Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jcdctmgr.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jcdctmgr.c | |
| 3 * | |
| 4 * Copyright (C) 1994-1996, Thomas G. Lane. | |
| 5 * Modified 2003-2020 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains the forward-DCT management logic. | |
| 10 * This code selects a particular DCT implementation to be used, | |
| 11 * and it performs related housekeeping chores including coefficient | |
| 12 * quantization. | |
| 13 */ | |
| 14 | |
| 15 #define JPEG_INTERNALS | |
| 16 #include "jinclude.h" | |
| 17 #include "jpeglib.h" | |
| 18 #include "jdct.h" /* Private declarations for DCT subsystem */ | |
| 19 | |
| 20 | |
| 21 /* Private subobject for this module */ | |
| 22 | |
| 23 typedef struct { | |
| 24 struct jpeg_forward_dct pub; /* public fields */ | |
| 25 | |
| 26 /* Pointer to the DCT routine actually in use */ | |
| 27 forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; | |
| 28 | |
| 29 #ifdef DCT_FLOAT_SUPPORTED | |
| 30 /* Same as above for the floating-point case. */ | |
| 31 float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; | |
| 32 #endif | |
| 33 } my_fdct_controller; | |
| 34 | |
| 35 typedef my_fdct_controller * my_fdct_ptr; | |
| 36 | |
| 37 | |
| 38 /* The allocated post-DCT divisor tables -- big enough for any | |
| 39 * supported variant and not identical to the quant table entries, | |
| 40 * because of scaling (especially for an unnormalized DCT) -- | |
| 41 * are pointed to by dct_table in the per-component comp_info | |
| 42 * structures. Each table is given in normal array order. | |
| 43 */ | |
| 44 | |
| 45 typedef union { | |
| 46 DCTELEM int_array[DCTSIZE2]; | |
| 47 #ifdef DCT_FLOAT_SUPPORTED | |
| 48 FAST_FLOAT float_array[DCTSIZE2]; | |
| 49 #endif | |
| 50 } divisor_table; | |
| 51 | |
| 52 | |
| 53 /* The current scaled-DCT routines require ISLOW-style divisor tables, | |
| 54 * so be sure to compile that code if either ISLOW or SCALING is requested. | |
| 55 */ | |
| 56 #ifdef DCT_ISLOW_SUPPORTED | |
| 57 #define PROVIDE_ISLOW_TABLES | |
| 58 #else | |
| 59 #ifdef DCT_SCALING_SUPPORTED | |
| 60 #define PROVIDE_ISLOW_TABLES | |
| 61 #endif | |
| 62 #endif | |
| 63 | |
| 64 | |
| 65 /* | |
| 66 * Perform forward DCT on one or more blocks of a component. | |
| 67 * | |
| 68 * The input samples are taken from the sample_data[] array starting at | |
| 69 * position start_col, and moving to the right for any additional blocks. | |
| 70 * The quantized coefficients are returned in coef_blocks[]. | |
| 71 */ | |
| 72 | |
| 73 METHODDEF(void) | |
| 74 forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
| 75 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | |
| 76 JDIMENSION start_col, JDIMENSION num_blocks) | |
| 77 /* This version is used for integer DCT implementations. */ | |
| 78 { | |
| 79 /* This routine is heavily used, so it's worth coding it tightly. */ | |
| 80 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |
| 81 forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; | |
| 82 DCTELEM * divisors = (DCTELEM *) compptr->dct_table; | |
| 83 DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | |
| 84 JDIMENSION bi; | |
| 85 | |
| 86 for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | |
| 87 /* Perform the DCT */ | |
| 88 (*do_dct) (workspace, sample_data, start_col); | |
| 89 | |
| 90 /* Quantize/descale the coefficients, and store into coef_blocks[] */ | |
| 91 { register DCTELEM temp, qval; | |
| 92 register int i; | |
| 93 register JCOEFPTR output_ptr = coef_blocks[bi]; | |
| 94 | |
