Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/leptonica/src/convolve.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /*====================================================================* | |
| 2 - Copyright (C) 2001 Leptonica. All rights reserved. | |
| 3 - | |
| 4 - Redistribution and use in source and binary forms, with or without | |
| 5 - modification, are permitted provided that the following conditions | |
| 6 - are met: | |
| 7 - 1. Redistributions of source code must retain the above copyright | |
| 8 - notice, this list of conditions and the following disclaimer. | |
| 9 - 2. Redistributions in binary form must reproduce the above | |
| 10 - copyright notice, this list of conditions and the following | |
| 11 - disclaimer in the documentation and/or other materials | |
| 12 - provided with the distribution. | |
| 13 - | |
| 14 - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 15 - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 16 - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 17 - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY | |
| 18 - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
| 19 - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
| 20 - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
| 21 - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | |
| 22 - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
| 23 - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| 24 - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 25 *====================================================================*/ | |
| 26 | |
| 27 /*! | |
| 28 * \file convolve.c | |
| 29 * <pre> | |
| 30 * | |
| 31 * Top level grayscale or color block convolution | |
| 32 * PIX *pixBlockconv() | |
| 33 * | |
| 34 * Grayscale block convolution | |
| 35 * PIX *pixBlockconvGray() | |
| 36 * static void blockconvLow() | |
| 37 * | |
| 38 * Accumulator for 1, 8 and 32 bpp convolution | |
| 39 * PIX *pixBlockconvAccum() | |
| 40 * static void blockconvAccumLow() | |
| 41 * | |
| 42 * Un-normalized grayscale block convolution | |
| 43 * PIX *pixBlockconvGrayUnnormalized() | |
| 44 * | |
| 45 * Tiled grayscale or color block convolution | |
| 46 * PIX *pixBlockconvTiled() | |
| 47 * PIX *pixBlockconvGrayTile() | |
| 48 * | |
| 49 * Convolution for mean, mean square, variance and rms deviation | |
| 50 * in specified window | |
| 51 * l_int32 pixWindowedStats() | |
| 52 * PIX *pixWindowedMean() | |
| 53 * PIX *pixWindowedMeanSquare() | |
| 54 * l_int32 pixWindowedVariance() | |
| 55 * DPIX *pixMeanSquareAccum() | |
| 56 * | |
| 57 * Binary block sum and rank filter | |
| 58 * PIX *pixBlockrank() | |
| 59 * PIX *pixBlocksum() | |
| 60 * static void blocksumLow() | |
| 61 * | |
| 62 * Census transform | |
| 63 * PIX *pixCensusTransform() | |
| 64 * | |
| 65 * Generic convolution (with Pix) | |
| 66 * PIX *pixConvolve() | |
| 67 * PIX *pixConvolveSep() | |
| 68 * PIX *pixConvolveRGB() | |
| 69 * PIX *pixConvolveRGBSep() | |
| 70 * | |
| 71 * Generic convolution (with float arrays) | |
| 72 * FPIX *fpixConvolve() | |
| 73 * FPIX *fpixConvolveSep() | |
| 74 * | |
| 75 * Convolution with bias (for non-negative output) | |
| 76 * PIX *pixConvolveWithBias() | |
| 77 * | |
| 78 * Set parameter for convolution subsampling | |
| 79 * void l_setConvolveSampling() | |
| 80 * | |
| 81 * Additive gaussian noise | |
| 82 * PIX *pixAddGaussNoise() | |
| 83 * l_float32 gaussDistribSampling() | |
| 84 * </pre> | |
| 85 */ | |
| 86 | |
| 87 #ifdef HAVE_CONFIG_H | |
| 88 #include <config_auto.h> | |
| 89 #endif /* HAVE_CONFIG_H */ | |
| 90 | |
| 91 #include <math.h> | |
| 92 #include "allheaders.h" | |
| 93 | |
| 94 /* These globals determine the subsampling factors for | |
| 95 * generic convolution of pix and fpix. Declare extern to use. | |
| 96 * To change the values, use l_setConvolveSampling(). */ | |
| 97 LEPT_DLL l_int32 ConvolveSamplingFactX = 1; | |
| 98 LEPT_DLL l_int32 ConvolveSamplingFactY = 1; | |
| 99 | |
| 100 /* Low-level static functions */ | |
| 101 static void blockconvLow(l_uint32 *data, l_int32 w, l_int32 h, l_int32 wpl, | |
| 102 l_uint32 *dataa, l_int32 wpla, l_int32 wc, | |
| 103 l_int32 hc); | |
| 104 static void blockconvAccumLow(l_uint32 *datad, l_int32 w, l_int32 h, | |
| 105 l_int32 wpld, l_uint32 *datas, l_int32 d, | |
| 106 l_int32 wpls); | |
| 107 static void blocksumLow(l_uint32 *datad, l_int32 w, l_int32 h, l_int32 wpl, | |
| 108 l_uint32 *dataa, l_int32 wpla, l_int32 wc, l_int32 hc); | |
| 109 | |
| 110 | |
| 111 /*----------------------------------------------------------------------* | |
| 112 * Top-level grayscale or color block convolution * | |
| 113 *----------------------------------------------------------------------*/ | |
| 114 /*! | |
| 115 * \brief pixBlockconv() | |
| 116 * | |
| 117 * \param[in] pix 8 or 32 bpp; or 2, 4 or 8 bpp with colormap | |
| 118 * \param[in] wc, hc half width/height of convolution kernel | |
| 119 * \return pixd, or NULL on error | |
| 120 * | |
| 121 * <pre> | |
| 122 * Notes: | |
| 123 * (1) The full width and height of the convolution kernel | |
| 124 * are (2 * wc + 1) and (2 * hc + 1) | |
| 125 * (2) Returns a copy if either wc or hc are 0 | |
| 126 * (3) Require that w >= 2 * wc + 1 and h >= 2 * hc + 1, | |
| 127 * where (w,h) are the dimensions of pixs. Attempt to | |
| 128 * reduce the kernel size if necessary. | |
| 129 * </pre> | |
| 130 */ | |
| 131 PIX * | |
| 132 pixBlockconv(PIX *pix, | |
| 133 l_int32 wc, | |
| 134 l_int32 hc) | |
| 135 { | |
| 136 l_int32 w, h, d; | |
| 137 PIX *pixs, *pixd, *pixr, *pixrc, *pixg, *pixgc, *pixb, *pixbc; | |
| 138 | |
| 139 if (!pix) | |
| 140 return (PIX *)ERROR_PTR("pix not defined", __func__, NULL); | |
| 141 if (wc <= 0 || hc <= 0) | |
| 142 return pixCopy(NULL, pix); | |
| 143 pixGetDimensions(pix, &w, &h, &d); | |
| 144 if (w < 2 * wc + 1 || h < 2 * hc + 1) { | |
| 145 L_WARNING("kernel too large: wc = %d, hc = %d, w = %d, h = %d; " | |
| 146 "reducing!\n", __func__, wc, hc, w, h); | |
| 147 wc = L_MIN(wc, (w - 1) / 2); | |
| 148 hc = L_MIN(hc, (h - 1) / 2); | |
| 149 } | |
| 150 if (wc == 0 || hc == 0) /* no-op */ | |
| 151 return pixCopy(NULL, pix); | |
| 152 | |
| 153 /* Remove colormap if necessary */ | |
| 154 if ((d == 2 || d == 4 || d == 8) && pixGetColormap(pix)) { | |
| 155 L_WARNING("pix has colormap; removing\n", __func__); | |
| 156 pixs = pixRemoveColormap(pix, REMOVE_CMAP_BASED_ON_SRC); | |
| 157 d = pixGetDepth(pixs); | |
| 158 } else { | |
| 159 pixs = pixClone(pix); | |
| 160 } | |
| 161 | |
| 162 if (d != 8 && d != 32) { | |
| 163 pixDestroy(&pixs); | |
| 164 return (PIX *)ERROR_PTR("depth not 8 or 32 bpp", __func__, NULL); | |
| 165 } | |
| 166 | |
| 167 if (d == 8) { | |
| 168 pixd = pixBlockconvGray(pixs, NULL, wc, hc); | |
| 169 } else { /* d == 32 */ | |
| 170 pixr = pixGetRGBComponent(pixs, COLOR_RED); | |
| 171 pixrc = pixBlockconvGray(pixr, NULL, wc, hc); | |
| 172 pixDestroy(&pixr); | |
| 173 pixg = pixGetRGBComponent(pixs, COLOR_GREEN); | |
| 174 pixgc = pixBlockconvGray(pixg, NULL, wc, hc); | |
| 175 pixDestroy(&pixg); | |
| 176 pixb = pixGetRGBComponent(pixs, COLOR_BLUE); | |
| 177 pixbc = pixBlockconvGray(pixb, NULL, wc, hc); | |
| 178 pixDestroy(&pixb); | |
| 179 pixd = pixCreateRGBImage(pixrc, pixgc, pixbc); | |
| 180 pixDestroy(&pixrc); | |
| 181 pixDestroy(&pixgc); | |
| 182 pixDestroy(&pixbc); | |
| 183 } | |
| 184 | |
| 185 pixDestroy(&pixs); | |
| 186 return pixd; | |
| 187 } | |
| 188 | |
| 189 | |
| 190 /*----------------------------------------------------------------------* | |
| 191 * Grayscale block convolution * | |
| 192 *----------------------------------------------------------------------*/ | |
| 193 /*! | |
| 194 * \brief pixBlockconvGray() | |
| 195 * | |
| 196 * \param[in] pixs 8 bpp | |
| 197 * \param[in] pixacc pix 32 bpp; can be null | |
| 198 * \param[in] wc, hc half width/height of convolution kernel | |
| 199 * \return pix 8 bpp, or NULL on error | |
| 200 * | |
| 201 * <pre> | |
| 202 * Notes: | |
| 203 * (1) If accum pix is null, make one and destroy it before | |
| 204 * returning; otherwise, just use the input accum pix. | |
| 205 * (2) The full width and height of the convolution kernel | |
| 206 * are (2 * wc + 1) and (2 * hc + 1). | |
| 207 * (3) Returns a copy if either wc or hc are 0 | |
| 208 * (4) Require that w >= 2 * wc + 1 and h >= 2 * hc + 1, | |
| 209 * where (w,h) are the dimensions of pixs. Attempt to | |
| 210 * reduce the kernel size if necessary. | |
| 211 * </pre> | |
| 212 */ | |
| 213 PIX * | |
| 214 pixBlockconvGray(PIX *pixs, | |
| 215 PIX *pixacc, | |
| 216 l_int32 wc, | |
| 217 l_int32 hc) | |
| 218 { | |
| 219 l_int32 w, h, d, wpl, wpla; | |
| 220 l_uint32 *datad, *dataa; | |
| 221 PIX *pixd, *pixt; | |
| 222 | |
| 223 if (!pixs) | |
| 224 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 225 pixGetDimensions(pixs, &w, &h, &d); | |
| 226 if (d != 8) | |
| 227 return (PIX *)ERROR_PTR("pixs not 8 bpp", __func__, NULL); | |
| 228 if (wc <= 0 || hc <= 0) /* no-op */ | |
| 229 return pixCopy(NULL, pixs); | |
| 230 if (w < 2 * wc + 1 || h < 2 * hc + 1) { | |
| 231 L_WARNING("kernel too large: wc = %d, hc = %d, w = %d, h = %d; " | |
| 232 "reducing!\n", __func__, wc, hc, w, h); | |
| 233 wc = L_MIN(wc, (w - 1) / 2); | |
| 234 hc = L_MIN(hc, (h - 1) / 2); | |
| 235 } | |
| 236 if (wc == 0 || hc == 0) | |
| 237 return pixCopy(NULL, pixs); | |
| 238 | |
| 239 if (pixacc) { | |
| 240 if (pixGetDepth(pixacc) == 32) { | |
| 241 pixt = pixClone(pixacc); | |
| 242 } else { | |
| 243 L_WARNING("pixacc not 32 bpp; making new one\n", __func__); | |
| 244 if ((pixt = pixBlockconvAccum(pixs)) == NULL) | |
| 245 return (PIX *)ERROR_PTR("pixt not made", __func__, NULL); | |
| 246 } | |
| 247 } else { | |
| 248 if ((pixt = pixBlockconvAccum(pixs)) == NULL) | |
| 249 return (PIX *)ERROR_PTR("pixt not made", __func__, NULL); | |
| 250 } | |
| 251 | |
| 252 if ((pixd = pixCreateTemplate(pixs)) == NULL) { | |
| 253 pixDestroy(&pixt); | |
| 254 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 255 } | |
| 256 | |
| 257 pixSetPadBits(pixt, 0); | |
| 258 wpl = pixGetWpl(pixd); | |
| 259 wpla = pixGetWpl(pixt); | |
| 260 datad = pixGetData(pixd); | |
| 261 dataa = pixGetData(pixt); | |
| 262 blockconvLow(datad, w, h, wpl, dataa, wpla, wc, hc); | |
| 263 | |
| 264 pixDestroy(&pixt); | |
| 265 return pixd; | |
| 266 } | |
| 267 | |
| 268 | |
| 269 /*! | |
| 270 * \brief blockconvLow() | |
| 271 * | |
| 272 * \param[in] data data of input image, to be convolved | |
| 273 * \param[in] w, h, wpl | |
| 274 * \param[in] dataa data of 32 bpp accumulator | |
| 275 * \param[in] wpla accumulator | |
| 276 * \param[in] wc convolution "half-width" | |
| 277 * \param[in] hc convolution "half-height" | |
| 278 * \return void | |
| 279 * | |
| 280 * <pre> | |
