Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jccoefct.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * jccoefct.c | |
| 3 * | |
| 4 * Copyright (C) 1994-1997, Thomas G. Lane. | |
| 5 * Modified 2003-2022 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains the coefficient buffer controller for compression. | |
| 10 * This controller is the top level of the JPEG compressor proper. | |
| 11 * The coefficient buffer lies between forward-DCT and entropy encoding steps. | |
| 12 */ | |
| 13 | |
| 14 #define JPEG_INTERNALS | |
| 15 #include "jinclude.h" | |
| 16 #include "jpeglib.h" | |
| 17 | |
| 18 | |
| 19 /* We use a full-image coefficient buffer when doing Huffman optimization, | |
| 20 * and also for writing multiple-scan JPEG files. In all cases, the DCT | |
| 21 * step is run during the first pass, and subsequent passes need only read | |
| 22 * the buffered coefficients. | |
| 23 */ | |
| 24 #ifdef ENTROPY_OPT_SUPPORTED | |
| 25 #define FULL_COEF_BUFFER_SUPPORTED | |
| 26 #else | |
| 27 #ifdef C_MULTISCAN_FILES_SUPPORTED | |
| 28 #define FULL_COEF_BUFFER_SUPPORTED | |
| 29 #endif | |
| 30 #endif | |
| 31 | |
| 32 | |
| 33 /* Private buffer controller object */ | |
| 34 | |
| 35 typedef struct { | |
| 36 struct jpeg_c_coef_controller pub; /* public fields */ | |
| 37 | |
| 38 JDIMENSION iMCU_row_num; /* iMCU row # within image */ | |
| 39 JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ | |
| 40 int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |
| 41 int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |
| 42 | |
| 43 /* For single-pass compression, it's sufficient to buffer just one MCU | |
| 44 * (although this may prove a bit slow in practice). | |
| 45 * We append a workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, | |
| 46 * and reuse it for each MCU constructed and sent. | |
| 47 * In multi-pass modes, this array points to the current MCU's blocks | |
| 48 * within the virtual arrays. | |
| 49 */ | |
| 50 JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; | |
| 51 | |
| 52 /* In multi-pass modes, we need a virtual block array for each component. */ | |
| 53 jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | |
| 54 | |
| 55 /* Workspace for single-pass compression (omitted otherwise). */ | |
| 56 JBLOCK blk_buffer[C_MAX_BLOCKS_IN_MCU]; | |
| 57 } my_coef_controller; | |
| 58 | |
| 59 typedef my_coef_controller * my_coef_ptr; | |
| 60 | |
| 61 | |
| 62 /* Forward declarations */ | |
| 63 METHODDEF(boolean) compress_data | |
| 64 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
| 65 #ifdef FULL_COEF_BUFFER_SUPPORTED | |
| 66 METHODDEF(boolean) compress_first_pass | |
| 67 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
| 68 METHODDEF(boolean) compress_output | |
| 69 JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
| 70 #endif | |
| 71 | |
| 72 | |
| 73 LOCAL(void) | |
| 74 start_iMCU_row (j_compress_ptr cinfo) | |
| 75 /* Reset within-iMCU-row counters for a new row */ | |
| 76 { | |
| 77 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
| 78 | |
| 79 /* In an interleaved scan, an MCU row is the same as an iMCU row. | |
| 80 * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |
| 81 * But at the bottom of the image, process only what's left. | |
| 82 */ | |
| 83 if (cinfo->comps_in_scan > 1) { | |
| 84 coef->MCU_rows_per_iMCU_row = 1; | |
| 85 } else { | |
| 86 if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | |
| 87 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |
| 88 else | |
| 89 coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |
| 90 } | |
| 91 | |
| 92 coef->MCU_ctr = 0; | |
| 93 coef->MCU_vert_offset = 0; | |
| 94 } | |
| 95 | |
| 96 | |
| 97 /* | |
| 98 * Initialize for a processing pass. | |
| 99 */ | |
| 100 | |
| 101 METHODDEF(void) | |
| 102 start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | |
| 103 { | |
| 104 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
| 105 | |
| 106 coef->iMCU_row_num = 0; | |
| 107 start_iMCU_row(cinfo); | |
| 108 | |
| 109 switch (pass_mode) { | |
| 110 case JBUF_PASS_THRU: | |
| 111 if (coef->whole_image[0] != NULL) | |
| 112 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
| 113 coef->pub.compress_data = compress_data; | |
| 114 break; | |
| 115 #ifdef FULL_COEF_BUFFER_SUPPORTED | |
| 116 case JBUF_SAVE_AND_PASS: | |
| 117 if (coef->whole_image[0] == NULL) | |
| 118 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
| 119 coef->pub.compress_data = compress_first_pass; | |
| 120 break; | |
| 121 case JBUF_CRANK_DEST: | |
| 122 if (coef->whole_image[0] == NULL) | |
| 123 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
| 124 coef->pub.compress_data = compress_output; | |
| 125 break; | |
| 126 #endif | |
| 127 default: | |
| 128 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
| 129 } | |
| 130 } | |
| 131 | |
| 132 | |
| 133 /* | |
| 134 * Process some data in the single-pass case. | |
| 135 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
| 136 * per call, ie, v_samp_factor block rows for each component in the image. | |
| 137 * Returns TRUE if the iMCU row is completed, FALSE if suspended. | |
| 138 * | |
| 139 * NB: input_buf contains a plane for each component in image, | |
| 140 * which we index according to the component's SOF position. | |
| 141 */ | |
| 142 | |
| 143 METHODDEF(boolean) | |
| 144 compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
| 145 { | |
| 146 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
| 147 JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
| 148 JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |
| 149 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
| 150 int ci, xindex, yindex, yoffset, blockcnt; | |
| 151 JBLOCKROW blkp; | |
| 152 JSAMPARRAY input_ptr; | |
| 153 JDIMENSION xpos; | |
| 154 jpeg_component_info *compptr; | |
| 155 forward_DCT_ptr forward_DCT; | |
| 156 | |
| 157 /* Loop to write as much as one whole iMCU row */ | |
| 158 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
| 159 yoffset++) { | |
| 160 for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | |
| 161 MCU_col_num++) { | |
| 162 /* Determine where data comes from in input_buf and do the DCT thing. | |
| 163 * Each call on forward_DCT processes a horizontal row of DCT blocks as | |
| 164 * wide as an MCU. Dummy blocks at the right or bottom edge are filled in | |
| 165 * specially. The data in them does not matter for image reconstruction, | |
| 166 * so we fill them with values that will encode to the smallest amount of | |
| 167 * data, viz: all zeroes in the AC entries, DC entries equal to previous | |
| 168 * block's DC value. (Thanks to Thomas Kinsman for this idea.) | |
| 169 */ | |
| 170 blkp = coef->blk_buffer; /* pointer to current DCT block within MCU */ | |
| 171 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 172 compptr = cinfo->cur_comp_info[ci]; | |
| 173 forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; | |
| 174 input_ptr = input_buf[compptr->component_index] + | |
| 175 yoffset * compptr->DCT_v_scaled_size; | |
| 176 /* ypos == (yoffset + yindex) * compptr->DCT_v_scaled_size */ | |
| 177 blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |
| 178 : compptr->last_col_width; | |
| 179 xpos = MCU_col_num * compptr->MCU_sample_width; | |
| 180 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
| 181 if (coef->iMCU_row_num < last_iMCU_row || | |
| 182 yoffset + yindex < compptr->last_row_height) { | |
| 183 (*forward_DCT) (cinfo, compptr, input_ptr, blkp, | |
| 184 xpos, (JDIMENSION) blockcnt); | |
| 185 input_ptr += compptr->DCT_v_scaled_size; | |
| 186 blkp += blockcnt; | |
| 187 /* Dummy blocks at right edge */ | |