| 95 for (i = 0; i < DCTSIZE2; i++) { | |
| 96 qval = divisors[i]; | |
| 97 temp = workspace[i]; | |
| 98 /* Divide the coefficient value by qval, ensuring proper rounding. | |
| 99 * Since C does not specify the direction of rounding for negative | |
| 100 * quotients, we have to force the dividend positive for portability. | |
| 101 * | |
| 102 * In most files, at least half of the output values will be zero | |
| 103 * (at default quantization settings, more like three-quarters...) | |
| 104 * so we should ensure that this case is fast. On many machines, | |
| 105 * a comparison is enough cheaper than a divide to make a special test | |
| 106 * a win. Since both inputs will be nonnegative, we need only test | |
| 107 * for a < b to discover whether a/b is 0. | |
| 108 * If your machine's division is fast enough, define FAST_DIVIDE. | |
| 109 */ | |
| 110 #ifdef FAST_DIVIDE | |
| 111 #define DIVIDE_BY(a,b) a /= b | |
| 112 #else | |
| 113 #define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 | |
| 114 #endif | |
| 115 if (temp < 0) { | |
| 116 temp = -temp; | |
| 117 temp += qval>>1; /* for rounding */ | |
| 118 DIVIDE_BY(temp, qval); | |
| 119 temp = -temp; | |
| 120 } else { | |
| 121 temp += qval>>1; /* for rounding */ | |
| 122 DIVIDE_BY(temp, qval); | |
| 123 } | |
| 124 output_ptr[i] = (JCOEF) temp; | |
| 125 } | |
| 126 } | |
| 127 } | |
| 128 } | |
| 129 | |
| 130 | |
| 131 #ifdef DCT_FLOAT_SUPPORTED | |
| 132 | |
| 133 METHODDEF(void) | |
| 134 forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, | |
| 135 JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | |
| 136 JDIMENSION start_col, JDIMENSION num_blocks) | |
| 137 /* This version is used for floating-point DCT implementations. */ | |
| 138 { | |
| 139 /* This routine is heavily used, so it's worth coding it tightly. */ | |
| 140 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |
| 141 float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; | |
| 142 FAST_FLOAT * divisors = (FAST_FLOAT *) compptr->dct_table; | |
| 143 FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | |
| 144 JDIMENSION bi; | |
| 145 | |
| 146 for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | |
| 147 /* Perform the DCT */ | |
| 148 (*do_dct) (workspace, sample_data, start_col); | |
| 149 | |
| 150 /* Quantize/descale the coefficients, and store into coef_blocks[] */ | |
| 151 { register FAST_FLOAT temp; | |
| 152 register int i; | |
| 153 register JCOEFPTR output_ptr = coef_blocks[bi]; | |
| 154 | |
| 155 for (i = 0; i < DCTSIZE2; i++) { | |
| 156 /* Apply the quantization and scaling factor */ | |
| 157 temp = workspace[i] * divisors[i]; | |
| 158 /* Round to nearest integer. | |
| 159 * Since C does not specify the direction of rounding for negative | |
| 160 * quotients, we have to force the dividend positive for portability. | |
| 161 * The maximum coefficient size is +-16K (for 12-bit data), so this | |
| 162 * code should work for either 16-bit or 32-bit ints. | |
| 163 */ | |
| 164 output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); | |
| 165 } | |
| 166 } | |
| 167 } | |
| 168 } | |
| 169 | |
| 170 #endif /* DCT_FLOAT_SUPPORTED */ | |
| 171 | |
| 172 | |
| 173 /* | |
| 174 * Initialize for a processing pass. | |
| 175 * Verify that all referenced Q-tables are present, and set up | |
| 176 * the divisor table for each one. | |
| 177 * In the current implementation, DCT of all components is done during | |
| 178 * the first pass, even if only some components will be output in the | |
| 179 * first scan. Hence all components should be examined here. | |