| 281 * Notes: | |
| 282 * (1) The full width and height of the convolution kernel | |
| 283 * are (2 * wc + 1) and (2 * hc + 1). | |
| 284 * (2) The lack of symmetry between the handling of the | |
| 285 * first (hc + 1) lines and the last (hc) lines, | |
| 286 * and similarly with the columns, is due to fact that | |
| 287 * for the pixel at (x,y), the accumulator values are | |
| 288 * taken at (x + wc, y + hc), (x - wc - 1, y + hc), | |
| 289 * (x + wc, y - hc - 1) and (x - wc - 1, y - hc - 1). | |
| 290 * (3) We compute sums, normalized as if there were no reduced | |
| 291 * area at the boundary. This under-estimates the value | |
| 292 * of the boundary pixels, so we multiply them by another | |
| 293 * normalization factor that is greater than 1. | |
| 294 * (4) This second normalization is done first for the first | |
| 295 * hc + 1 lines; then for the last hc lines; and finally | |
| 296 * for the first wc + 1 and last wc columns in the intermediate | |
| 297 * lines. | |
| 298 * (5) The caller should verify that wc < w and hc < h. | |
| 299 * Failing either condition, illegal reads and writes can occur. | |
| 300 * (6) Implementation note: to get the same results in the interior | |
| 301 * between this function and pixConvolve(), it is necessary to | |
| 302 * add 0.5 for roundoff in the main loop that runs over all pixels. | |
| 303 * However, if we do that and have white (255) pixels near the | |
| 304 * image boundary, some overflow occurs for pixels very close | |
| 305 * to the boundary. We can't fix this by subtracting from the | |
| 306 * normalized values for the boundary pixels, because this results | |
| 307 * in underflow if the boundary pixels are black (0). Empirically, | |
| 308 * adding 0.25 (instead of 0.5) before truncating in the main | |
| 309 * loop will not cause overflow, but this gives some | |
| 310 * off-by-1-level errors in interior pixel values. So we add | |
| 311 * 0.5 for roundoff in the main loop, and for pixels within a | |
| 312 * half filter width of the boundary, use a L_MIN of the | |
| 313 * computed value and 255 to avoid overflow during normalization. | |
| 314 * </pre> | |
| 315 */ | |
| 316 static void | |
| 317 blockconvLow(l_uint32 *data, | |
| 318 l_int32 w, | |
| 319 l_int32 h, | |
| 320 l_int32 wpl, | |
| 321 l_uint32 *dataa, | |
| 322 l_int32 wpla, | |
| 323 l_int32 wc, | |
| 324 l_int32 hc) | |
| 325 { | |
| 326 l_int32 i, j, imax, imin, jmax, jmin; | |
| 327 l_int32 wn, hn, fwc, fhc, wmwc, hmhc; | |
| 328 l_float32 norm, normh, normw; | |
| 329 l_uint32 val; | |
| 330 l_uint32 *linemina, *linemaxa, *line; | |
| 331 | |
| 332 wmwc = w - wc; | |
| 333 hmhc = h - hc; | |
| 334 if (wmwc <= 0 || hmhc <= 0) { | |
| 335 L_ERROR("wc >= w || hc >= h\n", __func__); | |
| 336 return; | |
| 337 } | |
| 338 fwc = 2 * wc + 1; | |
| 339 fhc = 2 * hc + 1; | |
| 340 norm = 1.0 / ((l_float32)(fwc) * fhc); | |
| 341 | |
| 342 /*------------------------------------------------------------* | |
| 343 * Compute, using b.c. only to set limits on the accum image * | |
| 344 *------------------------------------------------------------*/ | |
| 345 for (i = 0; i < h; i++) { | |
| 346 imin = L_MAX(i - 1 - hc, 0); | |
| 347 imax = L_MIN(i + hc, h - 1); | |
| 348 line = data + wpl * i; | |
| 349 linemina = dataa + wpla * imin; | |
| 350 linemaxa = dataa + wpla * imax; | |
| 351 for (j = 0; j < w; j++) { | |
| 352 jmin = L_MAX(j - 1 - wc, 0); | |
| 353 jmax = L_MIN(j + wc, w - 1); | |
| 354 val = linemaxa[jmax] - linemaxa[jmin] | |
| 355 + linemina[jmin] - linemina[jmax]; | |
| 356 val = (l_uint8)(norm * val + 0.5); /* see comment above */ | |
| 357 SET_DATA_BYTE(line, j, val); | |
| 358 } | |
| 359 } | |
| 360 | |
| 361 /*------------------------------------------------------------* | |
| 362 * Fix normalization for boundary pixels * | |
| 363 *------------------------------------------------------------*/ | |
| 364 for (i = 0; i <= hc; i++) { /* first hc + 1 lines */ | |
| 365 hn = L_MAX(1, hc + i); | |
| 366 normh = (l_float32)fhc / (l_float32)hn; /* >= 1 */ | |
| 367 line = data + wpl * i; | |
| 368 for (j = 0; j <= wc; j++) { | |
| 369 wn = L_MAX(1, wc + j); | |
| 370 normw = (l_float32)fwc / (l_float32)wn; /* >= 1 */ | |
| 371 val = GET_DATA_BYTE(line, j); | |
| 372 val = (l_uint8)L_MIN(val * normh * normw, 255); | |
| 373 SET_DATA_BYTE(line, j, val); | |
| 374 } | |
| 375 for (j = wc + 1; j < wmwc; j++) { | |
| 376 val = GET_DATA_BYTE(line, j); | |
| 377 val = (l_uint8)L_MIN(val * normh, 255); | |
| 378 SET_DATA_BYTE(line, j, val); | |
| 379 } | |
| 380 for (j = wmwc; j < w; j++) { | |
| 381 wn = wc + w - j; | |
| 382 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 383 val = GET_DATA_BYTE(line, j); | |
| 384 val = (l_uint8)L_MIN(val * normh * normw, 255); | |
| 385 SET_DATA_BYTE(line, j, val); | |
| 386 } | |
| 387 } | |
| 388 | |
| 389 for (i = hmhc; i < h; i++) { /* last hc lines */ | |
| 390 hn = hc + h - i; | |
| 391 normh = (l_float32)fhc / (l_float32)hn; /* > 1 */ | |
| 392 line = data + wpl * i; | |
| 393 for (j = 0; j <= wc; j++) { | |
| 394 wn = wc + j; | |
| 395 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 396 val = GET_DATA_BYTE(line, j); | |
| 397 val = (l_uint8)L_MIN(val * normh * normw, 255); | |
| 398 SET_DATA_BYTE(line, j, val); | |
| 399 } | |
| 400 for (j = wc + 1; j < wmwc; j++) { | |
| 401 val = GET_DATA_BYTE(line, j); | |
| 402 val = (l_uint8)L_MIN(val * normh, 255); | |
| 403 SET_DATA_BYTE(line, j, val); | |
| 404 } | |
| 405 for (j = wmwc; j < w; j++) { | |
| 406 wn = wc + w - j; | |
| 407 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 408 val = GET_DATA_BYTE(line, j); | |
| 409 val = (l_uint8)L_MIN(val * normh * normw, 255); | |
| 410 SET_DATA_BYTE(line, j, val); | |
| 411 } | |
| 412 } | |
| 413 | |
| 414 for (i = hc + 1; i < hmhc; i++) { /* intermediate lines */ | |
| 415 line = data + wpl * i; | |
| 416 for (j = 0; j <= wc; j++) { /* first wc + 1 columns */ | |
| 417 wn = wc + j; | |
| 418 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 419 val = GET_DATA_BYTE(line, j); | |
| 420 val = (l_uint8)L_MIN(val * normw, 255); | |
| 421 SET_DATA_BYTE(line, j, val); | |
| 422 } | |
| 423 for (j = wmwc; j < w; j++) { /* last wc columns */ | |
| 424 wn = wc + w - j; | |
| 425 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 426 val = GET_DATA_BYTE(line, j); | |
| 427 val = (l_uint8)L_MIN(val * normw, 255); | |
| 428 SET_DATA_BYTE(line, j, val); | |
| 429 } | |
| 430 } | |
| 431 } | |
| 432 | |
| 433 | |
| 434 /*----------------------------------------------------------------------* | |
| 435 * Accumulator for 1, 8 and 32 bpp convolution * | |
| 436 *----------------------------------------------------------------------*/ | |
| 437 /*! | |
| 438 * \brief pixBlockconvAccum() | |
| 439 * | |
| 440 * \param[in] pixs 1, 8 or 32 bpp | |
| 441 * \return accum pix 32 bpp, or NULL on error. | |
| 442 * | |
| 443 * <pre> | |
| 444 * Notes: | |
| 445 * (1) The general recursion relation is | |
| 446 * a(i,j) = v(i,j) + a(i-1, j) + a(i, j-1) - a(i-1, j-1) | |
| 447 * For the first line, this reduces to the special case | |
| 448 * a(i,j) = v(i,j) + a(i, j-1) | |
| 449 * For the first column, the special case is | |
| 450 * a(i,j) = v(i,j) + a(i-1, j) | |
| 451 * </pre> | |
| 452 */ | |
| 453 PIX * | |
| 454 pixBlockconvAccum(PIX *pixs) | |
| 455 { | |
| 456 l_int32 w, h, d, wpls, wpld; | |
| 457 l_uint32 *datas, *datad; | |
| 458 PIX *pixd; | |
| 459 | |
| 460 if (!pixs) | |
| 461 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 462 | |
| 463 pixGetDimensions(pixs, &w, &h, &d); | |
| 464 if (d != 1 && d != 8 && d != 32) | |
| 465 return (PIX *)ERROR_PTR("pixs not 1, 8 or 32 bpp", __func__, NULL); | |
| 466 if ((pixd = pixCreate(w, h, 32)) == NULL) | |
| 467 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 468 | |
| 469 datas = pixGetData(pixs); | |
| 470 datad = pixGetData(pixd); | |
| 471 wpls = pixGetWpl(pixs); | |
| 472 wpld = pixGetWpl(pixd); | |
| 473 blockconvAccumLow(datad, w, h, wpld, datas, d, wpls); | |
| 474 | |
| 475 return pixd; | |
| 476 } | |
| 477 | |
| 478 | |
| 479 /* | |
| 480 * \brief blockconvAccumLow() | |
| 481 * | |
| 482 * \param[in] datad 32 bpp dest | |
| 483 * \param[in] w, h, wpld of 32 bpp dest | |
| 484 * \param[in] datas 1, 8 or 32 bpp src | |
| 485 * \param[in] d bpp of src | |
| 486 * \param[in] wpls of src | |
| 487 * \return void | |
| 488 * | |
| 489 * <pre> | |
| 490 * Notes: | |
| 491 * (1) The general recursion relation is | |
| 492 * a(i,j) = v(i,j) + a(i-1, j) + a(i, j-1) - a(i-1, j-1) | |
| 493 * For the first line, this reduces to the special case | |
| 494 * a(0,j) = v(0,j) + a(0, j-1), j > 0 | |
| 495 * For the first column, the special case is | |
| 496 * a(i,0) = v(i,0) + a(i-1, 0), i > 0 | |
| 497 * </pre> | |
| 498 */ | |
| 499 static void | |
| 500 blockconvAccumLow(l_uint32 *datad, | |
| 501 l_int32 w, | |
| 502 l_int32 h, | |
| 503 l_int32 wpld, | |
| 504 l_uint32 *datas, | |
| 505 l_int32 d, | |
| 506 l_int32 wpls) | |
| 507 { | |
| 508 l_uint8 val; | |
| 509 l_int32 i, j; | |
| 510 l_uint32 val32; | |
| 511 l_uint32 *lines, *lined, *linedp; | |
| 512 | |
| 513 lines = datas; | |
| 514 lined = datad; | |
| 515 | |
| 516 if (d == 1) { | |
| 517 /* Do the first line */ | |
| 518 for (j = 0; j < w; j++) { | |
| 519 val = GET_DATA_BIT(lines, j); | |
| 520 if (j == 0) | |
| 521 lined[0] = val; | |
| 522 else | |
| 523 lined[j] = lined[j - 1] + val; | |
| 524 } | |
| 525 | |
| 526 /* Do the other lines */ | |
| 527 for (i = 1; i < h; i++) { | |
| 528 lines = datas + i * wpls; | |
| 529 lined = datad + i * wpld; /* curr dest line */ | |
| 530 linedp = lined - wpld; /* prev dest line */ | |
| 531 for (j = 0; j < w; j++) { | |
| 532 val = GET_DATA_BIT(lines, j); | |
| 533 if (j == 0) | |
| 534 lined[0] = val + linedp[0]; | |
| 535 else | |
| 536 lined[j] = val + lined[j - 1] + linedp[j] - linedp[j - 1]; | |
| 537 } | |
| 538 } | |
| 539 } else if (d == 8) { | |
| 540 /* Do the first line */ | |
| 541 for (j = 0; j < w; j++) { | |
| 542 val = GET_DATA_BYTE(lines, j); | |
| 543 if (j == 0) | |
| 544 lined[0] = val; | |
| 545 else | |
| 546 lined[j] = lined[j - 1] + val; | |
| 547 } | |
| 548 | |
| 549 /* Do the other lines */ | |
| 550 for (i = 1; i < h; i++) { | |
| 551 lines = datas + i * wpls; | |
| 552 lined = datad + i * wpld; /* curr dest line */ | |
| 553 linedp = lined - wpld; /* prev dest line */ | |
| 554 for (j = 0; j < w; j++) { | |
| 555 val = GET_DATA_BYTE(lines, j); | |
| 556 if (j == 0) | |
| 557 lined[0] = val + linedp[0]; | |
| 558 else | |
| 559 lined[j] = val + lined[j - 1] + linedp[j] - linedp[j - 1]; | |
| 560 } | |
| 561 } | |
| 562 } else if (d == 32) { | |
| 563 /* Do the first line */ | |
| 564 for (j = 0; j < w; j++) { | |
| 565 val32 = lines[j]; | |
| 566 if (j == 0) | |
| 567 lined[0] = val32; | |
