
| 1342 c1 = c2; | |
| 1343 } | |
| 1344 others[j] = others[i]; /* remove this symbol i from list */ | |
| 1345 *p++ = (UINT8) i; | |
| 1346 } | |
| 1347 | |
| 1348 #endif /* DONT_USE_FANCY_HUFF_OPT */ | |
| 1349 | |
| 1350 /* This algorithm is explained in section K.2 of the JPEG standard */ | |
| 1351 | |
| 1352 MEMZERO(bits, SIZEOF(bits)); | |
| 1353 MEMZERO(codesize, SIZEOF(codesize)); | |
| 1354 for (i = 0; i < 257; i++) | |
| 1355 others[i] = -1; /* init links to empty */ | |
| 1356 | |
| 1357 /* Huffman's basic algorithm to assign optimal code lengths to symbols */ | |
| 1358 | |
| 1359 for (;;) { | |
| 1360 /* Find the smallest nonzero frequency, set c1 = its symbol */ | |
| 1361 /* In case of ties, take the larger symbol number */ | |
| 1362 c1 = -1; | |
| 1363 v = 1000000000L; | |
| 1364 for (i = 0; i <= 256; i++) { | |
| 1365 if (freq[i] && freq[i] <= v) { | |
| 1366 v = freq[i]; | |
| 1367 c1 = i; | |
| 1368 } | |
| 1369 } | |
| 1370 | |
| 1371 /* Find the next smallest nonzero frequency, set c2 = its symbol */ | |
| 1372 /* In case of ties, take the larger symbol number */ | |
| 1373 c2 = -1; | |
| 1374 v = 1000000000L; | |
| 1375 for (i = 0; i <= 256; i++) { | |
| 1376 if (freq[i] && freq[i] <= v && i != c1) { | |
| 1377 v = freq[i]; | |
| 1378 c2 = i; | |
| 1379 } | |
| 1380 } | |
| 1381 | |
| 1382 /* Done if we've merged everything into one frequency */ | |
| 1383 if (c2 < 0) | |
| 1384 break; | |
| 1385 | |
| 1386 /* Else merge the two counts/trees */ | |
| 1387 freq[c1] += freq[c2]; | |
| 1388 freq[c2] = 0; | |
| 1389 | |
| 1390 /* Increment the codesize of everything in c1's tree branch */ | |
| 1391 codesize[c1]++; | |
| 1392 while (others[c1] >= 0) { | |
| 1393 c1 = others[c1]; | |
| 1394 codesize[c1]++; | |
| 1395 } | |
| 1396 | |
| 1397 others[c1] = c2; /* chain c2 onto c1's tree branch */ | |
| 1398 | |
| 1399 /* Increment the codesize of everything in c2's tree branch */ | |
| 1400 codesize[c2]++; | |
| 1401 while (others[c2] >= 0) { | |
| 1402 c2 = others[c2]; | |
| 1403 codesize[c2]++; | |
| 1404 } | |
| 1405 } | |
| 1406 | |
| 1407 /* Now count the number of symbols of each code length */ | |
| 1408 for (i = 0; i <= 256; i++) { | |
| 1409 if (codesize[i]) { | |
| 1410 /* The JPEG standard seems to think that this can't happen, */ | |
| 1411 /* but I'm paranoid... */ | |
| 1412 if (codesize[i] > MAX_CLEN) | |
| 1413 ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); | |
| 1414 | |
| 1415 bits[codesize[i]]++; | |
| 1416 } | |
| 1417 } | |
| 1418 | |
| 1419 /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure | |
| 1420 * Huffman procedure assigned any such lengths, we must adjust the coding. | |
| 1421 * Here is what the JPEG spec says about how this next bit works: | |
| 1422 * Since symbols are paired for the longest Huffman code, the symbols are | |
| 1423 * removed from this length category two at a time. The prefix for the pair | |
| 1424 * (which is one bit shorter) is allocated to one of the pair; then, | |
| 1425 * skipping the BITS entry for that prefix length, a code word from the next | |
| 1426 * shortest nonzero BITS entry is converted into a prefix for two code words | |
| 1427 * one bit longer. | |
| 1428 */ | |
| 1429 | |
| 1430 for (i = MAX_CLEN; i > 16; i--) { | |
| 1431 while (bits[i] > 0) { | |
| 1432 j = i - 2; /* find length of new prefix to be used */ | |
| 1433 while (bits[j] == 0) { | |
| 1434 if (j == 0) | |
| 1435 ERREXIT(cinfo, JERR_HUFF_CLEN_OUTOFBOUNDS); | |
| 1436 j--; | |
| 1437 } | |
| 1438 | |
| 1439 bits[i] -= 2; /* remove two symbols */ | |
| 1440 bits[i-1]++; /* one goes in this length */ | |
| 1441 bits[j+1] += 2; /* two new symbols in this length */ | |
| 1442 bits[j]--; /* symbol of this length is now a prefix */ | |
| 1443 } | |
| 1444 } | |
| 1445 | |
| 1446 /* Remove the count for the pseudo-symbol 256 from the largest codelength */ | |
| 1447 while (bits[i] == 0) /* find largest codelength still in use */ | |
| 1448 i--; | |
| 1449 bits[i]--; | |
| 1450 | |