| 180 */ | |
| 181 | |
| 182 METHODDEF(void) | |
| 183 start_pass_fdctmgr (j_compress_ptr cinfo) | |
| 184 { | |
| 185 my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |
| 186 int ci, qtblno, i; | |
| 187 jpeg_component_info *compptr; | |
| 188 int method = 0; | |
| 189 JQUANT_TBL * qtbl; | |
| 190 DCTELEM * dtbl; | |
| 191 | |
| 192 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 193 ci++, compptr++) { | |
| 194 /* Select the proper DCT routine for this component's scaling */ | |
| 195 switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { | |
| 196 #ifdef DCT_SCALING_SUPPORTED | |
| 197 case ((1 << 8) + 1): | |
| 198 fdct->do_dct[ci] = jpeg_fdct_1x1; | |
| 199 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 200 break; | |
| 201 case ((2 << 8) + 2): | |
| 202 fdct->do_dct[ci] = jpeg_fdct_2x2; | |
| 203 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 204 break; | |
| 205 case ((3 << 8) + 3): | |
| 206 fdct->do_dct[ci] = jpeg_fdct_3x3; | |
| 207 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 208 break; | |
| 209 case ((4 << 8) + 4): | |
| 210 fdct->do_dct[ci] = jpeg_fdct_4x4; | |
| 211 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 212 break; | |
| 213 case ((5 << 8) + 5): | |
| 214 fdct->do_dct[ci] = jpeg_fdct_5x5; | |
| 215 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 216 break; | |
| 217 case ((6 << 8) + 6): | |
| 218 fdct->do_dct[ci] = jpeg_fdct_6x6; | |
| 219 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 220 break; | |
| 221 case ((7 << 8) + 7): | |
| 222 fdct->do_dct[ci] = jpeg_fdct_7x7; | |
| 223 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 224 break; | |
| 225 case ((9 << 8) + 9): | |
| 226 fdct->do_dct[ci] = jpeg_fdct_9x9; | |
| 227 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 228 break; | |
| 229 case ((10 << 8) + 10): | |
| 230 fdct->do_dct[ci] = jpeg_fdct_10x10; | |
| 231 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 232 break; | |
| 233 case ((11 << 8) + 11): | |
| 234 fdct->do_dct[ci] = jpeg_fdct_11x11; | |
| 235 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 236 break; | |
| 237 case ((12 << 8) + 12): | |
| 238 fdct->do_dct[ci] = jpeg_fdct_12x12; | |
| 239 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 240 break; | |
| 241 case ((13 << 8) + 13): | |
| 242 fdct->do_dct[ci] = jpeg_fdct_13x13; | |
| 243 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 244 break; | |
| 245 case ((14 << 8) + 14): | |
| 246 fdct->do_dct[ci] = jpeg_fdct_14x14; | |
| 247 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 248 break; | |
| 249 case ((15 << 8) + 15): | |
| 250 fdct->do_dct[ci] = jpeg_fdct_15x15; | |
| 251 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 252 break; | |
| 253 case ((16 << 8) + 16): | |
| 254 fdct->do_dct[ci] = jpeg_fdct_16x16; | |
| 255 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 256 break; | |
| 257 case ((16 << 8) + 8): | |
| 258 fdct->do_dct[ci] = jpeg_fdct_16x8; | |
| 259 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 260 break; | |
| 261 case ((14 << 8) + 7): | |
| 262 fdct->do_dct[ci] = jpeg_fdct_14x7; | |
| 263 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 264 break; | |
| 265 case ((12 << 8) + 6): | |
| 266 fdct->do_dct[ci] = jpeg_fdct_12x6; | |
| 267 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 268 break; | |
| 269 case ((10 << 8) + 5): | |
| 270 fdct->do_dct[ci] = jpeg_fdct_10x5; | |
| 271 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 272 break; | |
| 273 case ((8 << 8) + 4): | |
| 274 fdct->do_dct[ci] = jpeg_fdct_8x4; | |
