Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/leptonica/src/heap.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /*====================================================================* | |
| 2 - Copyright (C) 2001 Leptonica. All rights reserved. | |
| 3 - | |
| 4 - Redistribution and use in source and binary forms, with or without | |
| 5 - modification, are permitted provided that the following conditions | |
| 6 - are met: | |
| 7 - 1. Redistributions of source code must retain the above copyright | |
| 8 - notice, this list of conditions and the following disclaimer. | |
| 9 - 2. Redistributions in binary form must reproduce the above | |
| 10 - copyright notice, this list of conditions and the following | |
| 11 - disclaimer in the documentation and/or other materials | |
| 12 - provided with the distribution. | |
| 13 - | |
| 14 - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 15 - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 16 - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 17 - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY | |
| 18 - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
| 19 - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
| 20 - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
| 21 - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
| 22 - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
| 23 - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| 24 - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 25 *====================================================================*/ | |
| 26 | |
| 27 /*! | |
| 28 * \file heap.c | |
| 29 * <pre> | |
| 30 * | |
| 31 * Create/Destroy L_Heap | |
| 32 * L_HEAP *lheapCreate() | |
| 33 * void lheapDestroy() | |
| 34 * | |
| 35 * Operations to add/remove to/from the heap | |
| 36 * l_int32 lheapAdd() | |
| 37 * static l_int32 lheapExtendArray() | |
| 38 * void *lheapRemove() | |
| 39 * | |
| 40 * Other accessors | |
| 41 * l_int32 lheapGetCount() | |
| 42 * void *lheapGetElement() | |
| 43 * | |
| 44 * Heap sort | |
| 45 * l_int32 lheapSort() | |
| 46 * l_int32 lheapSortStrictOrder() | |
| 47 * | |
| 48 * Low-level heap operations | |
| 49 * static l_int32 lheapSwapUp() | |
| 50 * static l_int32 lheapSwapDown() | |
| 51 * | |
| 52 * Debug output | |
| 53 * l_int32 lheapPrint() | |
| 54 * | |
| 55 * The L_Heap is useful to implement a priority queue, that is sorted | |
| 56 * on a key in each element of the heap. The heap is an array | |
| 57 * of nearly arbitrary structs, with a l_float32 the first field. | |
| 58 * This field is the key on which the heap is sorted. | |
| 59 * | |
| 60 * Internally, we keep track of the heap size, n. The item at the | |
| 61 * root of the heap is at the head of the array. Items are removed | |
| 62 * from the head of the array and added to the end of the array. | |
| 63 * When an item is removed from the head, the item at the end | |
| 64 * of the array is moved to the head. When items are either | |
| 65 * added or removed, it is usually necessary to swap array items | |
| 66 * to restore the heap order. It is guaranteed that the number | |
| 67 * of swaps does not exceed log(n). | |
| 68 * | |
| 69 * -------------------------- N.B. ------------------------------ | |
| 70 * The items on the heap (or, equivalently, in the array) are cast | |