| 1451 /* Return final symbol counts (only for lengths 0..16) */ | |
| 1452 MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); | |
| 1453 | |
| 1454 #ifdef DONT_USE_FANCY_HUFF_OPT | |
| 1455 | |
| 1456 /* Return a list of the symbols sorted by code length */ | |
| 1457 /* Note: Due to the codelength changes made above, it can happen | |
| 1458 * that more frequent symbols are assigned longer codewords. | |
| 1459 */ | |
| 1460 p = htbl->huffval; | |
| 1461 for (i = 1; i <= MAX_CLEN; i++) { | |
| 1462 for (j = 0; j <= 255; j++) { | |
| 1463 if (codesize[j] == i) { | |
| 1464 *p++ = (UINT8) j; | |
| 1465 } | |
| 1466 } | |
| 1467 } | |
| 1468 | |
| 1469 #endif /* DONT_USE_FANCY_HUFF_OPT */ | |
| 1470 | |
| 1471 /* Set sent_table FALSE so updated table will be written to JPEG file. */ | |
| 1472 htbl->sent_table = FALSE; | |
| 1473 } | |
| 1474 | |
| 1475 | |
| 1476 /* | |
| 1477 * Finish up a statistics-gathering pass and create the new Huffman tables. | |
| 1478 */ | |
| 1479 | |
| 1480 METHODDEF(void) | |
| 1481 finish_pass_gather (j_compress_ptr cinfo) | |
| 1482 { | |
| 1483 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 1484 int ci, tbl; | |
| 1485 jpeg_component_info * compptr; | |
| 1486 JHUFF_TBL **htblptr; | |
| 1487 boolean did_dc[NUM_HUFF_TBLS]; | |
| 1488 boolean did_ac[NUM_HUFF_TBLS]; | |
| 1489 | |
| 1490 if (cinfo->progressive_mode) | |
| 1491 /* Flush out buffered data (all we care about is counting the EOB symbol) */ | |
| 1492 emit_eobrun(entropy); | |
| 1493 | |
| 1494 /* It's important not to apply jpeg_gen_optimal_table more than once | |
| 1495 * per table, because it clobbers the input frequency counts! | |
| 1496 */ | |
| 1497 MEMZERO(did_dc, SIZEOF(did_dc)); | |
| 1498 MEMZERO(did_ac, SIZEOF(did_ac)); | |
| 1499 | |
| 1500 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 1501 compptr = cinfo->cur_comp_info[ci]; | |
| 1502 /* DC needs no table for refinement scan */ | |
| 1503 if (cinfo->Ss == 0 && cinfo->Ah == 0) { | |
| 1504 tbl = compptr->dc_tbl_no; | |
| 1505 if (! did_dc[tbl]) { | |
| 1506 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; | |
| 1507 if (*htblptr == NULL) | |
| 1508 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | |
| 1509 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[tbl]); | |
| 1510 did_dc[tbl] = TRUE; | |
| 1511 } | |
| 1512 } | |
| 1513 /* AC needs no table when not present */ | |
| 1514 if (cinfo->Se) { | |
| 1515 tbl = compptr->ac_tbl_no; | |
| 1516 if (! did_ac[tbl]) { | |
| 1517 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; | |
| 1518 if (*htblptr == NULL) | |
| 1519 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | |
| 1520 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[tbl]); | |
| 1521 did_ac[tbl] = TRUE; | |
| 1522 } | |
| 1523 } | |
| 1524 } | |
| 1525 } | |
| 1526 | |
| 1527 | |
| 1528 /* | |
| 1529 * Initialize for a Huffman-compressed scan. | |
| 1530 * If gather_statistics is TRUE, we do not output anything during the scan, | |
| 1531 * just count the Huffman symbols used and generate Huffman code tables. | |
| 1532 */ | |
| 1533 | |
| 1534 METHODDEF(void) | |
| 1535 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) | |
| 1536 { | |
| 1537 huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | |
| 1538 int ci, tbl; | |
| 1539 jpeg_component_info * compptr; | |
| 1540 | |
| 1541 if (gather_statistics) | |
| 1542 entropy->pub.finish_pass = finish_pass_gather; | |
| 1543 else | |
| 1544 entropy->pub.finish_pass = finish_pass_huff; | |
| 1545 | |
| 1546 if (cinfo->progressive_mode) { | |
| 1547 entropy->cinfo = cinfo; | |
| 1548 entropy->gather_statistics = gather_statistics; | |
| 1549 | |
| 1550 /* We assume jcmaster.c already validated the scan parameters. */ | |
| 1551 | |
| 1552 /* Select execution routine */ | |
| 1553 if (cinfo->Ah == 0) { | |
| 1554 if (cinfo->Ss == 0) | |
| 1555 entropy->pub.encode_mcu = encode_mcu_DC_first; | |
| 1556 else | |
| 1557 entropy->pub.encode_mcu = encode_mcu_AC_first; | |
| 1558 } else { | |