| 568 else | |
| 569 lined[j] = lined[j - 1] + val32; | |
| 570 } | |
| 571 | |
| 572 /* Do the other lines */ | |
| 573 for (i = 1; i < h; i++) { | |
| 574 lines = datas + i * wpls; | |
| 575 lined = datad + i * wpld; /* curr dest line */ | |
| 576 linedp = lined - wpld; /* prev dest line */ | |
| 577 for (j = 0; j < w; j++) { | |
| 578 val32 = lines[j]; | |
| 579 if (j == 0) | |
| 580 lined[0] = val32 + linedp[0]; | |
| 581 else | |
| 582 lined[j] = val32 + lined[j - 1] + linedp[j] - linedp[j - 1]; | |
| 583 } | |
| 584 } | |
| 585 } else { | |
| 586 L_ERROR("depth not 1, 8 or 32 bpp\n", __func__); | |
| 587 } | |
| 588 } | |
| 589 | |
| 590 | |
| 591 /*----------------------------------------------------------------------* | |
| 592 * Un-normalized grayscale block convolution * | |
| 593 *----------------------------------------------------------------------*/ | |
| 594 /*! | |
| 595 * \brief pixBlockconvGrayUnnormalized() | |
| 596 * | |
| 597 * \param[in] pixs 8 bpp | |
| 598 * \param[in] wc, hc half width/height of convolution kernel | |
| 599 * \return pix 32 bpp; containing the convolution without normalizing | |
| 600 * for the window size, or NULL on error | |
| 601 * | |
| 602 * <pre> | |
| 603 * Notes: | |
| 604 * (1) The full width and height of the convolution kernel | |
| 605 * are (2 * wc + 1) and (2 * hc + 1). | |
| 606 * (2) Require that w >= 2 * wc + 1 and h >= 2 * hc + 1, | |
| 607 * where (w,h) are the dimensions of pixs. Attempt to | |
| 608 * reduce the kernel size if necessary. | |
| 609 * (3) Returns a copy if either wc or hc are 0. | |
| 610 * (3) Adds mirrored border to avoid treating the boundary pixels | |
| 611 * specially. Note that we add wc + 1 pixels to the left | |
| 612 * and wc to the right. The added width is 2 * wc + 1 pixels, | |
| 613 * and the particular choice simplifies the indexing in the loop. | |
| 614 * Likewise, add hc + 1 pixels to the top and hc to the bottom. | |
| 615 * (4) To get the normalized result, divide by the area of the | |
| 616 * convolution kernel: (2 * wc + 1) * (2 * hc + 1) | |
| 617 * Specifically, do this: | |
| 618 * pixc = pixBlockconvGrayUnnormalized(pixs, wc, hc); | |
| 619 * fract = 1. / ((2 * wc + 1) * (2 * hc + 1)); | |
| 620 * pixMultConstantGray(pixc, fract); | |
| 621 * pixd = pixGetRGBComponent(pixc, L_ALPHA_CHANNEL); | |
| 622 * (5) Unlike pixBlockconvGray(), this always computes the accumulation | |
| 623 * pix because its size is tied to wc and hc. | |
| 624 * (6) Compare this implementation with pixBlockconvGray(), where | |
| 625 * most of the code in blockconvLow() is special casing for | |
| 626 * efficiently handling the boundary. Here, the use of | |
| 627 * mirrored borders and destination indexing makes the | |
| 628 * implementation very simple. | |
| 629 * </pre> | |
| 630 */ | |
| 631 PIX * | |
| 632 pixBlockconvGrayUnnormalized(PIX *pixs, | |
| 633 l_int32 wc, | |
| 634 l_int32 hc) | |
| 635 { | |
| 636 l_int32 i, j, w, h, d, wpla, wpld, jmax; | |
| 637 l_uint32 *linemina, *linemaxa, *lined, *dataa, *datad; | |
| 638 PIX *pixsb, *pixacc, *pixd; | |
| 639 | |
| 640 if (!pixs) | |
| 641 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 642 pixGetDimensions(pixs, &w, &h, &d); | |
| 643 if (d != 8) | |
| 644 return (PIX *)ERROR_PTR("pixs not 8 bpp", __func__, NULL); | |
| 645 if (wc <= 0 || hc <= 0) /* no-op */ | |
| 646 return pixCopy(NULL, pixs); | |
| 647 if (w < 2 * wc + 1 || h < 2 * hc + 1) { | |
| 648 L_WARNING("kernel too large: wc = %d, hc = %d, w = %d, h = %d; " | |
| 649 "reducing!\n", __func__, wc, hc, w, h); | |
| 650 wc = L_MIN(wc, (w - 1) / 2); | |
| 651 hc = L_MIN(hc, (h - 1) / 2); | |
| 652 } | |
| 653 if (wc == 0 || hc == 0) | |
| 654 return pixCopy(NULL, pixs); | |
| 655 | |
| 656 if ((pixsb = pixAddMirroredBorder(pixs, wc + 1, wc, hc + 1, hc)) == NULL) | |
| 657 return (PIX *)ERROR_PTR("pixsb not made", __func__, NULL); | |
| 658 pixacc = pixBlockconvAccum(pixsb); | |
| 659 pixDestroy(&pixsb); | |
| 660 if (!pixacc) | |
| 661 return (PIX *)ERROR_PTR("pixacc not made", __func__, NULL); | |
| 662 if ((pixd = pixCreate(w, h, 32)) == NULL) { | |
| 663 pixDestroy(&pixacc); | |
| 664 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 665 } | |
| 666 | |
| 667 wpla = pixGetWpl(pixacc); | |
| 668 wpld = pixGetWpl(pixd); | |
| 669 datad = pixGetData(pixd); | |
| 670 dataa = pixGetData(pixacc); | |
| 671 for (i = 0; i < h; i++) { | |
| 672 lined = datad + i * wpld; | |
| 673 linemina = dataa + i * wpla; | |
| 674 linemaxa = dataa + (i + 2 * hc + 1) * wpla; | |
| 675 for (j = 0; j < w; j++) { | |
| 676 jmax = j + 2 * wc + 1; | |
| 677 lined[j] = linemaxa[jmax] - linemaxa[j] - | |
| 678 linemina[jmax] + linemina[j]; | |
| 679 } | |
| 680 } | |
| 681 | |
| 682 pixDestroy(&pixacc); | |
| 683 return pixd; | |
| 684 } | |
| 685 | |
| 686 | |
| 687 /*----------------------------------------------------------------------* | |
| 688 * Tiled grayscale or color block convolution * | |
| 689 *----------------------------------------------------------------------*/ | |
| 690 /*! | |
| 691 * \brief pixBlockconvTiled() | |
| 692 * | |
| 693 * \param[in] pix 8 or 32 bpp; or 2, 4 or 8 bpp with colormap | |
| 694 * \param[in] wc, hc half width/height of convolution kernel | |
| 695 * \param[in] nx, ny subdivision into tiles | |
| 696 * \return pixd, or NULL on error | |
| 697 * | |
| 698 * <pre> | |
| 699 * Notes: | |
| 700 * (1) The full width and height of the convolution kernel | |
| 701 * are (2 * wc + 1) and (2 * hc + 1) | |
| 702 * (2) Returns a copy if either wc or hc are 0. | |
| 703 * (3) Require that w >= 2 * wc + 1 and h >= 2 * hc + 1, | |
| 704 * where (w,h) are the dimensions of pixs. Attempt to | |
| 705 * reduce the kernel size if necessary. | |
| 706 * (4) For nx == ny == 1, this defaults to pixBlockconv(), which | |
| 707 * is typically about twice as fast, and gives nearly | |
| 708 * identical results as pixBlockconvGrayTile(). | |
| 709 * (5) If the tiles are too small, nx and/or ny are reduced | |
| 710 * a minimum amount so that the tiles are expanded to the | |
| 711 * smallest workable size in the problematic direction(s). | |
| 712 * (6) Why a tiled version? Three reasons: | |
| 713 * (a) Because the accumulator is a uint32, overflow can occur | |
| 714 * for an image with more than 16M pixels. | |
| 715 * (b) The accumulator array for 16M pixels is 64 MB; using | |
| 716 * tiles reduces the size of this array. | |
| 717 * (c) Each tile can be processed independently, in parallel, | |
| 718 * on a multicore processor. | |
| 719 * </pre> | |
| 720 */ | |
| 721 PIX * | |
| 722 pixBlockconvTiled(PIX *pix, | |
| 723 l_int32 wc, | |
| 724 l_int32 hc, | |
| 725 l_int32 nx, | |
| 726 l_int32 ny) | |
| 727 { | |
| 728 l_int32 i, j, w, h, d, xrat, yrat; | |
| 729 PIX *pixs, *pixd, *pixc, *pixt; | |
| 730 PIX *pixr, *pixrc, *pixg, *pixgc, *pixb, *pixbc; | |
| 731 PIXTILING *pt; | |
| 732 | |
| 733 if (!pix) | |
| 734 return (PIX *)ERROR_PTR("pix not defined", __func__, NULL); | |
| 735 if (wc <= 0 || hc <= 0) /* no-op */ | |
| 736 return pixCopy(NULL, pix); | |
| 737 if (nx <= 1 && ny <= 1) | |
| 738 return pixBlockconv(pix, wc, hc); | |
| 739 pixGetDimensions(pix, &w, &h, &d); | |
| 740 if (w < 2 * wc + 3 || h < 2 * hc + 3) { | |
| 741 L_WARNING("kernel too large: wc = %d, hc = %d, w = %d, h = %d; " | |
| 742 "reducing!\n", __func__, wc, hc, w, h); | |
| 743 wc = L_MIN(wc, (w - 1) / 2); | |
| 744 hc = L_MIN(hc, (h - 1) / 2); | |
| 745 } | |
| 746 if (wc == 0 || hc == 0) | |
| 747 return pixCopy(NULL, pix); | |
| 748 | |
| 749 /* Test to see if the tiles are too small. The required | |
| 750 * condition is that the tile dimensions must be at least | |
| 751 * (wc + 2) x (hc + 2). */ | |
| 752 xrat = w / nx; | |
| 753 yrat = h / ny; | |
| 754 if (xrat < wc + 2) { | |
| 755 nx = w / (wc + 2); | |
| 756 L_WARNING("tile width too small; nx reduced to %d\n", __func__, nx); | |
| 757 } | |
| 758 if (yrat < hc + 2) { | |
| 759 ny = h / (hc + 2); | |
| 760 L_WARNING("tile height too small; ny reduced to %d\n", __func__, ny); | |
| 761 } | |
| 762 | |
| 763 /* Remove colormap if necessary */ | |
| 764 if ((d == 2 || d == 4 || d == 8) && pixGetColormap(pix)) { | |
| 765 L_WARNING("pix has colormap; removing\n", __func__); | |
| 766 pixs = pixRemoveColormap(pix, REMOVE_CMAP_BASED_ON_SRC); | |
| 767 d = pixGetDepth(pixs); | |
| 768 } else { | |
| 769 pixs = pixClone(pix); | |
| 770 } | |
| 771 | |
| 772 if (d != 8 && d != 32) { | |
| 773 pixDestroy(&pixs); | |
| 774 return (PIX *)ERROR_PTR("depth not 8 or 32 bpp", __func__, NULL); | |
| 775 } | |
| 776 | |
| 777 /* Note that the overlaps in the width and height that | |
| 778 * are added to the tile are (wc + 2) and (hc + 2). | |
| 779 * These overlaps are removed by pixTilingPaintTile(). | |
| 780 * They are larger than the extent of the filter because | |
| 781 * although the filter is symmetric with respect to its origin, | |
| 782 * the implementation is asymmetric -- see the implementation in | |
| 783 * pixBlockconvGrayTile(). */ | |
| 784 if ((pixd = pixCreateTemplate(pixs)) == NULL) { | |
| 785 pixDestroy(&pixs); | |
| 786 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 787 } | |
| 788 pt = pixTilingCreate(pixs, nx, ny, 0, 0, wc + 2, hc + 2); | |
| 789 for (i = 0; i < ny; i++) { | |
| 790 for (j = 0; j < nx; j++) { | |
| 791 pixt = pixTilingGetTile(pt, i, j); | |
| 792 | |
| 793 /* Convolve over the tile */ | |
| 794 if (d == 8) { | |
| 795 pixc = pixBlockconvGrayTile(pixt, NULL, wc, hc); | |
| 796 } else { /* d == 32 */ | |
| 797 pixr = pixGetRGBComponent(pixt, COLOR_RED); | |
| 798 pixrc = pixBlockconvGrayTile(pixr, NULL, wc, hc); | |
| 799 pixDestroy(&pixr); | |
| 800 pixg = pixGetRGBComponent(pixt, COLOR_GREEN); | |
| 801 pixgc = pixBlockconvGrayTile(pixg, NULL, wc, hc); | |
| 802 pixDestroy(&pixg); | |
| 803 pixb = pixGetRGBComponent(pixt, COLOR_BLUE); | |
| 804 pixbc = pixBlockconvGrayTile(pixb, NULL, wc, hc); | |
| 805 pixDestroy(&pixb); | |
| 806 pixc = pixCreateRGBImage(pixrc, pixgc, pixbc); | |
| 807 pixDestroy(&pixrc); | |
| 808 pixDestroy(&pixgc); | |
| 809 pixDestroy(&pixbc); | |
| 810 } | |
| 811 | |
| 812 pixTilingPaintTile(pixd, i, j, pixc, pt); | |
| 813 pixDestroy(&pixt); | |
| 814 pixDestroy(&pixc); | |
| 815 } | |
| 816 } | |
| 817 | |
| 818 pixDestroy(&pixs); | |
| 819 pixTilingDestroy(&pt); | |
| 820 return pixd; | |
| 821 } | |
| 822 | |
| 823 | |
| 824 /*! | |
| 825 * \brief pixBlockconvGrayTile() | |
| 826 * | |
| 827 * \param[in] pixs 8 bpp gray | |
| 828 * \param[in] pixacc 32 bpp accum pix | |
| 829 * \param[in] wc, hc half width/height of convolution kernel | |
| 830 * \return pixd, or NULL on error | |
| 831 * | |
| 832 * <pre> | |
| 833 * Notes: | |
| 834 * (1) The full width and height of the convolution kernel | |
| 835 * are (2 * wc + 1) and (2 * hc + 1) | |