| 275 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 276 break; | |
| 277 case ((6 << 8) + 3): | |
| 278 fdct->do_dct[ci] = jpeg_fdct_6x3; | |
| 279 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 280 break; | |
| 281 case ((4 << 8) + 2): | |
| 282 fdct->do_dct[ci] = jpeg_fdct_4x2; | |
| 283 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 284 break; | |
| 285 case ((2 << 8) + 1): | |
| 286 fdct->do_dct[ci] = jpeg_fdct_2x1; | |
| 287 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 288 break; | |
| 289 case ((8 << 8) + 16): | |
| 290 fdct->do_dct[ci] = jpeg_fdct_8x16; | |
| 291 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 292 break; | |
| 293 case ((7 << 8) + 14): | |
| 294 fdct->do_dct[ci] = jpeg_fdct_7x14; | |
| 295 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 296 break; | |
| 297 case ((6 << 8) + 12): | |
| 298 fdct->do_dct[ci] = jpeg_fdct_6x12; | |
| 299 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 300 break; | |
| 301 case ((5 << 8) + 10): | |
| 302 fdct->do_dct[ci] = jpeg_fdct_5x10; | |
| 303 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 304 break; | |
| 305 case ((4 << 8) + 8): | |
| 306 fdct->do_dct[ci] = jpeg_fdct_4x8; | |
| 307 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 308 break; | |
| 309 case ((3 << 8) + 6): | |
| 310 fdct->do_dct[ci] = jpeg_fdct_3x6; | |
| 311 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 312 break; | |
| 313 case ((2 << 8) + 4): | |
| 314 fdct->do_dct[ci] = jpeg_fdct_2x4; | |
| 315 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 316 break; | |
| 317 case ((1 << 8) + 2): | |
| 318 fdct->do_dct[ci] = jpeg_fdct_1x2; | |
| 319 method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |
| 320 break; | |
| 321 #endif | |
| 322 case ((DCTSIZE << 8) + DCTSIZE): | |
| 323 switch (cinfo->dct_method) { | |
| 324 #ifdef DCT_ISLOW_SUPPORTED | |
| 325 case JDCT_ISLOW: | |
| 326 fdct->do_dct[ci] = jpeg_fdct_islow; | |
| 327 method = JDCT_ISLOW; | |
| 328 break; | |
| 329 #endif | |
| 330 #ifdef DCT_IFAST_SUPPORTED | |
| 331 case JDCT_IFAST: | |
| 332 fdct->do_dct[ci] = jpeg_fdct_ifast; | |
| 333 method = JDCT_IFAST; | |
| 334 break; | |
| 335 #endif | |
| 336 #ifdef DCT_FLOAT_SUPPORTED | |
| 337 case JDCT_FLOAT: | |
| 338 fdct->do_float_dct[ci] = jpeg_fdct_float; | |
| 339 method = JDCT_FLOAT; | |
| 340 break; | |
| 341 #endif | |
| 342 default: | |
| 343 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
| 344 } | |
| 345 break; | |
| 346 default: | |
| 347 ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | |
| 348 compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); | |
| 349 } | |
| 350 qtblno = compptr->quant_tbl_no; | |
| 351 /* Make sure specified quantization table is present */ | |
| 352 if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | |
| 353 cinfo->quant_tbl_ptrs[qtblno] == NULL) | |
| 354 ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | |
| 355 qtbl = cinfo->quant_tbl_ptrs[qtblno]; | |
| 356 /* Create divisor table from quant table */ | |
| 357 switch (method) { | |
| 358 #ifdef PROVIDE_ISLOW_TABLES | |
| 359 case JDCT_ISLOW: | |
| 360 /* For LL&M IDCT method, divisors are equal to raw quantization | |
| 361 * coefficients multiplied by 8 (to counteract scaling). | |
| 362 */ | |
| 363 dtbl = (DCTELEM *) compptr->dct_table; | |
| 364 for (i = 0; i < DCTSIZE2; i++) { | |
| 365 dtbl[i] = | |
| 366 ((DCTELEM) qtbl->quantval[i]) << (compptr->component_needed ? 4 : 3); | |
| 367 } | |
| 368 fdct->pub.forward_DCT[ci] = forward_DCT; | |
| 369 break; | |
| 370 #endif | |
| 371 #ifdef DCT_IFAST_SUPPORTED | |
| 372 case JDCT_IFAST: | |