| 1559 if (cinfo->Ss == 0) | |
| 1560 entropy->pub.encode_mcu = encode_mcu_DC_refine; | |
| 1561 else { | |
| 1562 entropy->pub.encode_mcu = encode_mcu_AC_refine; | |
| 1563 /* AC refinement needs a correction bit buffer */ | |
| 1564 if (entropy->bit_buffer == NULL) | |
| 1565 entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) | |
| 1566 ((j_common_ptr) cinfo, JPOOL_IMAGE, MAX_CORR_BITS * SIZEOF(char)); | |
| 1567 } | |
| 1568 } | |
| 1569 | |
| 1570 /* Initialize AC stuff */ | |
| 1571 entropy->ac_tbl_no = cinfo->cur_comp_info[0]->ac_tbl_no; | |
| 1572 entropy->EOBRUN = 0; | |
| 1573 entropy->BE = 0; | |
| 1574 } else { | |
| 1575 if (gather_statistics) | |
| 1576 entropy->pub.encode_mcu = encode_mcu_gather; | |
| 1577 else | |
| 1578 entropy->pub.encode_mcu = encode_mcu_huff; | |
| 1579 } | |
| 1580 | |
| 1581 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 1582 compptr = cinfo->cur_comp_info[ci]; | |
| 1583 /* DC needs no table for refinement scan */ | |
| 1584 if (cinfo->Ss == 0 && cinfo->Ah == 0) { | |
| 1585 tbl = compptr->dc_tbl_no; | |
| 1586 if (gather_statistics) { | |
| 1587 /* Check for invalid table index */ | |
| 1588 /* (make_c_derived_tbl does this in the other path) */ | |
| 1589 if (tbl < 0 || tbl >= NUM_HUFF_TBLS) | |
| 1590 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); | |
| 1591 /* Allocate and zero the statistics tables */ | |
| 1592 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ | |
| 1593 if (entropy->dc_count_ptrs[tbl] == NULL) | |
| 1594 entropy->dc_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) | |
| 1595 ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); | |
| 1596 MEMZERO(entropy->dc_count_ptrs[tbl], 257 * SIZEOF(long)); | |
| 1597 } else { | |
| 1598 /* Compute derived values for Huffman tables */ | |
| 1599 /* We may do this more than once for a table, but it's not expensive */ | |
| 1600 jpeg_make_c_derived_tbl(cinfo, TRUE, tbl, | |
| 1601 & entropy->dc_derived_tbls[tbl]); | |
| 1602 } | |
| 1603 /* Initialize DC predictions to 0 */ | |
| 1604 entropy->saved.last_dc_val[ci] = 0; | |
| 1605 } | |
| 1606 /* AC needs no table when not present */ | |
| 1607 if (cinfo->Se) { | |
| 1608 tbl = compptr->ac_tbl_no; | |
| 1609 if (gather_statistics) { | |
| 1610 if (tbl < 0 || tbl >= NUM_HUFF_TBLS) | |
| 1611 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); | |
| 1612 if (entropy->ac_count_ptrs[tbl] == NULL) | |
| 1613 entropy->ac_count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) | |
| 1614 ((j_common_ptr) cinfo, JPOOL_IMAGE, 257 * SIZEOF(long)); | |
| 1615 MEMZERO(entropy->ac_count_ptrs[tbl], 257 * SIZEOF(long)); | |
| 1616 } else { | |
| 1617 jpeg_make_c_derived_tbl(cinfo, FALSE, tbl, | |
| 1618 & entropy->ac_derived_tbls[tbl]); | |
| 1619 } | |
| 1620 } | |
| 1621 } | |
| 1622 | |
| 1623 /* Initialize bit buffer to empty */ | |
| 1624 entropy->saved.put_buffer = 0; | |
| 1625 entropy->saved.put_bits = 0; | |
| 1626 | |
| 1627 /* Initialize restart stuff */ | |
| 1628 entropy->restarts_to_go = cinfo->restart_interval; | |
| 1629 entropy->next_restart_num = 0; | |
| 1630 } | |
| 1631 | |
| 1632 | |
| 1633 /* | |
| 1634 * Module initialization routine for Huffman entropy encoding. | |
| 1635 */ | |
| 1636 | |
| 1637 GLOBAL(void) | |
| 1638 jinit_huff_encoder (j_compress_ptr cinfo) | |
| 1639 { | |
| 1640 huff_entropy_ptr entropy; | |
| 1641 int i; | |
| 1642 | |
| 1643 entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) | |
| 1644 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(huff_entropy_encoder)); | |
| 1645 cinfo->entropy = &entropy->pub; | |
| 1646 entropy->pub.start_pass = start_pass_huff; | |
| 1647 | |
| 1648 /* Mark tables unallocated */ | |
| 1649 for (i = 0; i < NUM_HUFF_TBLS; i++) { | |
| 1650 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; | |
| 1651 entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; | |
| 1652 } | |
| 1653 | |
| 1654 if (cinfo->progressive_mode) | |
| 1655 entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ | |
| 1656 } |