| 836 * (2) Assumes that the input pixs is padded with (wc + 1) pixels on | |
| 837 * left and right, and with (hc + 1) pixels on top and bottom. | |
| 838 * The returned pix has these stripped off; they are only used | |
| 839 * for computation. | |
| 840 * (3) Returns a copy if either wc or hc are 0. | |
| 841 * (4) Require that w > 2 * wc + 3 and h > 2 * hc + 3, | |
| 842 * where (w,h) are the dimensions of pixs. Attempt to | |
| 843 * reduce the kernel size if necessary. | |
| 844 * </pre> | |
| 845 */ | |
| 846 PIX * | |
| 847 pixBlockconvGrayTile(PIX *pixs, | |
| 848 PIX *pixacc, | |
| 849 l_int32 wc, | |
| 850 l_int32 hc) | |
| 851 { | |
| 852 l_int32 w, h, d, wd, hd, i, j, imin, imax, jmin, jmax, wplt, wpld; | |
| 853 l_float32 norm; | |
| 854 l_uint32 val; | |
| 855 l_uint32 *datat, *datad, *lined, *linemint, *linemaxt; | |
| 856 PIX *pixt, *pixd; | |
| 857 | |
| 858 if (!pixs) | |
| 859 return (PIX *)ERROR_PTR("pix not defined", __func__, NULL); | |
| 860 pixGetDimensions(pixs, &w, &h, &d); | |
| 861 if (d != 8) | |
| 862 return (PIX *)ERROR_PTR("pixs not 8 bpp", __func__, NULL); | |
| 863 if (wc <= 0 || hc <= 0) /* no-op */ | |
| 864 return pixCopy(NULL, pixs); | |
| 865 if (w < 2 * wc + 3 || h < 2 * hc + 3) { | |
| 866 L_WARNING("kernel too large: wc = %d, hc = %d, w = %d, h = %d; " | |
| 867 "reducing!\n", __func__, wc, hc, w, h); | |
| 868 wc = L_MIN(wc, (w - 1) / 2); | |
| 869 hc = L_MIN(hc, (h - 1) / 2); | |
| 870 } | |
| 871 if (wc == 0 || hc == 0) | |
| 872 return pixCopy(NULL, pixs); | |
| 873 wd = w - 2 * wc; | |
| 874 hd = h - 2 * hc; | |
| 875 | |
| 876 if (pixacc) { | |
| 877 if (pixGetDepth(pixacc) == 32) { | |
| 878 pixt = pixClone(pixacc); | |
| 879 } else { | |
| 880 L_WARNING("pixacc not 32 bpp; making new one\n", __func__); | |
| 881 if ((pixt = pixBlockconvAccum(pixs)) == NULL) | |
| 882 return (PIX *)ERROR_PTR("pixt not made", __func__, NULL); | |
| 883 } | |
| 884 } else { | |
| 885 if ((pixt = pixBlockconvAccum(pixs)) == NULL) | |
| 886 return (PIX *)ERROR_PTR("pixt not made", __func__, NULL); | |
| 887 } | |
| 888 | |
| 889 if ((pixd = pixCreateTemplate(pixs)) == NULL) { | |
| 890 pixDestroy(&pixt); | |
| 891 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 892 } | |
| 893 datat = pixGetData(pixt); | |
| 894 wplt = pixGetWpl(pixt); | |
| 895 datad = pixGetData(pixd); | |
| 896 wpld = pixGetWpl(pixd); | |
| 897 norm = 1. / (l_float32)((2 * wc + 1) * (2 * hc + 1)); | |
| 898 | |
| 899 /* Do the convolution over the subregion of size (wd - 2, hd - 2), | |
| 900 * which exactly corresponds to the size of the subregion that | |
| 901 * will be extracted by pixTilingPaintTile(). Note that the | |
| 902 * region in which points are computed is not symmetric about | |
| 903 * the center of the images; instead the computation in | |
| 904 * the accumulator image is shifted up and to the left by 1, | |
| 905 * relative to the center, because the 4 accumulator sampling | |
| 906 * points are taken at the LL corner of the filter and at 3 other | |
| 907 * points that are shifted -wc and -hc to the left and above. */ | |
| 908 for (i = hc; i < hc + hd - 2; i++) { | |
| 909 imin = L_MAX(i - hc - 1, 0); | |
| 910 imax = L_MIN(i + hc, h - 1); | |
| 911 lined = datad + i * wpld; | |
| 912 linemint = datat + imin * wplt; | |
| 913 linemaxt = datat + imax * wplt; | |
| 914 for (j = wc; j < wc + wd - 2; j++) { | |
| 915 jmin = L_MAX(j - wc - 1, 0); | |
| 916 jmax = L_MIN(j + wc, w - 1); | |
| 917 val = linemaxt[jmax] - linemaxt[jmin] | |
| 918 + linemint[jmin] - linemint[jmax]; | |
| 919 val = (l_uint8)(norm * val + 0.5); | |
| 920 SET_DATA_BYTE(lined, j, val); | |
| 921 } | |
| 922 } | |
| 923 | |
| 924 pixDestroy(&pixt); | |
| 925 return pixd; | |
| 926 } | |
| 927 | |
| 928 | |
| 929 /*----------------------------------------------------------------------* | |
| 930 * Convolution for mean, mean square, variance and rms deviation * | |
| 931 *----------------------------------------------------------------------*/ | |
| 932 /*! | |
| 933 * \brief pixWindowedStats() | |
| 934 * | |
| 935 * \param[in] pixs 8 bpp grayscale | |
| 936 * \param[in] wc, hc half width/height of convolution kernel | |
| 937 * \param[in] hasborder use 1 if it already has (wc + 1 border pixels | |
| 938 * on left and right, and hc + 1 on top and bottom; | |
| 939 * use 0 to add kernel-dependent border) | |
| 940 * \param[out] ppixm [optional] 8 bpp mean value in window | |
| 941 * \param[out] ppixms [optional] 32 bpp mean square value in window | |
| 942 * \param[out] pfpixv [optional] float variance in window | |
| 943 * \param[out] pfpixrv [optional] float rms deviation from the mean | |
| 944 * \return 0 if OK, 1 on error | |
| 945 * | |
| 946 * <pre> | |
| 947 * Notes: | |
| 948 * (1) This is a high-level convenience function for calculating | |
| 949 * any or all of these derived images. | |
| 950 * (2) If %hasborder = 0, a border is added and the result is | |
| 951 * computed over all pixels in pixs. Otherwise, no border is | |
| 952 * added and the border pixels are removed from the output images. | |
| 953 * (3) These statistical measures over the pixels in the | |
| 954 * rectangular window are: | |
| 955 * ~ average value: <p> (pixm) | |
| 956 * ~ average squared value: <p*p> (pixms) | |
| 957 * ~ variance: <(p - <p>)*(p - <p>)> = <p*p> - <p>*<p> (pixv) | |
| 958 * ~ square-root of variance: (pixrv) | |
| 959 * where the brackets < .. > indicate that the average value is | |
| 960 * to be taken over the window. | |
| 961 * (4) Note that the variance is just the mean square difference from | |
| 962 * the mean value; and the square root of the variance is the | |
| 963 * root mean square difference from the mean, sometimes also | |
| 964 * called the 'standard deviation'. | |
| 965 * (5) The added border, along with the use of an accumulator array, | |
| 966 * allows computation without special treatment of pixels near | |
| 967 * the image boundary, and runs in a time that is independent | |
| 968 * of the size of the convolution kernel. | |
| 969 * </pre> | |
| 970 */ | |
| 971 l_ok | |
| 972 pixWindowedStats(PIX *pixs, | |
| 973 l_int32 wc, | |
| 974 l_int32 hc, | |
| 975 l_int32 hasborder, | |
| 976 PIX **ppixm, | |
| 977 PIX **ppixms, | |
| 978 FPIX **pfpixv, | |
| 979 FPIX **pfpixrv) | |
| 980 { | |
| 981 PIX *pixb, *pixm, *pixms; | |
| 982 | |
| 983 if (!ppixm && !ppixms && !pfpixv && !pfpixrv) | |
| 984 return ERROR_INT("no output requested", __func__, 1); | |
| 985 if (ppixm) *ppixm = NULL; | |
| 986 if (ppixms) *ppixms = NULL; | |
| 987 if (pfpixv) *pfpixv = NULL; | |
| 988 if (pfpixrv) *pfpixrv = NULL; | |
| 989 if (!pixs || pixGetDepth(pixs) != 8) | |
| 990 return ERROR_INT("pixs not defined or not 8 bpp", __func__, 1); | |
| 991 if (wc < 2 || hc < 2) | |
| 992 return ERROR_INT("wc and hc not >= 2", __func__, 1); | |
| 993 | |
| 994 /* Add border if requested */ | |
| 995 if (!hasborder) | |
| 996 pixb = pixAddBorderGeneral(pixs, wc + 1, wc + 1, hc + 1, hc + 1, 0); | |
| 997 else | |
| 998 pixb = pixClone(pixs); | |
| 999 | |
| 1000 if (!pfpixv && !pfpixrv) { | |
| 1001 if (ppixm) *ppixm = pixWindowedMean(pixb, wc, hc, 1, 1); | |
| 1002 if (ppixms) *ppixms = pixWindowedMeanSquare(pixb, wc, hc, 1); | |
| 1003 pixDestroy(&pixb); | |
| 1004 return 0; | |
| 1005 } | |
| 1006 | |
| 1007 pixm = pixWindowedMean(pixb, wc, hc, 1, 1); | |
| 1008 pixms = pixWindowedMeanSquare(pixb, wc, hc, 1); | |
| 1009 pixWindowedVariance(pixm, pixms, pfpixv, pfpixrv); | |
| 1010 if (ppixm) | |
| 1011 *ppixm = pixm; | |
| 1012 else | |
| 1013 pixDestroy(&pixm); | |
| 1014 if (ppixms) | |
| 1015 *ppixms = pixms; | |
| 1016 else | |
| 1017 pixDestroy(&pixms); | |
| 1018 pixDestroy(&pixb); | |
| 1019 return 0; | |
| 1020 } | |
| 1021 | |
| 1022 | |
| 1023 /*! | |
| 1024 * \brief pixWindowedMean() | |
| 1025 * | |
| 1026 * \param[in] pixs 8 or 32 bpp grayscale | |
| 1027 * \param[in] wc, hc half width/height of convolution kernel | |
| 1028 * \param[in] hasborder use 1 if it already has (wc + 1 border pixels | |
| 1029 * on left and right, and hc + 1 on top and bottom; | |
| 1030 * use 0 to add kernel-dependent border) | |
| 1031 * \param[in] normflag 1 for normalization to get average in window; | |
| 1032 * 0 for the sum in the window (un-normalized) | |
| 1033 * \return pixd 8 or 32 bpp, average over kernel window | |
| 1034 * | |
| 1035 * <pre> | |
| 1036 * Notes: | |
| 1037 * (1) The input and output depths are the same. | |
| 1038 * (2) A set of border pixels of width (wc + 1) on left and right, | |
| 1039 * and of height (hc + 1) on top and bottom, must be on the | |
| 1040 * pix before the accumulator is found. The output pixd | |
| 1041 * (after convolution) has this border removed. | |
| 1042 * If %hasborder = 0, the required border is added. | |
| 1043 * (3) Typically, %normflag == 1. However, if you want the sum | |
| 1044 * within the window, rather than a normalized convolution, | |
| 1045 * use %normflag == 0. | |
| 1046 * (4) This builds a block accumulator pix, uses it here, and | |
| 1047 * destroys it. | |
| 1048 * (5) The added border, along with the use of an accumulator array, | |
| 1049 * allows computation without special treatment of pixels near | |
| 1050 * the image boundary, and runs in a time that is independent | |
| 1051 * of the size of the convolution kernel. | |
| 1052 * </pre> | |
| 1053 */ | |
| 1054 PIX * | |
| 1055 pixWindowedMean(PIX *pixs, | |
| 1056 l_int32 wc, | |
| 1057 l_int32 hc, | |
| 1058 l_int32 hasborder, | |
| 1059 l_int32 normflag) | |
| 1060 { | |
| 1061 l_int32 i, j, w, h, d, wd, hd, wplc, wpld, wincr, hincr; | |
| 1062 l_uint32 val; | |
| 1063 l_uint32 *datac, *datad, *linec1, *linec2, *lined; | |
| 1064 l_float32 norm; | |
| 1065 PIX *pixb, *pixc, *pixd; | |
| 1066 | |
| 1067 if (!pixs) | |
| 1068 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 1069 d = pixGetDepth(pixs); | |
| 1070 if (d != 8 && d != 32) | |
| 1071 return (PIX *)ERROR_PTR("pixs not 8 or 32 bpp", __func__, NULL); | |
| 1072 if (wc < 2 || hc < 2) | |
| 1073 return (PIX *)ERROR_PTR("wc and hc not >= 2", __func__, NULL); | |
| 1074 | |
| 1075 pixb = pixc = pixd = NULL; | |
| 1076 | |
| 1077 /* Add border if requested */ | |
| 1078 if (!hasborder) | |
| 1079 pixb = pixAddBorderGeneral(pixs, wc + 1, wc + 1, hc + 1, hc + 1, 0); | |
| 1080 else | |
| 1081 pixb = pixClone(pixs); | |
| 1082 | |
| 1083 /* Make the accumulator pix from pixb */ | |
| 1084 if ((pixc = pixBlockconvAccum(pixb)) == NULL) { | |
| 1085 L_ERROR("pixc not made\n", __func__); | |
| 1086 goto cleanup; | |
| 1087 } | |
| 1088 wplc = pixGetWpl(pixc); | |
| 1089 datac = pixGetData(pixc); | |
| 1090 | |
| 1091 /* The output has wc + 1 border pixels stripped from each side | |
| 1092 * of pixb, and hc + 1 border pixels stripped from top and bottom. */ | |