| 71 * to void*. Their key is a l_float32, and it is REQUIRED that the | |
| 72 * key be the first field in the struct. That allows us to get the | |
| 73 * key by simply dereferencing the struct. Alternatively, we could | |
| 74 * choose (but don't) to pass an application-specific comparison | |
| 75 * function into the heap operation functions. | |
| 76 * -------------------------- N.B. ------------------------------ | |
| 77 * </pre> | |
| 78 */ | |
| 79 | |
| 80 #ifdef HAVE_CONFIG_H | |
| 81 #include <config_auto.h> | |
| 82 #endif /* HAVE_CONFIG_H */ | |
| 83 | |
| 84 #include <string.h> | |
| 85 #include "allheaders.h" | |
| 86 | |
| 87 /* Bounds on initial array size */ | |
| 88 static const l_uint32 MaxPtrArraySize = 100000; | |
| 89 static const l_int32 InitialPtrArraySize = 20; /*!< n'importe quoi */ | |
| 90 | |
| 91 #define SWAP_ITEMS(i, j) { void *tempitem = lh->array[(i)]; \ | |
| 92 lh->array[(i)] = lh->array[(j)]; \ | |
| 93 lh->array[(j)] = tempitem; } | |
| 94 | |
| 95 /* Static functions */ | |
| 96 static l_int32 lheapExtendArray(L_HEAP *lh); | |
| 97 static l_ok lheapSwapUp(L_HEAP *lh, l_int32 index); | |
| 98 static l_ok lheapSwapDown(L_HEAP *lh); | |
| 99 | |
| 100 | |
| 101 /*--------------------------------------------------------------------------* | |
| 102 * L_Heap create/destroy * | |
| 103 *--------------------------------------------------------------------------*/ | |
| 104 /*! | |
| 105 * \brief lheapCreate() | |
| 106 * | |
| 107 * \param[in] n size of ptr array to be alloc'd; use 0 for default | |
| 108 * \param[in] direction L_SORT_INCREASING, L_SORT_DECREASING | |
| 109 * \return lheap, or NULL on error | |
| 110 */ | |
| 111 L_HEAP * | |
| 112 lheapCreate(l_int32 n, | |
| 113 l_int32 direction) | |
| 114 { | |
| 115 L_HEAP *lh; | |
| 116 | |
| 117 if (n < InitialPtrArraySize || n > MaxPtrArraySize) | |
| 118 n = InitialPtrArraySize; | |
| 119 | |
| 120 /* Allocate ptr array and initialize counters. */ | |
| 121 lh = (L_HEAP *)LEPT_CALLOC(1, sizeof(L_HEAP)); | |
| 122 if ((lh->array = (void **)LEPT_CALLOC(n, sizeof(void *))) == NULL) { | |
| 123 lheapDestroy(&lh, FALSE); | |
| 124 return (L_HEAP *)ERROR_PTR("ptr array not made", __func__, NULL); | |
| 125 } | |
| 126 lh->nalloc = n; | |
| 127 lh->n = 0; | |
| 128 lh->direction = direction; | |
| 129 return lh; | |
| 130 } | |
| 131 | |
| 132 | |
| 133 /*! | |
| 134 * \brief lheapDestroy() | |
| 135 * | |
| 136 * \param[in,out] plh will be set to null before returning | |
| 137 * \param[in] freeflag TRUE to free each remaining struct in the array | |
| 138 * \return void | |
| 139 * | |
| 140 * <pre> | |
| 141 * Notes: | |
| 142 * (1) Use %freeflag == TRUE when the items in the array can be | |
| 143 * simply destroyed using free. If those items require their | |
| 144 * own destroy function, they must be destroyed before | |
| 145 * calling this function, and then this function is called | |
| 146 * with %freeflag == FALSE. | |
| 147 * (2) To destroy the lheap, we destroy the ptr array, then | |
| 148 * the lheap, and then null the contents of the input ptr. | |
| 149 * </pre> | |
| 150 */ | |
| 151 void | |
| 152 lheapDestroy(L_HEAP **plh, | |
| 153 l_int32 freeflag) | |
| 154 { | |
| 155 l_int32 i; | |
| 156 L_HEAP *lh; | |
| 157 | |
| 158 if (plh == NULL) { | |
| 159 L_WARNING("ptr address is NULL\n", __func__); | |