| 188 if ((xindex = compptr->MCU_width - blockcnt) == 0) | |
| 189 continue; | |
| 190 } else { | |
| 191 /* At bottom of image, need a whole row of dummy blocks */ | |
| 192 xindex = compptr->MCU_width; | |
| 193 } | |
| 194 /* Fill in any dummy blocks needed in this row */ | |
| 195 MEMZERO(blkp, xindex * SIZEOF(JBLOCK)); | |
| 196 do { | |
| 197 blkp[0][0] = blkp[-1][0]; | |
| 198 blkp++; | |
| 199 } while (--xindex); | |
| 200 } | |
| 201 } | |
| 202 /* Try to write the MCU. In event of a suspension failure, we will | |
| 203 * re-DCT the MCU on restart (a bit inefficient, could be fixed...) | |
| 204 */ | |
| 205 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |
| 206 /* Suspension forced; update state counters and exit */ | |
| 207 coef->MCU_vert_offset = yoffset; | |
| 208 coef->MCU_ctr = MCU_col_num; | |
| 209 return FALSE; | |
| 210 } | |
| 211 } | |
| 212 /* Completed an MCU row, but perhaps not an iMCU row */ | |
| 213 coef->MCU_ctr = 0; | |
| 214 } | |
| 215 /* Completed the iMCU row, advance counters for next one */ | |
| 216 coef->iMCU_row_num++; | |
| 217 start_iMCU_row(cinfo); | |
| 218 return TRUE; | |
| 219 } | |
| 220 | |
| 221 | |
| 222 #ifdef FULL_COEF_BUFFER_SUPPORTED | |
| 223 | |
| 224 /* | |
| 225 * Process some data in the first pass of a multi-pass case. | |
| 226 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
| 227 * per call, ie, v_samp_factor block rows for each component in the image. | |
| 228 * This amount of data is read from the source buffer, DCT'd and quantized, | |
| 229 * and saved into the virtual arrays. We also generate suitable dummy blocks | |
| 230 * as needed at the right and lower edges. (The dummy blocks are constructed | |
| 231 * in the virtual arrays, which have been padded appropriately.) This makes | |
| 232 * it possible for subsequent passes not to worry about real vs. dummy blocks. | |
| 233 * | |
| 234 * We must also emit the data to the entropy encoder. This is conveniently | |
| 235 * done by calling compress_output() after we've loaded the current strip | |
| 236 * of the virtual arrays. | |
| 237 * | |
| 238 * NB: input_buf contains a plane for each component in image. All | |
| 239 * components are DCT'd and loaded into the virtual arrays in this pass. | |
| 240 * However, it may be that only a subset of the components are emitted to | |
| 241 * the entropy encoder during this first pass; be careful about looking | |
| 242 * at the scan-dependent variables (MCU dimensions, etc). | |
| 243 */ | |
| 244 | |
| 245 METHODDEF(boolean) | |
| 246 compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
| 247 { | |
| 248 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
| 249 JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
| 250 JDIMENSION blocks_across, MCUs_across, MCUindex; | |
| 251 int bi, ci, h_samp_factor, block_row, block_rows, ndummy; | |
| 252 JCOEF lastDC; | |
| 253 jpeg_component_info *compptr; | |
| 254 JBLOCKARRAY buffer; | |
| 255 JBLOCKROW thisblockrow, lastblockrow; | |
| 256 JSAMPARRAY input_ptr; | |
| 257 forward_DCT_ptr forward_DCT; | |
| 258 | |
| 259 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 260 ci++, compptr++) { | |
| 261 /* Align the virtual buffer for this component. */ | |
| 262 buffer = (*cinfo->mem->access_virt_barray) | |
| 263 ((j_common_ptr) cinfo, coef->whole_image[ci], | |
| 264 coef->iMCU_row_num * compptr->v_samp_factor, | |
| 265 (JDIMENSION) compptr->v_samp_factor, TRUE); | |
| 266 /* Count non-dummy DCT block rows in this iMCU row. */ | |
| 267 if (coef->iMCU_row_num < last_iMCU_row) | |
| 268 block_rows = compptr->v_samp_factor; | |
| 269 else { | |
| 270 /* NB: can't use last_row_height here, since may not be set! */ | |
| 271 block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |
| 272 if (block_rows == 0) block_rows = compptr->v_samp_factor; | |
| 273 } | |