| 1093 pixGetDimensions(pixb, &w, &h, NULL); | |
| 1094 wd = w - 2 * (wc + 1); | |
| 1095 hd = h - 2 * (hc + 1); | |
| 1096 if (wd < 2 || hd < 2) { | |
| 1097 L_ERROR("w or h is too small for the kernel\n", __func__); | |
| 1098 goto cleanup; | |
| 1099 } | |
| 1100 if ((pixd = pixCreate(wd, hd, d)) == NULL) { | |
| 1101 L_ERROR("pixd not made\n", __func__); | |
| 1102 goto cleanup; | |
| 1103 } | |
| 1104 wpld = pixGetWpl(pixd); | |
| 1105 datad = pixGetData(pixd); | |
| 1106 | |
| 1107 wincr = 2 * wc + 1; | |
| 1108 hincr = 2 * hc + 1; | |
| 1109 norm = 1.0; /* use this for sum-in-window */ | |
| 1110 if (normflag) | |
| 1111 norm = 1.0 / ((l_float32)(wincr) * hincr); | |
| 1112 for (i = 0; i < hd; i++) { | |
| 1113 linec1 = datac + i * wplc; | |
| 1114 linec2 = datac + (i + hincr) * wplc; | |
| 1115 lined = datad + i * wpld; | |
| 1116 for (j = 0; j < wd; j++) { | |
| 1117 val = linec2[j + wincr] - linec2[j] - linec1[j + wincr] + linec1[j]; | |
| 1118 if (d == 8) { | |
| 1119 val = (l_uint8)(norm * val); | |
| 1120 SET_DATA_BYTE(lined, j, val); | |
| 1121 } else { /* d == 32 */ | |
| 1122 val = (l_uint32)(norm * val); | |
| 1123 lined[j] = val; | |
| 1124 } | |
| 1125 } | |
| 1126 } | |
| 1127 | |
| 1128 cleanup: | |
| 1129 pixDestroy(&pixb); | |
| 1130 pixDestroy(&pixc); | |
| 1131 return pixd; | |
| 1132 } | |
| 1133 | |
| 1134 | |
| 1135 /*! | |
| 1136 * \brief pixWindowedMeanSquare() | |
| 1137 * | |
| 1138 * \param[in] pixs 8 bpp grayscale | |
| 1139 * \param[in] wc, hc half width/height of convolution kernel | |
| 1140 * \param[in] hasborder use 1 if it already has (wc + 1 border pixels | |
| 1141 * on left and right, and hc + 1 on top and bottom; | |
| 1142 * use 0 to add kernel-dependent border) | |
| 1143 * \return pixd 32 bpp, average over rectangular window of | |
| 1144 * width = 2 * wc + 1 and height = 2 * hc + 1 | |
| 1145 * | |
| 1146 * <pre> | |
| 1147 * Notes: | |
| 1148 * (1) A set of border pixels of width (wc + 1) on left and right, | |
| 1149 * and of height (hc + 1) on top and bottom, must be on the | |
| 1150 * pix before the accumulator is found. The output pixd | |
| 1151 * (after convolution) has this border removed. | |
| 1152 * If %hasborder = 0, the required border is added. | |
| 1153 * (2) The advantage is that we are unaffected by the boundary, and | |
| 1154 * it is not necessary to treat pixels within %wc and %hc of the | |
| 1155 * border differently. This is because processing for pixd | |
| 1156 * only takes place for pixels in pixs for which the | |
| 1157 * kernel is entirely contained in pixs. | |
| 1158 * (3) Why do we have an added border of width (%wc + 1) and | |
| 1159 * height (%hc + 1), when we only need %wc and %hc pixels | |
| 1160 * to satisfy this condition? Answer: the accumulators | |
| 1161 * are asymmetric, requiring an extra row and column of | |
| 1162 * pixels at top and left to work accurately. | |
| 1163 * (4) The added border, along with the use of an accumulator array, | |
| 1164 * allows computation without special treatment of pixels near | |
| 1165 * the image boundary, and runs in a time that is independent | |
| 1166 * of the size of the convolution kernel. | |
| 1167 * </pre> | |
| 1168 */ | |
| 1169 PIX * | |
| 1170 pixWindowedMeanSquare(PIX *pixs, | |
| 1171 l_int32 wc, | |
| 1172 l_int32 hc, | |
| 1173 l_int32 hasborder) | |
| 1174 { | |
| 1175 l_int32 i, j, w, h, wd, hd, wpl, wpld, wincr, hincr; | |
| 1176 l_uint32 ival; | |
| 1177 l_uint32 *datad, *lined; | |
| 1178 l_float64 norm; | |
| 1179 l_float64 val; | |
| 1180 l_float64 *data, *line1, *line2; | |
| 1181 DPIX *dpix; | |
| 1182 PIX *pixb, *pixd; | |
| 1183 | |
| 1184 if (!pixs || (pixGetDepth(pixs) != 8)) | |
| 1185 return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, NULL); | |
| 1186 if (wc < 2 || hc < 2) | |
| 1187 return (PIX *)ERROR_PTR("wc and hc not >= 2", __func__, NULL); | |
| 1188 | |
| 1189 pixd = NULL; | |
| 1190 | |
| 1191 /* Add border if requested */ | |
| 1192 if (!hasborder) | |
| 1193 pixb = pixAddBorderGeneral(pixs, wc + 1, wc + 1, hc + 1, hc + 1, 0); | |
| 1194 else | |
| 1195 pixb = pixClone(pixs); | |
| 1196 | |
| 1197 if ((dpix = pixMeanSquareAccum(pixb)) == NULL) { | |
| 1198 L_ERROR("dpix not made\n", __func__); | |
| 1199 goto cleanup; | |
| 1200 } | |
| 1201 wpl = dpixGetWpl(dpix); | |
| 1202 data = dpixGetData(dpix); | |
| 1203 | |
| 1204 /* The output has wc + 1 border pixels stripped from each side | |
| 1205 * of pixb, and hc + 1 border pixels stripped from top and bottom. */ | |
| 1206 pixGetDimensions(pixb, &w, &h, NULL); | |
| 1207 wd = w - 2 * (wc + 1); | |
| 1208 hd = h - 2 * (hc + 1); | |
| 1209 if (wd < 2 || hd < 2) { | |
| 1210 L_ERROR("w or h too small for kernel\n", __func__); | |
| 1211 goto cleanup; | |
| 1212 } | |
| 1213 if ((pixd = pixCreate(wd, hd, 32)) == NULL) { | |
| 1214 L_ERROR("pixd not made\n", __func__); | |
| 1215 goto cleanup; | |
| 1216 } | |
| 1217 wpld = pixGetWpl(pixd); | |
| 1218 datad = pixGetData(pixd); | |
| 1219 | |
| 1220 wincr = 2 * wc + 1; | |
| 1221 hincr = 2 * hc + 1; | |
| 1222 norm = 1.0 / ((l_float32)(wincr) * hincr); | |
| 1223 for (i = 0; i < hd; i++) { | |
| 1224 line1 = data + i * wpl; | |
| 1225 line2 = data + (i + hincr) * wpl; | |
| 1226 lined = datad + i * wpld; | |
| 1227 for (j = 0; j < wd; j++) { | |
| 1228 val = line2[j + wincr] - line2[j] - line1[j + wincr] + line1[j]; | |
| 1229 ival = (l_uint32)(norm * val + 0.5); /* to round up */ | |
| 1230 lined[j] = ival; | |
| 1231 } | |
| 1232 } | |
| 1233 | |
| 1234 cleanup: | |
| 1235 dpixDestroy(&dpix); | |
| 1236 pixDestroy(&pixb); | |
| 1237 return pixd; | |
| 1238 } | |
| 1239 | |
| 1240 | |
| 1241 /*! | |
| 1242 * \brief pixWindowedVariance() | |
| 1243 * | |
| 1244 * \param[in] pixm mean over window; 8 or 32 bpp grayscale | |
| 1245 * \param[in] pixms mean square over window; 32 bpp | |
| 1246 * \param[out] pfpixv [optional] float variance -- the ms deviation | |
| 1247 * from the mean | |
| 1248 * \param[out] pfpixrv [optional] float rms deviation from the mean | |
| 1249 * \return 0 if OK, 1 on error | |
| 1250 * | |
| 1251 * <pre> | |
| 1252 * Notes: | |
| 1253 * (1) The mean and mean square values are precomputed, using | |
| 1254 * pixWindowedMean() and pixWindowedMeanSquare(). | |
| 1255 * (2) Either or both of the variance and square-root of variance | |
| 1256 * are returned as an fpix, where the variance is the | |
| 1257 * average over the window of the mean square difference of | |
| 1258 * the pixel value from the mean: | |
| 1259 * <(p - <p>)*(p - <p>)> = <p*p> - <p>*<p> | |
| 1260 * (3) To visualize the results: | |
| 1261 * ~ for both, use fpixDisplayMaxDynamicRange(). | |
| 1262 * ~ for rms deviation, simply convert the output fpix to pix, | |
| 1263 * </pre> | |
| 1264 */ | |
| 1265 l_ok | |
| 1266 pixWindowedVariance(PIX *pixm, | |
| 1267 PIX *pixms, | |
| 1268 FPIX **pfpixv, | |
| 1269 FPIX **pfpixrv) | |
| 1270 { | |
| 1271 l_int32 i, j, w, h, ws, hs, ds, wplm, wplms, wplv, wplrv, valm, valms; | |
| 1272 l_float32 var; | |
| 1273 l_uint32 *linem, *linems, *datam, *datams; | |
| 1274 l_float32 *linev = NULL, *linerv = NULL, *datav = NULL, *datarv = NULL; | |
| 1275 FPIX *fpixv, *fpixrv; /* variance and square root of variance */ | |
| 1276 | |
| 1277 if (!pfpixv && !pfpixrv) | |
| 1278 return ERROR_INT("no output requested", __func__, 1); | |
| 1279 if (pfpixv) *pfpixv = NULL; | |
| 1280 if (pfpixrv) *pfpixrv = NULL; | |
| 1281 if (!pixm || pixGetDepth(pixm) != 8) | |
| 1282 return ERROR_INT("pixm undefined or not 8 bpp", __func__, 1); | |
| 1283 if (!pixms || pixGetDepth(pixms) != 32) | |
| 1284 return ERROR_INT("pixms undefined or not 32 bpp", __func__, 1); | |
| 1285 pixGetDimensions(pixm, &w, &h, NULL); | |
| 1286 pixGetDimensions(pixms, &ws, &hs, &ds); | |
| 1287 if (w != ws || h != hs) | |
| 1288 return ERROR_INT("pixm and pixms sizes differ", __func__, 1); | |
| 1289 | |
| 1290 if (pfpixv) { | |
| 1291 fpixv = fpixCreate(w, h); | |
| 1292 *pfpixv = fpixv; | |
| 1293 wplv = fpixGetWpl(fpixv); | |
| 1294 datav = fpixGetData(fpixv); | |
| 1295 } | |
| 1296 if (pfpixrv) { | |
| 1297 fpixrv = fpixCreate(w, h); | |
| 1298 *pfpixrv = fpixrv; | |
| 1299 wplrv = fpixGetWpl(fpixrv); | |
| 1300 datarv = fpixGetData(fpixrv); | |
| 1301 } | |
| 1302 | |
| 1303 wplm = pixGetWpl(pixm); | |
| 1304 wplms = pixGetWpl(pixms); | |
| 1305 datam = pixGetData(pixm); | |
| 1306 datams = pixGetData(pixms); | |
| 1307 for (i = 0; i < h; i++) { | |
| 1308 linem = datam + i * wplm; | |
| 1309 linems = datams + i * wplms; | |
| 1310 if (pfpixv) | |
| 1311 linev = datav + i * wplv; | |
| 1312 if (pfpixrv) | |
| 1313 linerv = datarv + i * wplrv; | |
| 1314 for (j = 0; j < w; j++) { | |
| 1315 valm = GET_DATA_BYTE(linem, j); | |
| 1316 if (ds == 8) | |
| 1317 valms = GET_DATA_BYTE(linems, j); | |
| 1318 else /* ds == 32 */ | |
| 1319 valms = (l_int32)linems[j]; | |
| 1320 var = (l_float32)valms - (l_float32)valm * valm; | |
| 1321 if (pfpixv) | |
| 1322 linev[j] = var; | |
| 1323 if (pfpixrv) | |
| 1324 linerv[j] = (l_float32)sqrt(var); | |
| 1325 } | |
| 1326 } | |
| 1327 | |
| 1328 return 0; | |
| 1329 } | |
| 1330 | |
| 1331 | |
| 1332 /*! | |
| 1333 * \brief pixMeanSquareAccum() | |
| 1334 * | |
| 1335 * \param[in] pixs 8 bpp grayscale | |
| 1336 * \return dpix 64 bit array, or NULL on error | |
| 1337 * | |
| 1338 * <pre> | |
| 1339 * Notes: | |
| 1340 * (1) Similar to pixBlockconvAccum(), this computes the | |
| 1341 * sum of the squares of the pixel values in such a way | |
| 1342 * that the value at (i,j) is the sum of all squares in | |
| 1343 * the rectangle from the origin to (i,j). | |
| 1344 * (2) The general recursion relation (v are squared pixel values) is | |
| 1345 * a(i,j) = v(i,j) + a(i-1, j) + a(i, j-1) - a(i-1, j-1) | |
| 1346 * For the first line, this reduces to the special case | |
| 1347 * a(i,j) = v(i,j) + a(i, j-1) | |
| 1348 * For the first column, the special case is | |
| 1349 * a(i,j) = v(i,j) + a(i-1, j) | |
| 1350 * </pre> | |
| 1351 */ | |
| 1352 DPIX * | |
| 1353 pixMeanSquareAccum(PIX *pixs) | |
| 1354 { | |
| 1355 l_int32 i, j, w, h, wpl, wpls, val; | |
| 1356 l_uint32 *datas, *lines; | |
| 1357 l_float64 *data, *line, *linep; | |
| 1358 DPIX *dpix; | |
| 1359 | |
| 1360 if (!pixs || (pixGetDepth(pixs) != 8)) | |
| 1361 return (DPIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, NULL); | |
| 1362 pixGetDimensions(pixs, &w, &h, NULL); | |
| 1363 if ((dpix = dpixCreate(w, h)) == NULL) | |
| 1364 return (DPIX *)ERROR_PTR("dpix not made", __func__, NULL); | |
| 1365 | |
| 1366 datas = pixGetData(pixs); | |
| 1367 wpls = pixGetWpl(pixs); | |
| 1368 data = dpixGetData(dpix); | |
| 1369 wpl = dpixGetWpl(dpix); | |
| 1370 | |
| 1371 lines = datas; | |
| 1372 line = data; | |
| 1373 for (j = 0; j < w; j++) { /* first line */ | |