| 160 return; | |
| 161 } | |
| 162 if ((lh = *plh) == NULL) | |
| 163 return; | |
| 164 | |
| 165 if (freeflag) { /* free each struct in the array */ | |
| 166 for (i = 0; i < lh->n; i++) | |
| 167 LEPT_FREE(lh->array[i]); | |
| 168 } else if (lh->n > 0) { /* freeflag == FALSE but elements exist on array */ | |
| 169 L_WARNING("memory leak of %d items in lheap!\n", __func__, lh->n); | |
| 170 } | |
| 171 | |
| 172 if (lh->array) | |
| 173 LEPT_FREE(lh->array); | |
| 174 LEPT_FREE(lh); | |
| 175 *plh = NULL; | |
| 176 } | |
| 177 | |
| 178 /*--------------------------------------------------------------------------* | |
| 179 * Operations to add/remove to/from the heap * | |
| 180 *--------------------------------------------------------------------------*/ | |
| 181 /*! | |
| 182 * \brief lheapAdd() | |
| 183 * | |
| 184 * \param[in] lh heap | |
| 185 * \param[in] item to be added to the tail of the heap | |
| 186 * \return 0 if OK, 1 on error | |
| 187 */ | |
| 188 l_ok | |
| 189 lheapAdd(L_HEAP *lh, | |
| 190 void *item) | |
| 191 { | |
| 192 if (!lh) | |
| 193 return ERROR_INT("lh not defined", __func__, 1); | |
| 194 if (!item) | |
| 195 return ERROR_INT("item not defined", __func__, 1); | |
| 196 | |
| 197 /* If necessary, expand the allocated array by a factor of 2 */ | |
| 198 if (lh->n >= lh->nalloc) { | |
| 199 if (lheapExtendArray(lh)) | |
| 200 return ERROR_INT("extension failed", __func__, 1); | |
| 201 } | |
| 202 | |
| 203 /* Add the item */ | |
| 204 lh->array[lh->n] = item; | |
| 205 lh->n++; | |
| 206 | |
| 207 /* Restore the heap */ | |
| 208 lheapSwapUp(lh, lh->n - 1); | |
| 209 return 0; | |
| 210 } | |
| 211 | |
| 212 | |
| 213 /*! | |
| 214 * \brief lheapExtendArray() | |
| 215 * | |
| 216 * \param[in] lh heap | |
| 217 * \return 0 if OK, 1 on error | |
| 218 */ | |
| 219 static l_int32 | |
| 220 lheapExtendArray(L_HEAP *lh) | |
| 221 { | |
| 222 if (!lh) | |
| 223 return ERROR_INT("lh not defined", __func__, 1); | |
| 224 | |
| 225 if ((lh->array = (void **)reallocNew((void **)&lh->array, | |
| 226 sizeof(void *) * lh->nalloc, | |
| 227 2 * sizeof(void *) * lh->nalloc)) == NULL) | |
| 228 return ERROR_INT("new ptr array not returned", __func__, 1); | |
| 229 | |
| 230 lh->nalloc = 2 * lh->nalloc; | |
| 231 return 0; | |
| 232 } | |
| 233 | |
| 234 | |
| 235 /*! | |
| 236 * \brief lheapRemove() | |
| 237 * | |
| 238 * \param[in] lh heap | |
| 239 * \return ptr to item popped from the root of the heap, | |
| 240 * or NULL if the heap is empty or on error | |
| 241 */ | |
| 242 void * | |
| 243 lheapRemove(L_HEAP *lh) | |
| 244 { | |
| 245 void *item; | |
| 246 | |
| 247 if (!lh) | |
| 248 return (void *)ERROR_PTR("lh not defined", __func__, NULL); | |
| 249 | |
| 250 if (lh->n == 0) | |
| 251 return NULL; | |
| 252 | |
| 253 item = lh->array[0]; | |
| 254 lh->array[0] = lh->array[lh->n - 1]; /* move last to the head */ | |
| 255 lh->array[lh->n - 1] = NULL; /* set ptr to null */ | |
| 256 lh->n--; | |
| 257 | |
| 258 lheapSwapDown(lh); /* restore the heap */ | |
| 259 return item; | |
| 260 } | |
| 261 | |
| 262 | |
| 263 /*--------------------------------------------------------------------------* | |
| 264 * Other accessors * | |
| 265 *--------------------------------------------------------------------------*/ | |
| 266 /*! | |
| 267 * \brief lheapGetCount() | |