| 274 blocks_across = compptr->width_in_blocks; | |
| 275 h_samp_factor = compptr->h_samp_factor; | |
| 276 /* Count number of dummy blocks to be added at the right margin. */ | |
| 277 ndummy = (int) (blocks_across % h_samp_factor); | |
| 278 if (ndummy > 0) | |
| 279 ndummy = h_samp_factor - ndummy; | |
| 280 forward_DCT = cinfo->fdct->forward_DCT[ci]; | |
| 281 input_ptr = input_buf[ci]; | |
| 282 /* Perform DCT for all non-dummy blocks in this iMCU row. Each call | |
| 283 * on forward_DCT processes a complete horizontal row of DCT blocks. | |
| 284 */ | |
| 285 for (block_row = 0; block_row < block_rows; block_row++) { | |
| 286 thisblockrow = buffer[block_row]; | |
| 287 (*forward_DCT) (cinfo, compptr, input_ptr, thisblockrow, | |
| 288 (JDIMENSION) 0, blocks_across); | |
| 289 input_ptr += compptr->DCT_v_scaled_size; | |
| 290 if (ndummy > 0) { | |
| 291 /* Create dummy blocks at the right edge of the image. */ | |
| 292 thisblockrow += blocks_across; /* => first dummy block */ | |
| 293 FMEMZERO((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); | |
| 294 lastDC = thisblockrow[-1][0]; | |
| 295 for (bi = 0; bi < ndummy; bi++) { | |
| 296 thisblockrow[bi][0] = lastDC; | |
| 297 } | |
| 298 } | |
| 299 } | |
| 300 /* If at end of image, create dummy block rows as needed. | |
| 301 * The tricky part here is that within each MCU, we want the DC values | |
| 302 * of the dummy blocks to match the last real block's DC value. | |
| 303 * This squeezes a few more bytes out of the resulting file... | |
| 304 */ | |
| 305 if (block_row < compptr->v_samp_factor) { | |
| 306 blocks_across += ndummy; /* include lower right corner */ | |
| 307 MCUs_across = blocks_across / h_samp_factor; | |
| 308 do { | |
| 309 thisblockrow = buffer[block_row]; | |
| 310 lastblockrow = buffer[block_row-1]; | |
| 311 FMEMZERO((void FAR *) thisblockrow, | |
| 312 (size_t) blocks_across * SIZEOF(JBLOCK)); | |
| 313 for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { | |
| 314 lastDC = lastblockrow[h_samp_factor-1][0]; | |
| 315 for (bi = 0; bi < h_samp_factor; bi++) { | |
| 316 thisblockrow[bi][0] = lastDC; | |
| 317 } | |
| 318 thisblockrow += h_samp_factor; /* advance to next MCU in row */ | |
| 319 lastblockrow += h_samp_factor; | |
| 320 } | |
| 321 } while (++block_row < compptr->v_samp_factor); | |
| 322 } | |
| 323 } | |
| 324 /* NB: compress_output will increment iMCU_row_num if successful. | |
| 325 * A suspension return will result in redoing all the work above next time. | |
| 326 */ | |
| 327 | |
| 328 /* Emit data to the entropy encoder, sharing code with subsequent passes */ | |
| 329 return compress_output(cinfo, input_buf); | |
| 330 } | |
| 331 | |
| 332 | |
| 333 /* | |
| 334 * Process some data in subsequent passes of a multi-pass case. | |
| 335 * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
| 336 * per call, ie, v_samp_factor block rows for each component in the scan. | |
| 337 * The data is obtained from the virtual arrays and fed to the entropy coder. | |
| 338 * Returns TRUE if the iMCU row is completed, FALSE if suspended. | |
| 339 * | |
| 340 * NB: input_buf is ignored; it is likely to be a NULL pointer. | |
| 341 */ | |
| 342 | |
| 343 METHODDEF(boolean) | |
| 344 compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
| 345 { | |
| 346 my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
| 347 JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
| 348 int ci, xindex, yindex, yoffset; | |
| 349 JDIMENSION start_col; | |
| 350 JBLOCKARRAY blkp; | |
| 351 JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | |
| 352 JBLOCKROW buffer_ptr; | |
| 353 jpeg_component_info *compptr; | |
| 354 | |
| 355 /* Align the virtual buffers for the components used in this scan. | |
| 356 * NB: during first pass, this is safe only because the buffers will | |