| 1374 val = GET_DATA_BYTE(lines, j); | |
| 1375 if (j == 0) | |
| 1376 line[0] = (l_float64)(val) * val; | |
| 1377 else | |
| 1378 line[j] = line[j - 1] + (l_float64)(val) * val; | |
| 1379 } | |
| 1380 | |
| 1381 /* Do the other lines */ | |
| 1382 for (i = 1; i < h; i++) { | |
| 1383 lines = datas + i * wpls; | |
| 1384 line = data + i * wpl; /* current dest line */ | |
| 1385 linep = line - wpl;; /* prev dest line */ | |
| 1386 for (j = 0; j < w; j++) { | |
| 1387 val = GET_DATA_BYTE(lines, j); | |
| 1388 if (j == 0) | |
| 1389 line[0] = linep[0] + (l_float64)(val) * val; | |
| 1390 else | |
| 1391 line[j] = line[j - 1] + linep[j] - linep[j - 1] | |
| 1392 + (l_float64)(val) * val; | |
| 1393 } | |
| 1394 } | |
| 1395 | |
| 1396 return dpix; | |
| 1397 } | |
| 1398 | |
| 1399 | |
| 1400 /*----------------------------------------------------------------------* | |
| 1401 * Binary block sum/rank * | |
| 1402 *----------------------------------------------------------------------*/ | |
| 1403 /*! | |
| 1404 * \brief pixBlockrank() | |
| 1405 * | |
| 1406 * \param[in] pixs 1 bpp | |
| 1407 * \param[in] pixacc pix [optional] 32 bpp | |
| 1408 * \param[in] wc, hc half width/height of block sum/rank kernel | |
| 1409 * \param[in] rank between 0.0 and 1.0; 0.5 is median filter | |
| 1410 * \return pixd 1 bpp | |
| 1411 * | |
| 1412 * <pre> | |
| 1413 * Notes: | |
| 1414 * (1) The full width and height of the convolution kernel | |
| 1415 * are (2 * wc + 1) and (2 * hc + 1) | |
| 1416 * (2) This returns a pixd where each pixel is a 1 if the | |
| 1417 * neighborhood (2 * wc + 1) x (2 * hc + 1)) pixels | |
| 1418 * contains the rank fraction of 1 pixels. Otherwise, | |
| 1419 * the returned pixel is 0. Note that the special case | |
| 1420 * of rank = 0.0 is always satisfied, so the returned | |
| 1421 * pixd has all pixels with value 1. | |
| 1422 * (3) If accum pix is null, make one, use it, and destroy it | |
| 1423 * before returning; otherwise, just use the input accum pix | |
| 1424 * (4) If both wc and hc are 0, returns a copy unless rank == 0.0, | |
| 1425 * in which case this returns an all-ones image. | |
| 1426 * (5) Require that w >= 2 * wc + 1 and h >= 2 * hc + 1, | |
| 1427 * where (w,h) are the dimensions of pixs. Attempt to | |
| 1428 * reduce the kernel size if necessary. | |
| 1429 * </pre> | |
| 1430 */ | |
| 1431 PIX * | |
| 1432 pixBlockrank(PIX *pixs, | |
| 1433 PIX *pixacc, | |
| 1434 l_int32 wc, | |
| 1435 l_int32 hc, | |
| 1436 l_float32 rank) | |
| 1437 { | |
| 1438 l_int32 w, h, d, thresh; | |
| 1439 PIX *pixt, *pixd; | |
| 1440 | |
| 1441 if (!pixs) | |
| 1442 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 1443 pixGetDimensions(pixs, &w, &h, &d); | |
| 1444 if (d != 1) | |
| 1445 return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, NULL); | |
| 1446 if (rank < 0.0 || rank > 1.0) | |
| 1447 return (PIX *)ERROR_PTR("rank must be in [0.0, 1.0]", __func__, NULL); | |
| 1448 | |
| 1449 if (rank == 0.0) { | |
| 1450 pixd = pixCreateTemplate(pixs); | |
| 1451 pixSetAll(pixd); | |
| 1452 return pixd; | |
| 1453 } | |
| 1454 | |
| 1455 if (wc <= 0 || hc <= 0) | |
| 1456 return pixCopy(NULL, pixs); | |
| 1457 if (w < 2 * wc + 1 || h < 2 * hc + 1) { | |
| 1458 L_WARNING("kernel too large: wc = %d, hc = %d, w = %d, h = %d; " | |
| 1459 "reducing!\n", __func__, wc, hc, w, h); | |
| 1460 wc = L_MIN(wc, (w - 1) / 2); | |
| 1461 hc = L_MIN(hc, (h - 1) / 2); | |
| 1462 } | |
| 1463 if (wc == 0 || hc == 0) | |
| 1464 return pixCopy(NULL, pixs); | |
| 1465 | |
| 1466 if ((pixt = pixBlocksum(pixs, pixacc, wc, hc)) == NULL) | |
| 1467 return (PIX *)ERROR_PTR("pixt not made", __func__, NULL); | |
| 1468 | |
| 1469 /* 1 bpp block rank filter output. | |
| 1470 * Must invert because threshold gives 1 for values < thresh, | |
| 1471 * but we need a 1 if the value is >= thresh. */ | |
| 1472 thresh = (l_int32)(255. * rank); | |
| 1473 pixd = pixThresholdToBinary(pixt, thresh); | |
| 1474 pixInvert(pixd, pixd); | |
| 1475 pixDestroy(&pixt); | |
| 1476 return pixd; | |
| 1477 } | |
| 1478 | |
| 1479 | |
| 1480 /*! | |
| 1481 * \brief pixBlocksum() | |
| 1482 * | |
| 1483 * \param[in] pixs 1 bpp | |
| 1484 * \param[in] pixacc pix [optional] 32 bpp | |
| 1485 * \param[in] wc, hc half width/height of block sum/rank kernel | |
| 1486 * \return pixd 8 bpp | |
| 1487 * | |
| 1488 * <pre> | |
| 1489 * Notes: | |
| 1490 * (1) If accum pix is null, make one and destroy it before | |
| 1491 * returning; otherwise, just use the input accum pix | |
| 1492 * (2) The full width and height of the convolution kernel | |
| 1493 * are (2 * wc + 1) and (2 * hc + 1) | |
| 1494 * (3) Use of wc = hc = 1, followed by pixInvert() on the | |
| 1495 * 8 bpp result, gives a nice anti-aliased, and somewhat | |
| 1496 * darkened, result on text. | |
| 1497 * (4) Require that w >= 2 * wc + 1 and h >= 2 * hc + 1, | |
| 1498 * where (w,h) are the dimensions of pixs. Attempt to | |
| 1499 * reduce the kernel size if necessary. | |
| 1500 * (5) Returns in each dest pixel the sum of all src pixels | |
| 1501 * that are within a block of size of the kernel, centered | |
| 1502 * on the dest pixel. This sum is the number of src ON | |
| 1503 * pixels in the block at each location, normalized to 255 | |
| 1504 * for a block containing all ON pixels. For pixels near | |
| 1505 * the boundary, where the block is not entirely contained | |
| 1506 * within the image, we then multiply by a second normalization | |
| 1507 * factor that is greater than one, so that all results | |
| 1508 * are normalized by the number of participating pixels | |
| 1509 * within the block. | |
| 1510 * </pre> | |
| 1511 */ | |
| 1512 PIX * | |
| 1513 pixBlocksum(PIX *pixs, | |
| 1514 PIX *pixacc, | |
| 1515 l_int32 wc, | |
| 1516 l_int32 hc) | |
| 1517 { | |
| 1518 l_int32 w, h, d, wplt, wpld; | |
| 1519 l_uint32 *datat, *datad; | |
| 1520 PIX *pixt, *pixd; | |
| 1521 | |
| 1522 if (!pixs) | |
| 1523 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 1524 pixGetDimensions(pixs, &w, &h, &d); | |
| 1525 if (d != 1) | |
| 1526 return (PIX *)ERROR_PTR("pixs not 1 bpp", __func__, NULL); | |
| 1527 if (wc <= 0 || hc <= 0) | |
| 1528 return pixCopy(NULL, pixs); | |
| 1529 if (w < 2 * wc + 1 || h < 2 * hc + 1) { | |
| 1530 L_WARNING("kernel too large: wc = %d, hc = %d, w = %d, h = %d; " | |
| 1531 "reducing!\n", __func__, wc, hc, w, h); | |
| 1532 wc = L_MIN(wc, (w - 1) / 2); | |
| 1533 hc = L_MIN(hc, (h - 1) / 2); | |
| 1534 } | |
| 1535 if (wc == 0 || hc == 0) | |
| 1536 return pixCopy(NULL, pixs); | |
| 1537 | |
| 1538 if (pixacc) { | |
| 1539 if (pixGetDepth(pixacc) != 32) | |
| 1540 return (PIX *)ERROR_PTR("pixacc not 32 bpp", __func__, NULL); | |
| 1541 pixt = pixClone(pixacc); | |
| 1542 } else { | |
| 1543 if ((pixt = pixBlockconvAccum(pixs)) == NULL) | |
| 1544 return (PIX *)ERROR_PTR("pixt not made", __func__, NULL); | |
| 1545 } | |
| 1546 | |
| 1547 /* 8 bpp block sum output */ | |
| 1548 if ((pixd = pixCreate(w, h, 8)) == NULL) { | |
| 1549 pixDestroy(&pixt); | |
| 1550 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 1551 } | |
| 1552 pixCopyResolution(pixd, pixs); | |
| 1553 | |
| 1554 wpld = pixGetWpl(pixd); | |
| 1555 wplt = pixGetWpl(pixt); | |
| 1556 datad = pixGetData(pixd); | |
| 1557 datat = pixGetData(pixt); | |
| 1558 blocksumLow(datad, w, h, wpld, datat, wplt, wc, hc); | |
| 1559 | |
| 1560 pixDestroy(&pixt); | |
| 1561 return pixd; | |
| 1562 } | |
| 1563 | |
| 1564 | |
| 1565 /*! | |
| 1566 * \brief blocksumLow() | |
| 1567 * | |
| 1568 * \param[in] datad of 8 bpp dest | |
| 1569 * \param[in] w, h, wpl of 8 bpp dest | |
| 1570 * \param[in] dataa of 32 bpp accum | |
| 1571 * \param[in] wpla of 32 bpp accum | |
| 1572 * \param[in] wc, hc convolution "half-width" and "half-height" | |
| 1573 * \return void | |
| 1574 * | |
| 1575 * <pre> | |
| 1576 * Notes: | |
| 1577 * (1) The full width and height of the convolution kernel | |
| 1578 * are (2 * wc + 1) and (2 * hc + 1). | |
| 1579 * (2) The lack of symmetry between the handling of the | |
| 1580 * first (hc + 1) lines and the last (hc) lines, | |
| 1581 * and similarly with the columns, is due to fact that | |
| 1582 * for the pixel at (x,y), the accumulator values are | |
| 1583 * taken at (x + wc, y + hc), (x - wc - 1, y + hc), | |
| 1584 * (x + wc, y - hc - 1) and (x - wc - 1, y - hc - 1). | |
| 1585 * (3) Compute sums of ON pixels within the block filter size, | |
| 1586 * normalized between 0 and 255, as if there were no reduced | |
| 1587 * area at the boundary. This under-estimates the value | |
| 1588 * of the boundary pixels, so we multiply them by another | |
| 1589 * normalization factor that is greater than 1. | |
| 1590 * (4) This second normalization is done first for the first | |
| 1591 * hc + 1 lines; then for the last hc lines; and finally | |
| 1592 * for the first wc + 1 and last wc columns in the intermediate | |
| 1593 * lines. | |
| 1594 * (5) Required constraints are: wc < w and hc < h. | |
| 1595 * </pre> | |
| 1596 */ | |
| 1597 static void | |
| 1598 blocksumLow(l_uint32 *datad, | |
| 1599 l_int32 w, | |
| 1600 l_int32 h, | |
| 1601 l_int32 wpl, | |
| 1602 l_uint32 *dataa, | |
| 1603 l_int32 wpla, | |
| 1604 l_int32 wc, | |
| 1605 l_int32 hc) | |
| 1606 { | |
| 1607 l_int32 i, j, imax, imin, jmax, jmin; | |
| 1608 l_int32 wn, hn, fwc, fhc, wmwc, hmhc; | |
| 1609 l_float32 norm, normh, normw; | |
| 1610 l_uint32 val; | |
| 1611 l_uint32 *linemina, *linemaxa, *lined; | |
| 1612 | |
| 1613 wmwc = w - wc; | |
| 1614 hmhc = h - hc; | |
| 1615 if (wmwc <= 0 || hmhc <= 0) { | |
| 1616 L_ERROR("wc >= w || hc >=h\n", __func__); | |
| 1617 return; | |
| 1618 } | |
| 1619 fwc = 2 * wc + 1; | |
| 1620 fhc = 2 * hc + 1; | |
| 1621 norm = 255. / ((l_float32)(fwc) * fhc); | |
| 1622 | |
| 1623 /*------------------------------------------------------------* | |
| 1624 * Compute, using b.c. only to set limits on the accum image * | |
| 1625 *------------------------------------------------------------*/ | |
| 1626 for (i = 0; i < h; i++) { | |
| 1627 imin = L_MAX(i - 1 - hc, 0); | |
| 1628 imax = L_MIN(i + hc, h - 1); | |
| 1629 lined = datad + wpl * i; | |
| 1630 linemina = dataa + wpla * imin; | |
| 1631 linemaxa = dataa + wpla * imax; | |
| 1632 for (j = 0; j < w; j++) { | |
| 1633 jmin = L_MAX(j - 1 - wc, 0); | |
| 1634 jmax = L_MIN(j + wc, w - 1); | |
| 1635 val = linemaxa[jmax] - linemaxa[jmin] | |
| 1636 - linemina[jmax] + linemina[jmin]; | |
| 1637 val = (l_uint8)(norm * val); | |
| 1638 SET_DATA_BYTE(lined, j, val); | |
| 1639 } | |
| 1640 } | |
| 1641 | |
| 1642 /*------------------------------------------------------------* | |
| 1643 * Fix normalization for boundary pixels * | |
| 1644 *------------------------------------------------------------*/ | |
| 1645 for (i = 0; i <= hc; i++) { /* first hc + 1 lines */ | |