| 268 * | |
| 269 * \param[in] lh heap | |
| 270 * \return count, or 0 on error | |
| 271 */ | |
| 272 l_int32 | |
| 273 lheapGetCount(L_HEAP *lh) | |
| 274 { | |
| 275 if (!lh) | |
| 276 return ERROR_INT("lh not defined", __func__, 0); | |
| 277 | |
| 278 return lh->n; | |
| 279 } | |
| 280 | |
| 281 | |
| 282 /*! | |
| 283 * \brief lheapGetElement() | |
| 284 * | |
| 285 * \param[in] lh heap | |
| 286 * \param[in] index into the internal heap array | |
| 287 * \return ptr to the element at array[index], or NULL on error | |
| 288 * | |
| 289 * <pre> | |
| 290 * Notes: | |
| 291 * (1) This is useful for retrieving an arbitrary element in the | |
| 292 * heap array without disturbing the heap. It allows all the | |
| 293 * elements on the heap to be queried in linear time; for | |
| 294 * example, to find the min or max of some value. | |
| 295 * (2) The retrieved element is owned by the heap. Do not destroy it. | |
| 296 * </pre> | |
| 297 */ | |
| 298 void * | |
| 299 lheapGetElement(L_HEAP *lh, | |
| 300 l_int32 index) | |
| 301 { | |
| 302 if (!lh) | |
| 303 return ERROR_PTR("lh not defined", __func__, NULL); | |
| 304 if (index < 0 || index >= lh->n) | |
| 305 return ERROR_PTR("invalid index", __func__, NULL); | |
| 306 | |
| 307 return (void *)lh->array[index]; | |
| 308 } | |
| 309 | |
| 310 | |
| 311 /*--------------------------------------------------------------------------* | |
| 312 * Heap sort * | |
| 313 *--------------------------------------------------------------------------*/ | |
| 314 /*! | |
| 315 * \brief lheapSort() | |
| 316 * | |
| 317 * \param[in] lh heap, with internal array | |
| 318 * \return 0 if OK, 1 on error | |
| 319 * | |
| 320 * <pre> | |
| 321 * Notes: | |
| 322 * (1) This sorts an array into heap order. If the heap is already | |
| 323 * in heap order for the direction given, this has no effect. | |
| 324 * </pre> | |
| 325 */ | |
| 326 l_ok | |
| 327 lheapSort(L_HEAP *lh) | |
| 328 { | |
| 329 l_int32 i; | |
| 330 | |
| 331 if (!lh) | |
| 332 return ERROR_INT("lh not defined", __func__, 1); | |
| 333 | |
| 334 for (i = 0; i < lh->n; i++) | |
| 335 lheapSwapUp(lh, i); | |
| 336 | |
| 337 return 0; | |
| 338 } | |
| 339 | |
| 340 | |
| 341 /*! | |
| 342 * \brief lheapSortStrictOrder() | |
| 343 * | |
| 344 * \param[in] lh heap, with internal array | |
| 345 * \return 0 if OK, 1 on error | |
| 346 * | |
| 347 * <pre> | |
| 348 * Notes: | |
| 349 * (1) This sorts a heap into strict order. | |
| 350 * (2) For each element, starting at the end of the array and | |
| 351 * working forward, the element is swapped with the head | |
| 352 * element and then allowed to swap down onto a heap of | |
| 353 * size reduced by one. The result is that the heap is | |
| 354 * reversed but in strict order. The array elements are | |
| 355 * then reversed to put it in the original order. | |
| 356 * </pre> | |
| 357 */ | |
| 358 l_ok | |
| 359 lheapSortStrictOrder(L_HEAP *lh) | |
| 360 { | |
| 361 l_int32 i, index, size; | |
| 362 | |
| 363 if (!lh) | |
| 364 return ERROR_INT("lh not defined", __func__, 1); | |
| 365 | |
| 366 /* Start from a sorted heap */ | |
| 367 lheapSort(lh); | |
| 368 | |
| 369 size = lh->n; /* save the actual size */ | |
| 370 for (i = 0; i < size; i++) { | |
| 371 index = size - i; | |
| 372 SWAP_ITEMS(0, index - 1); | |