| 357 * already be aligned properly, so jmemmgr.c won't need to do any I/O. | |
| 358 */ | |
| 359 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 360 compptr = cinfo->cur_comp_info[ci]; | |
| 361 buffer[ci] = (*cinfo->mem->access_virt_barray) | |
| 362 ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |
| 363 coef->iMCU_row_num * compptr->v_samp_factor, | |
| 364 (JDIMENSION) compptr->v_samp_factor, FALSE); | |
| 365 } | |
| 366 | |
| 367 /* Loop to process one whole iMCU row */ | |
| 368 for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
| 369 yoffset++) { | |
| 370 for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; | |
| 371 MCU_col_num++) { | |
| 372 /* Construct list of pointers to DCT blocks belonging to this MCU */ | |
| 373 blkp = coef->MCU_buffer; /* pointer to current DCT block within MCU */ | |
| 374 for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
| 375 compptr = cinfo->cur_comp_info[ci]; | |
| 376 start_col = MCU_col_num * compptr->MCU_width; | |
| 377 for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
| 378 buffer_ptr = buffer[ci][yoffset + yindex] + start_col; | |
| 379 xindex = compptr->MCU_width; | |
| 380 do { | |
| 381 *blkp++ = buffer_ptr++; | |
| 382 } while (--xindex); | |
| 383 } | |
| 384 } | |
| 385 /* Try to write the MCU. */ | |
| 386 if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |
| 387 /* Suspension forced; update state counters and exit */ | |
| 388 coef->MCU_vert_offset = yoffset; | |
| 389 coef->MCU_ctr = MCU_col_num; | |
| 390 return FALSE; | |
| 391 } | |
| 392 } | |
| 393 /* Completed an MCU row, but perhaps not an iMCU row */ | |
| 394 coef->MCU_ctr = 0; | |
| 395 } | |
| 396 /* Completed the iMCU row, advance counters for next one */ | |
| 397 coef->iMCU_row_num++; | |
| 398 start_iMCU_row(cinfo); | |
| 399 return TRUE; | |
| 400 } | |
| 401 | |
| 402 #endif /* FULL_COEF_BUFFER_SUPPORTED */ | |
| 403 | |
| 404 | |
| 405 /* | |
| 406 * Initialize coefficient buffer controller. | |
| 407 */ | |
| 408 | |
| 409 GLOBAL(void) | |
| 410 jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) | |
| 411 { | |
| 412 my_coef_ptr coef; | |
| 413 | |
| 414 if (need_full_buffer) { | |
| 415 #ifdef FULL_COEF_BUFFER_SUPPORTED | |
| 416 /* Allocate a full-image virtual array for each component, */ | |
| 417 /* padded to a multiple of samp_factor DCT blocks in each direction. */ | |
| 418 int ci; | |
| 419 jpeg_component_info *compptr; | |
| 420 | |
| 421 coef = (my_coef_ptr) (*cinfo->mem->alloc_small) | |
| 422 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 423 SIZEOF(my_coef_controller) - SIZEOF(coef->blk_buffer)); | |
| 424 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
| 425 ci++, compptr++) { | |
| 426 coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | |
| 427 ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | |
| 428 (JDIMENSION) jround_up((long) compptr->width_in_blocks, | |
| 429 (long) compptr->h_samp_factor), | |
| 430 (JDIMENSION) jround_up((long) compptr->height_in_blocks, | |
| 431 (long) compptr->v_samp_factor), | |
| 432 (JDIMENSION) compptr->v_samp_factor); | |
| 433 } | |
| 434 #else | |
| 435 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
| 436 #endif | |
| 437 } else { | |
| 438 /* We only need a single-MCU buffer. */ | |
| 439 JBLOCKARRAY blkp; | |
| 440 JBLOCKROW buffer_ptr; | |
| 441 int bi; | |
| 442 | |
| 443 coef = (my_coef_ptr) (*cinfo->mem->alloc_small) | |
| 444 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_coef_controller)); | |
| 445 blkp = coef->MCU_buffer; | |
| 446 buffer_ptr = coef->blk_buffer; | |
| 447 bi = C_MAX_BLOCKS_IN_MCU; | |
| 448 do { | |
| 449 *blkp++ = buffer_ptr++; | |
| 450 } while (--bi); | |
| 451 coef->whole_image[0] = NULL; /* flag for no virtual arrays */ | |
| 452 } | |
| 453 | |
| 454 coef->pub.start_pass = start_pass_coef; | |
| 455 cinfo->coef = &coef->pub; | |
| 456 } |