| 1646 hn = hc + i; | |
| 1647 normh = (l_float32)fhc / (l_float32)hn; /* > 1 */ | |
| 1648 lined = datad + wpl * i; | |
| 1649 for (j = 0; j <= wc; j++) { | |
| 1650 wn = wc + j; | |
| 1651 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 1652 val = GET_DATA_BYTE(lined, j); | |
| 1653 val = (l_uint8)(val * normh * normw); | |
| 1654 SET_DATA_BYTE(lined, j, val); | |
| 1655 } | |
| 1656 for (j = wc + 1; j < wmwc; j++) { | |
| 1657 val = GET_DATA_BYTE(lined, j); | |
| 1658 val = (l_uint8)(val * normh); | |
| 1659 SET_DATA_BYTE(lined, j, val); | |
| 1660 } | |
| 1661 for (j = wmwc; j < w; j++) { | |
| 1662 wn = wc + w - j; | |
| 1663 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 1664 val = GET_DATA_BYTE(lined, j); | |
| 1665 val = (l_uint8)(val * normh * normw); | |
| 1666 SET_DATA_BYTE(lined, j, val); | |
| 1667 } | |
| 1668 } | |
| 1669 | |
| 1670 for (i = hmhc; i < h; i++) { /* last hc lines */ | |
| 1671 hn = hc + h - i; | |
| 1672 normh = (l_float32)fhc / (l_float32)hn; /* > 1 */ | |
| 1673 lined = datad + wpl * i; | |
| 1674 for (j = 0; j <= wc; j++) { | |
| 1675 wn = wc + j; | |
| 1676 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 1677 val = GET_DATA_BYTE(lined, j); | |
| 1678 val = (l_uint8)(val * normh * normw); | |
| 1679 SET_DATA_BYTE(lined, j, val); | |
| 1680 } | |
| 1681 for (j = wc + 1; j < wmwc; j++) { | |
| 1682 val = GET_DATA_BYTE(lined, j); | |
| 1683 val = (l_uint8)(val * normh); | |
| 1684 SET_DATA_BYTE(lined, j, val); | |
| 1685 } | |
| 1686 for (j = wmwc; j < w; j++) { | |
| 1687 wn = wc + w - j; | |
| 1688 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 1689 val = GET_DATA_BYTE(lined, j); | |
| 1690 val = (l_uint8)(val * normh * normw); | |
| 1691 SET_DATA_BYTE(lined, j, val); | |
| 1692 } | |
| 1693 } | |
| 1694 | |
| 1695 for (i = hc + 1; i < hmhc; i++) { /* intermediate lines */ | |
| 1696 lined = datad + wpl * i; | |
| 1697 for (j = 0; j <= wc; j++) { /* first wc + 1 columns */ | |
| 1698 wn = wc + j; | |
| 1699 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 1700 val = GET_DATA_BYTE(lined, j); | |
| 1701 val = (l_uint8)(val * normw); | |
| 1702 SET_DATA_BYTE(lined, j, val); | |
| 1703 } | |
| 1704 for (j = wmwc; j < w; j++) { /* last wc columns */ | |
| 1705 wn = wc + w - j; | |
| 1706 normw = (l_float32)fwc / (l_float32)wn; /* > 1 */ | |
| 1707 val = GET_DATA_BYTE(lined, j); | |
| 1708 val = (l_uint8)(val * normw); | |
| 1709 SET_DATA_BYTE(lined, j, val); | |
| 1710 } | |
| 1711 } | |
| 1712 } | |
| 1713 | |
| 1714 | |
| 1715 /*----------------------------------------------------------------------* | |
| 1716 * Census transform * | |
| 1717 *----------------------------------------------------------------------*/ | |
| 1718 /*! | |
| 1719 * \brief pixCensusTransform() | |
| 1720 * | |
| 1721 * \param[in] pixs 8 bpp | |
| 1722 * \param[in] halfsize of square over which neighbors are averaged | |
| 1723 * \param[in] pixacc [optional] 32 bpp pix | |
| 1724 * \return pixd 1 bpp | |
| 1725 * | |
| 1726 * <pre> | |
| 1727 * Notes: | |
| 1728 * (1) The Census transform was invented by Ramin Zabih and John Woodfill | |
| 1729 * ("Non-parametric local transforms for computing visual | |
| 1730 * correspondence", Third European Conference on Computer Vision, | |
| 1731 * Stockholm, Sweden, May 1994); see publications at | |
| 1732 * http://www.cs.cornell.edu/~rdz/index.htm | |
| 1733 * This compares each pixel against the average of its neighbors, | |
| 1734 * in a square of odd dimension centered on the pixel. | |
| 1735 * If the pixel is greater than the average of its neighbors, | |
| 1736 * the output pixel value is 1; otherwise it is 0. | |
| 1737 * (2) This can be used as an encoding for an image that is | |
| 1738 * fairly robust against slow illumination changes, with | |
| 1739 * applications in image comparison and mosaicing. | |
| 1740 * (3) The size of the convolution kernel is (2 * halfsize + 1) | |
| 1741 * on a side. The halfsize parameter must be >= 1. | |
| 1742 * (4) If accum pix is null, make one, use it, and destroy it | |
| 1743 * before returning; otherwise, just use the input accum pix | |
| 1744 * </pre> | |
| 1745 */ | |
| 1746 PIX * | |
| 1747 pixCensusTransform(PIX *pixs, | |
| 1748 l_int32 halfsize, | |
| 1749 PIX *pixacc) | |
| 1750 { | |
| 1751 l_int32 i, j, w, h, wpls, wplv, wpld; | |
| 1752 l_int32 vals, valv; | |
| 1753 l_uint32 *datas, *datav, *datad, *lines, *linev, *lined; | |
| 1754 PIX *pixav, *pixd; | |
| 1755 | |
| 1756 if (!pixs) | |
| 1757 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 1758 if (pixGetDepth(pixs) != 8) | |
| 1759 return (PIX *)ERROR_PTR("pixs not 8 bpp", __func__, NULL); | |
| 1760 if (halfsize < 1) | |
| 1761 return (PIX *)ERROR_PTR("halfsize must be >= 1", __func__, NULL); | |
| 1762 | |
| 1763 /* Get the average of each pixel with its neighbors */ | |
| 1764 if ((pixav = pixBlockconvGray(pixs, pixacc, halfsize, halfsize)) | |
| 1765 == NULL) | |
| 1766 return (PIX *)ERROR_PTR("pixav not made", __func__, NULL); | |
| 1767 | |
| 1768 /* Subtract the pixel from the average, and then compare | |
| 1769 * the pixel value with the remaining average */ | |
| 1770 pixGetDimensions(pixs, &w, &h, NULL); | |
| 1771 if ((pixd = pixCreate(w, h, 1)) == NULL) { | |
| 1772 pixDestroy(&pixav); | |
| 1773 return (PIX *)ERROR_PTR("pixd not made", __func__, NULL); | |
| 1774 } | |
| 1775 datas = pixGetData(pixs); | |
| 1776 datav = pixGetData(pixav); | |
| 1777 datad = pixGetData(pixd); | |
| 1778 wpls = pixGetWpl(pixs); | |
| 1779 wplv = pixGetWpl(pixav); | |
| 1780 wpld = pixGetWpl(pixd); | |
| 1781 for (i = 0; i < h; i++) { | |
| 1782 lines = datas + i * wpls; | |
| 1783 linev = datav + i * wplv; | |
| 1784 lined = datad + i * wpld; | |
| 1785 for (j = 0; j < w; j++) { | |
| 1786 vals = GET_DATA_BYTE(lines, j); | |
| 1787 valv = GET_DATA_BYTE(linev, j); | |
| 1788 if (vals > valv) | |
| 1789 SET_DATA_BIT(lined, j); | |
| 1790 } | |
| 1791 } | |
| 1792 | |
| 1793 pixDestroy(&pixav); | |
| 1794 return pixd; | |
| 1795 } | |
| 1796 | |
| 1797 | |
| 1798 /*----------------------------------------------------------------------* | |
| 1799 * Generic convolution * | |
| 1800 *----------------------------------------------------------------------*/ | |
| 1801 /*! | |
| 1802 * \brief pixConvolve() | |
| 1803 * | |
| 1804 * \param[in] pixs 8, 16, 32 bpp; no colormap | |
| 1805 * \param[in] kel kernel | |
| 1806 * \param[in] outdepth of pixd: 8, 16 or 32 | |
| 1807 * \param[in] normflag 1 to normalize kernel to unit sum; 0 otherwise | |
| 1808 * \return pixd 8, 16 or 32 bpp | |
| 1809 * | |
| 1810 * <pre> | |
| 1811 * Notes: | |
| 1812 * (1) This gives a convolution with an arbitrary kernel. | |
| 1813 * (2) The input pixs must have only one sample/pixel. | |
| 1814 * To do a convolution on an RGB image, use pixConvolveRGB(). | |
| 1815 * (3) The parameter %outdepth determines the depth of the result. | |
| 1816 * If the kernel is normalized to unit sum, the output values | |
| 1817 * can never exceed 255, so an output depth of 8 bpp is sufficient. | |
| 1818 * If the kernel is not normalized, it may be necessary to use | |
| 1819 * 16 or 32 bpp output to avoid overflow. | |
| 1820 * (4) If normflag == 1, the result is normalized by scaling all | |
| 1821 * kernel values for a unit sum. If the sum of kernel values | |
| 1822 * is very close to zero, the kernel can not be normalized and | |
| 1823 * the convolution will not be performed. A warning is issued. | |
| 1824 * (5) The kernel values can be positive or negative, but the | |
| 1825 * result for the convolution can only be stored as a positive | |
| 1826 * number. Consequently, if it goes negative, the choices are | |
| 1827 * to clip to 0 or take the absolute value. We're choosing | |
| 1828 * to take the absolute value. (Another possibility would be | |
| 1829 * to output a second unsigned image for the negative values.) | |
| 1830 * If you want to get a clipped result, or to keep the negative | |
| 1831 * values in the result, use fpixConvolve(), with the | |
| 1832 * converters in fpix2.c between pix and fpix. | |
| 1833 * (6) This uses a mirrored border to avoid special casing on | |
| 1834 * the boundaries. | |
| 1835 * (7) To get a subsampled output, call l_setConvolveSampling(). | |
| 1836 * The time to make a subsampled output is reduced by the | |
| 1837 * product of the sampling factors. | |
| 1838 * (8) The function is slow, running at about 12 machine cycles for | |
| 1839 * each pixel-op in the convolution. For example, with a 3 GHz | |
| 1840 * cpu, a 1 Mpixel grayscale image, and a kernel with | |
| 1841 * (sx * sy) = 25 elements, the convolution takes about 100 msec. | |
| 1842 * </pre> | |
| 1843 */ | |
| 1844 PIX * | |
| 1845 pixConvolve(PIX *pixs, | |
| 1846 L_KERNEL *kel, | |
| 1847 l_int32 outdepth, | |
| 1848 l_int32 normflag) | |
| 1849 { | |
| 1850 l_int32 i, j, id, jd, k, m, w, h, d, wd, hd, sx, sy, cx, cy, wplt, wpld; | |
| 1851 l_int32 val; | |
| 1852 l_uint32 *datat, *datad, *linet, *lined; | |
| 1853 l_float32 sum; | |
| 1854 L_KERNEL *keli, *keln; | |
| 1855 PIX *pixt, *pixd; | |
| 1856 | |
| 1857 if (!pixs) | |
| 1858 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 1859 if (pixGetColormap(pixs)) | |
| 1860 return (PIX *)ERROR_PTR("pixs has colormap", __func__, NULL); | |
| 1861 pixGetDimensions(pixs, &w, &h, &d); | |
| 1862 if (d != 8 && d != 16 && d != 32) | |
| 1863 return (PIX *)ERROR_PTR("pixs not 8, 16, or 32 bpp", __func__, NULL); | |
| 1864 if (!kel) | |
| 1865 return (PIX *)ERROR_PTR("kel not defined", __func__, NULL); | |
| 1866 | |
| 1867 pixd = NULL; | |
| 1868 | |
| 1869 keli = kernelInvert(kel); | |
| 1870 kernelGetParameters(keli, &sy, &sx, &cy, &cx); | |
| 1871 if (normflag) | |
| 1872 keln = kernelNormalize(keli, 1.0); | |
| 1873 else | |
| 1874 keln = kernelCopy(keli); | |
| 1875 | |
| 1876 if ((pixt = pixAddMirroredBorder(pixs, cx, sx - cx, cy, sy - cy)) == NULL) { | |
| 1877 L_ERROR("pixt not made\n", __func__); | |
| 1878 goto cleanup; | |
| 1879 } | |
| 1880 | |
| 1881 wd = (w + ConvolveSamplingFactX - 1) / ConvolveSamplingFactX; | |
| 1882 hd = (h + ConvolveSamplingFactY - 1) / ConvolveSamplingFactY; | |
| 1883 pixd = pixCreate(wd, hd, outdepth); | |
| 1884 datat = pixGetData(pixt); | |
| 1885 datad = pixGetData(pixd); | |
| 1886 wplt = pixGetWpl(pixt); | |
| 1887 wpld = pixGetWpl(pixd); | |
| 1888 for (i = 0, id = 0; id < hd; i += ConvolveSamplingFactY, id++) { | |
| 1889 lined = datad + id * wpld; | |
| 1890 for (j = 0, jd = 0; jd < wd; j += ConvolveSamplingFactX, jd++) { | |
| 1891 sum = 0.0; | |
| 1892 for (k = 0; k < sy; k++) { | |
| 1893 linet = datat + (i + k) * wplt; | |
| 1894 if (d == 8) { | |
| 1895 for (m = 0; m < sx; m++) { | |
| 1896 val = GET_DATA_BYTE(linet, j + m); | |
| 1897 sum += val * keln->data[k][m]; | |
| 1898 } | |