| 373 lh->n--; /* reduce the apparent heap size by 1 */ | |
| 374 lheapSwapDown(lh); | |
| 375 } | |
| 376 lh->n = size; /* restore the size */ | |
| 377 | |
| 378 for (i = 0; i < size / 2; i++) /* reverse */ | |
| 379 SWAP_ITEMS(i, size - i - 1); | |
| 380 | |
| 381 return 0; | |
| 382 } | |
| 383 | |
| 384 | |
| 385 /*--------------------------------------------------------------------------* | |
| 386 * Low-level heap operations * | |
| 387 *--------------------------------------------------------------------------*/ | |
| 388 /*! | |
| 389 * \brief lheapSwapUp() | |
| 390 * | |
| 391 * \param[in] lh heap | |
| 392 * \param[in] index of array corresponding to node to be swapped up | |
| 393 * \return 0 if OK, 1 on error | |
| 394 * | |
| 395 * <pre> | |
| 396 * Notes: | |
| 397 * (1) This is called after a new item is put on the heap, at the | |
| 398 * bottom of a complete tree. | |
| 399 * (2) To regain the heap order, we let it bubble up, | |
| 400 * iteratively swapping with its parent, until it either | |
| 401 * reaches the root of the heap or it finds a parent that | |
| 402 * is in the correct position already vis-a-vis the child. | |
| 403 * </pre> | |
| 404 */ | |
| 405 static l_ok | |
| 406 lheapSwapUp(L_HEAP *lh, | |
| 407 l_int32 index) | |
| 408 { | |
| 409 l_int32 ip; /* index to heap for parent; 1 larger than array index */ | |
| 410 l_int32 ic; /* index into heap for child */ | |
| 411 l_float32 valp, valc; | |
| 412 | |
| 413 if (!lh) | |
| 414 return ERROR_INT("lh not defined", __func__, 1); | |
| 415 if (index < 0 || index >= lh->n) | |
| 416 return ERROR_INT("invalid index", __func__, 1); | |
| 417 | |
| 418 ic = index + 1; /* index into heap: add 1 to array index */ | |
| 419 if (lh->direction == L_SORT_INCREASING) { | |
| 420 while (1) { | |
| 421 if (ic == 1) /* root of heap */ | |
| 422 break; | |
| 423 ip = ic / 2; | |
| 424 valc = *(l_float32 *)(lh->array[ic - 1]); | |
| 425 valp = *(l_float32 *)(lh->array[ip - 1]); | |
| 426 if (valp <= valc) | |
| 427 break; | |
| 428 SWAP_ITEMS(ip - 1, ic - 1); | |
| 429 ic = ip; | |
| 430 } | |
| 431 } else { /* lh->direction == L_SORT_DECREASING */ | |
| 432 while (1) { | |
| 433 if (ic == 1) /* root of heap */ | |
| 434 break; | |
| 435 ip = ic / 2; | |
| 436 valc = *(l_float32 *)(lh->array[ic - 1]); | |
| 437 valp = *(l_float32 *)(lh->array[ip - 1]); | |
| 438 if (valp >= valc) | |
| 439 break; | |
| 440 SWAP_ITEMS(ip - 1, ic - 1); | |
| 441 ic = ip; | |
| 442 } | |
| 443 } | |
| 444 return 0; | |
| 445 } | |
| 446 | |
| 447 | |
| 448 /*! | |
| 449 * \brief lheapSwapDown() | |
| 450 * | |
| 451 * \param[in] lh heap | |
| 452 * \return 0 if OK, 1 on error | |
| 453 * | |
| 454 * <pre> | |
| 455 * Notes: | |
| 456 * (1) This is called after an item has been popped off the | |
| 457 * root of the heap, and the last item in the heap has | |
| 458 * been placed at the root. | |
| 459 * (2) To regain the heap order, we let it bubble down, | |
| 460 * iteratively swapping with one of its children. For a | |
| 461 * decreasing sort, it swaps with the largest child; for | |
| 462 * an increasing sort, the smallest. This continues until | |
| 463 * it either reaches the lowest level in the heap, or the | |
| 464 * parent finds that neither child should swap with it | |
| 465 * (e.g., for a decreasing heap, the parent is larger | |