| 373 { | |
| 374 /* For AA&N IDCT method, divisors are equal to quantization | |
| 375 * coefficients scaled by scalefactor[row]*scalefactor[col], where | |
| 376 * scalefactor[0] = 1 | |
| 377 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |
| 378 * We apply a further scale factor of 8. | |
| 379 */ | |
| 380 #define CONST_BITS 14 | |
| 381 static const INT16 aanscales[DCTSIZE2] = { | |
| 382 /* precomputed values scaled up by 14 bits */ | |
| 383 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |
| 384 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, | |
| 385 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, | |
| 386 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, | |
| 387 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |
| 388 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, | |
| 389 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, | |
| 390 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 | |
| 391 }; | |
| 392 SHIFT_TEMPS | |
| 393 | |
| 394 dtbl = (DCTELEM *) compptr->dct_table; | |
| 395 for (i = 0; i < DCTSIZE2; i++) { | |
| 396 dtbl[i] = (DCTELEM) | |
| 397 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | |
| 398 (INT32) aanscales[i]), | |
| 399 compptr->component_needed ? CONST_BITS-4 : CONST_BITS-3); | |
| 400 } | |
| 401 } | |
| 402 fdct->pub.forward_DCT[ci] = forward_DCT; | |
| 403 break; | |
| 404 #endif | |
| 405 #ifdef DCT_FLOAT_SUPPORTED | |
| 406 case JDCT_FLOAT: | |
| 407 { | |
| 408 /* For float AA&N IDCT method, divisors are equal to quantization | |
| 409 * coefficients scaled by scalefactor[row]*scalefactor[col], where | |
| 410 * scalefactor[0] = 1 | |
| 411 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |
| 412 * We apply a further scale factor of 8. | |
| 413 * What's actually stored is 1/divisor so that the inner loop can | |
| 414 * use a multiplication rather than a division. | |
| 415 */ | |
| 416 FAST_FLOAT * fdtbl = (FAST_FLOAT *) compptr->dct_table; | |
| 417 int row, col; | |
| 418 static const double aanscalefactor[DCTSIZE] = { | |
| 419 1.0, 1.387039845, 1.306562965, 1.175875602, | |
| 420 1.0, 0.785694958, 0.541196100, 0.275899379 | |
| 421 }; | |
| 422 | |
| 423 i = 0; | |
| 424 for (row = 0; row < DCTSIZE; row++) { | |
| 425 for (col = 0; col < DCTSIZE; col++) { | |
| 426 fdtbl[i] = (FAST_FLOAT) | |
| 427 (1.0 / ((double) qtbl->quantval[i] * | |
| 428 aanscalefactor[row] * aanscalefactor[col] * | |
| 429 (compptr->component_needed ? 16.0 : 8.0))); | |
| 430 i++; | |
| 431 } | |
| 432 } | |
| 433 } | |
| 434 fdct->pub.forward_DCT[ci] = forward_DCT_float; | |
| 435 break; | |
| 436 #endif | |
| 437 default: | |
| 438 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
| 439 } | |
| 440 } | |
| 441 } | |
| 442 | |
| 443 | |
| 444 /* | |
| 445 * Initialize FDCT manager. | |
| 446 */ | |
| 447 | |
| 448 GLOBAL(void) | |
| 449 jinit_forward_dct (j_compress_ptr cinfo) | |
| 450 { | |
| 451 my_fdct_ptr fdct; | |
| 452 int ci; | |
| 453 jpeg_component_info *compptr; | |
| 454 | |
| 455 fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) | |
| 456 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_fdct_controller)); | |
| 457 cinfo->fdct = &fdct->pub; | |
| 458 fdct->pub.start_pass = start_pass_fdctmgr; | |
| 459 | |
| 460 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 461 ci++, compptr++) { | |
| 462 /* Allocate a divisor table for each component */ | |
| 463 compptr->dct_table = (*cinfo->mem->alloc_small) | |
| 464 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(divisor_table)); | |
| 465 } | |
| 466 } |