| 466 * than or equal to both children). | |
| 467 * </pre> | |
| 468 */ | |
| 469 static l_ok | |
| 470 lheapSwapDown(L_HEAP *lh) | |
| 471 { | |
| 472 l_int32 ip; /* index to heap for parent; 1 larger than array index */ | |
| 473 l_int32 icr, icl; /* index into heap for left/right children */ | |
| 474 l_float32 valp, valcl, valcr; | |
| 475 | |
| 476 if (!lh) | |
| 477 return ERROR_INT("lh not defined", __func__, 1); | |
| 478 if (lheapGetCount(lh) < 1) | |
| 479 return 0; | |
| 480 | |
| 481 ip = 1; /* index into top of heap: corresponds to array[0] */ | |
| 482 if (lh->direction == L_SORT_INCREASING) { | |
| 483 while (1) { | |
| 484 icl = 2 * ip; | |
| 485 if (icl > lh->n) | |
| 486 break; | |
| 487 valp = *(l_float32 *)(lh->array[ip - 1]); | |
| 488 valcl = *(l_float32 *)(lh->array[icl - 1]); | |
| 489 icr = icl + 1; | |
| 490 if (icr > lh->n) { /* only a left child; no iters below */ | |
| 491 if (valp > valcl) | |
| 492 SWAP_ITEMS(ip - 1, icl - 1); | |
| 493 break; | |
| 494 } else { /* both children exist; swap with the smallest if bigger */ | |
| 495 valcr = *(l_float32 *)(lh->array[icr - 1]); | |
| 496 if (valp <= valcl && valp <= valcr) /* smaller than both */ | |
| 497 break; | |
| 498 if (valcl <= valcr) { /* left smaller; swap */ | |
| 499 SWAP_ITEMS(ip - 1, icl - 1); | |
| 500 ip = icl; | |
| 501 } else { /* right smaller; swap */ | |
| 502 SWAP_ITEMS(ip - 1, icr - 1); | |
| 503 ip = icr; | |
| 504 } | |
| 505 } | |
| 506 } | |
| 507 } else { /* lh->direction == L_SORT_DECREASING */ | |
| 508 while (1) { | |
| 509 icl = 2 * ip; | |
| 510 if (icl > lh->n) | |
| 511 break; | |
| 512 valp = *(l_float32 *)(lh->array[ip - 1]); | |
| 513 valcl = *(l_float32 *)(lh->array[icl - 1]); | |
| 514 icr = icl + 1; | |
| 515 if (icr > lh->n) { /* only a left child; no iters below */ | |
| 516 if (valp < valcl) | |
| 517 SWAP_ITEMS(ip - 1, icl - 1); | |
| 518 break; | |
| 519 } else { /* both children exist; swap with the biggest if smaller */ | |
| 520 valcr = *(l_float32 *)(lh->array[icr - 1]); | |
| 521 if (valp >= valcl && valp >= valcr) /* bigger than both */ | |
| 522 break; | |
| 523 if (valcl >= valcr) { /* left bigger; swap */ | |
| 524 SWAP_ITEMS(ip - 1, icl - 1); | |
| 525 ip = icl; | |
| 526 } else { /* right bigger; swap */ | |
| 527 SWAP_ITEMS(ip - 1, icr - 1); | |
| 528 ip = icr; | |
| 529 } | |
| 530 } | |
| 531 } | |
| 532 } | |
| 533 | |
| 534 return 0; | |
| 535 } | |
| 536 | |
| 537 | |
| 538 /*---------------------------------------------------------------------* | |
| 539 * Debug output * | |
| 540 *---------------------------------------------------------------------*/ | |
| 541 /*! | |
| 542 * \brief lheapPrint() | |
| 543 * | |
| 544 * \param[in] fp file stream | |
| 545 * \param[in] lh heap | |
| 546 * \return 0 if OK; 1 on error | |
| 547 */ | |
| 548 l_ok | |
| 549 lheapPrint(FILE *fp, | |
| 550 L_HEAP *lh) | |
| 551 { | |
| 552 l_int32 i; | |
| 553 | |
| 554 if (!fp) | |
| 555 return ERROR_INT("stream not defined", __func__, 1); | |
| 556 if (!lh) | |
| 557 return ERROR_INT("lh not defined", __func__, 1); | |
| 558 | |
| 559 fprintf(fp, "\n L_Heap: nalloc = %d, n = %d, array = %p\n", | |
| 560 lh->nalloc, lh->n, lh->array); | |
| 561 for (i = 0; i < lh->n; i++) | |
| 562 fprintf(fp, "keyval[%d] = %f\n", i, *(l_float32 *)lh->array[i]); | |
| 563 | |
| 564 return 0; | |
| 565 } |