| 1899 } else if (d == 16) { | |
| 1900 for (m = 0; m < sx; m++) { | |
| 1901 val = GET_DATA_TWO_BYTES(linet, j + m); | |
| 1902 sum += val * keln->data[k][m]; | |
| 1903 } | |
| 1904 } else { /* d == 32 */ | |
| 1905 for (m = 0; m < sx; m++) { | |
| 1906 val = *(linet + j + m); | |
| 1907 sum += val * keln->data[k][m]; | |
| 1908 } | |
| 1909 } | |
| 1910 } | |
| 1911 if (sum < 0.0) sum = -sum; /* make it non-negative */ | |
| 1912 if (outdepth == 8) | |
| 1913 SET_DATA_BYTE(lined, jd, (l_int32)(sum + 0.5)); | |
| 1914 else if (outdepth == 16) | |
| 1915 SET_DATA_TWO_BYTES(lined, jd, (l_int32)(sum + 0.5)); | |
| 1916 else /* outdepth == 32 */ | |
| 1917 *(lined + jd) = (l_uint32)(sum + 0.5); | |
| 1918 } | |
| 1919 } | |
| 1920 | |
| 1921 cleanup: | |
| 1922 kernelDestroy(&keli); | |
| 1923 kernelDestroy(&keln); | |
| 1924 pixDestroy(&pixt); | |
| 1925 return pixd; | |
| 1926 } | |
| 1927 | |
| 1928 | |
| 1929 /*! | |
| 1930 * \brief pixConvolveSep() | |
| 1931 * | |
| 1932 * \param[in] pixs 8, 16, 32 bpp; no colormap | |
| 1933 * \param[in] kelx x-dependent kernel | |
| 1934 * \param[in] kely y-dependent kernel | |
| 1935 * \param[in] outdepth of pixd: 8, 16 or 32 | |
| 1936 * \param[in] normflag 1 to normalize kernel to unit sum; 0 otherwise | |
| 1937 * \return pixd 8, 16 or 32 bpp | |
| 1938 * | |
| 1939 * <pre> | |
| 1940 * Notes: | |
| 1941 * (1) This does a convolution with a separable kernel that is | |
| 1942 * is a sequence of convolutions in x and y. The two | |
| 1943 * one-dimensional kernel components must be input separately; | |
| 1944 * the full kernel is the product of these components. | |
| 1945 * The support for the full kernel is thus a rectangular region. | |
| 1946 * (2) The input pixs must have only one sample/pixel. | |
| 1947 * To do a convolution on an RGB image, use pixConvolveSepRGB(). | |
| 1948 * (3) The parameter %outdepth determines the depth of the result. | |
| 1949 * If the kernel is normalized to unit sum, the output values | |
| 1950 * can never exceed 255, so an output depth of 8 bpp is sufficient. | |
| 1951 * If the kernel is not normalized, it may be necessary to use | |
| 1952 * 16 or 32 bpp output to avoid overflow. | |
| 1953 * (2) The %normflag parameter is used as in pixConvolve(). | |
| 1954 * (4) The kernel values can be positive or negative, but the | |
| 1955 * result for the convolution can only be stored as a positive | |
| 1956 * number. Consequently, if it goes negative, the choices are | |
| 1957 * to clip to 0 or take the absolute value. We're choosing | |
| 1958 * the former for now. Another possibility would be to output | |
| 1959 * a second unsigned image for the negative values. | |
| 1960 * (5) Warning: if you use l_setConvolveSampling() to get a | |
| 1961 * subsampled output, and the sampling factor is larger than | |
| 1962 * the kernel half-width, it is faster to use the non-separable | |
| 1963 * version pixConvolve(). This is because the first convolution | |
| 1964 * here must be done on every raster line, regardless of the | |
| 1965 * vertical sampling factor. If the sampling factor is smaller | |
| 1966 * than kernel half-width, it's faster to use the separable | |
| 1967 * convolution. | |
| 1968 * (6) This uses mirrored borders to avoid special casing on | |
| 1969 * the boundaries. | |
| 1970 * </pre> | |
| 1971 */ | |
| 1972 PIX * | |
| 1973 pixConvolveSep(PIX *pixs, | |
| 1974 L_KERNEL *kelx, | |
| 1975 L_KERNEL *kely, | |
| 1976 l_int32 outdepth, | |
| 1977 l_int32 normflag) | |
| 1978 { | |
| 1979 l_int32 d, xfact, yfact; | |
| 1980 L_KERNEL *kelxn, *kelyn; | |
| 1981 PIX *pixt, *pixd; | |
| 1982 | |
| 1983 if (!pixs) | |
| 1984 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 1985 d = pixGetDepth(pixs); | |
| 1986 if (d != 8 && d != 16 && d != 32) | |
| 1987 return (PIX *)ERROR_PTR("pixs not 8, 16, or 32 bpp", __func__, NULL); | |
| 1988 if (!kelx) | |
| 1989 return (PIX *)ERROR_PTR("kelx not defined", __func__, NULL); | |
| 1990 if (!kely) | |
| 1991 return (PIX *)ERROR_PTR("kely not defined", __func__, NULL); | |
| 1992 | |
| 1993 xfact = ConvolveSamplingFactX; | |
| 1994 yfact = ConvolveSamplingFactY; | |
| 1995 if (normflag) { | |
| 1996 kelxn = kernelNormalize(kelx, 1000.0f); | |
| 1997 kelyn = kernelNormalize(kely, 0.001f); | |
| 1998 l_setConvolveSampling(xfact, 1); | |
| 1999 pixt = pixConvolve(pixs, kelxn, 32, 0); | |
| 2000 l_setConvolveSampling(1, yfact); | |
| 2001 pixd = pixConvolve(pixt, kelyn, outdepth, 0); | |
| 2002 l_setConvolveSampling(xfact, yfact); /* restore */ | |
| 2003 kernelDestroy(&kelxn); | |
| 2004 kernelDestroy(&kelyn); | |
| 2005 } else { /* don't normalize */ | |
| 2006 l_setConvolveSampling(xfact, 1); | |
| 2007 pixt = pixConvolve(pixs, kelx, 32, 0); | |
| 2008 l_setConvolveSampling(1, yfact); | |
| 2009 pixd = pixConvolve(pixt, kely, outdepth, 0); | |
| 2010 l_setConvolveSampling(xfact, yfact); | |
| 2011 } | |
| 2012 | |
| 2013 pixDestroy(&pixt); | |
| 2014 return pixd; | |
| 2015 } | |
| 2016 | |
| 2017 | |
| 2018 /*! | |
| 2019 * \brief pixConvolveRGB() | |
| 2020 * | |
| 2021 * \param[in] pixs 32 bpp rgb | |
| 2022 * \param[in] kel kernel | |
| 2023 * \return pixd 32 bpp rgb | |
| 2024 * | |
| 2025 * <pre> | |
| 2026 * Notes: | |
| 2027 * (1) This gives a convolution on an RGB image using an | |
| 2028 * arbitrary kernel (which we normalize to keep each | |
| 2029 * component within the range [0 ... 255]. | |
| 2030 * (2) The input pixs must be RGB. | |
| 2031 * (3) The kernel values can be positive or negative, but the | |
| 2032 * result for the convolution can only be stored as a positive | |
| 2033 * number. Consequently, if it goes negative, we clip the | |
| 2034 * result to 0. | |
| 2035 * (4) To get a subsampled output, call l_setConvolveSampling(). | |
| 2036 * The time to make a subsampled output is reduced by the | |
| 2037 * product of the sampling factors. | |
| 2038 * (5) This uses a mirrored border to avoid special casing on | |
| 2039 * the boundaries. | |
| 2040 * </pre> | |
| 2041 */ | |
| 2042 PIX * | |
| 2043 pixConvolveRGB(PIX *pixs, | |
| 2044 L_KERNEL *kel) | |
| 2045 { | |
| 2046 PIX *pixt, *pixr, *pixg, *pixb, *pixd; | |
| 2047 | |
| 2048 if (!pixs) | |
| 2049 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 2050 if (pixGetDepth(pixs) != 32) | |
| 2051 return (PIX *)ERROR_PTR("pixs is not 32 bpp", __func__, NULL); | |
| 2052 if (!kel) | |
| 2053 return (PIX *)ERROR_PTR("kel not defined", __func__, NULL); | |
| 2054 | |
| 2055 pixt = pixGetRGBComponent(pixs, COLOR_RED); | |
| 2056 pixr = pixConvolve(pixt, kel, 8, 1); | |
| 2057 pixDestroy(&pixt); | |
| 2058 pixt = pixGetRGBComponent(pixs, COLOR_GREEN); | |
| 2059 pixg = pixConvolve(pixt, kel, 8, 1); | |
| 2060 pixDestroy(&pixt); | |
| 2061 pixt = pixGetRGBComponent(pixs, COLOR_BLUE); | |
| 2062 pixb = pixConvolve(pixt, kel, 8, 1); | |
| 2063 pixDestroy(&pixt); | |
| 2064 pixd = pixCreateRGBImage(pixr, pixg, pixb); | |
| 2065 | |
| 2066 pixDestroy(&pixr); | |
| 2067 pixDestroy(&pixg); | |
| 2068 pixDestroy(&pixb); | |
| 2069 return pixd; | |
| 2070 } | |
| 2071 | |
| 2072 | |
| 2073 /*! | |
| 2074 * \brief pixConvolveRGBSep() | |
| 2075 * | |
| 2076 * \param[in] pixs 32 bpp rgb | |
| 2077 * \param[in] kelx x-dependent kernel | |
| 2078 * \param[in] kely y-dependent kernel | |
| 2079 * \return pixd 32 bpp rgb | |
| 2080 * | |
| 2081 * <pre> | |
| 2082 * Notes: | |
| 2083 * (1) This does a convolution on an RGB image using a separable | |
| 2084 * kernel that is a sequence of convolutions in x and y. The two | |
| 2085 * one-dimensional kernel components must be input separately; | |
| 2086 * the full kernel is the product of these components. | |
| 2087 * The support for the full kernel is thus a rectangular region. | |
| 2088 * (2) The kernel values can be positive or negative, but the | |
| 2089 * result for the convolution can only be stored as a positive | |
| 2090 * number. Consequently, if it goes negative, we clip the | |
| 2091 * result to 0. | |
| 2092 * (3) To get a subsampled output, call l_setConvolveSampling(). | |
| 2093 * The time to make a subsampled output is reduced by the | |
| 2094 * product of the sampling factors. | |
| 2095 * (4) This uses a mirrored border to avoid special casing on | |
| 2096 * the boundaries. | |
| 2097 * </pre> | |
| 2098 */ | |
| 2099 PIX * | |
| 2100 pixConvolveRGBSep(PIX *pixs, | |
| 2101 L_KERNEL *kelx, | |
| 2102 L_KERNEL *kely) | |
| 2103 { | |
| 2104 PIX *pixt, *pixr, *pixg, *pixb, *pixd; | |
| 2105 | |
| 2106 if (!pixs) | |
| 2107 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 2108 if (pixGetDepth(pixs) != 32) | |
| 2109 return (PIX *)ERROR_PTR("pixs is not 32 bpp", __func__, NULL); | |
| 2110 if (!kelx || !kely) | |
| 2111 return (PIX *)ERROR_PTR("kelx, kely not both defined", __func__, NULL); | |
| 2112 | |
| 2113 pixt = pixGetRGBComponent(pixs, COLOR_RED); | |
| 2114 pixr = pixConvolveSep(pixt, kelx, kely, 8, 1); | |
| 2115 pixDestroy(&pixt); | |
| 2116 pixt = pixGetRGBComponent(pixs, COLOR_GREEN); | |
| 2117 pixg = pixConvolveSep(pixt, kelx, kely, 8, 1); | |
| 2118 pixDestroy(&pixt); | |
| 2119 pixt = pixGetRGBComponent(pixs, COLOR_BLUE); | |
| 2120 pixb = pixConvolveSep(pixt, kelx, kely, 8, 1); | |
| 2121 pixDestroy(&pixt); | |
| 2122 pixd = pixCreateRGBImage(pixr, pixg, pixb); | |
| 2123 | |
| 2124 pixDestroy(&pixr); | |
| 2125 pixDestroy(&pixg); | |
| 2126 pixDestroy(&pixb); | |
| 2127 return pixd; | |
| 2128 } | |
| 2129 | |
| 2130 | |
| 2131 /*----------------------------------------------------------------------* | |
| 2132 * Generic convolution with float array * | |
| 2133 *----------------------------------------------------------------------*/ | |
| 2134 /*! | |
| 2135 * \brief fpixConvolve() | |
| 2136 * | |
| 2137 * \param[in] fpixs 32 bit float array | |
| 2138 * \param[in] kel kernel | |
| 2139 * \param[in] normflag 1 to normalize kernel to unit sum; 0 otherwise | |
| 2140 * \return fpixd 32 bit float array | |
| 2141 * | |
| 2142 * <pre> | |
| 2143 * Notes: | |
| 2144 * (1) This gives a float convolution with an arbitrary kernel. | |
| 2145 * (2) If normflag == 1, the result is normalized by scaling all | |
| 2146 * kernel values for a unit sum. If the sum of kernel values | |
| 2147 * is very close to zero, the kernel can not be normalized and | |
| 2148 * the convolution will not be performed. A warning is issued. | |
| 2149 * (3) With the FPix, there are no issues about negative | |
| 2150 * array or kernel values. The convolution is performed | |
| 2151 * with single precision arithmetic. | |
| 2152 * (4) To get a subsampled output, call l_setConvolveSampling(). | |
| 2153 * The time to make a subsampled output is reduced by the | |
| 2154 * product of the sampling factors. | |
| 2155 * (5) This uses a mirrored border to avoid special casing on | |
| 2156 * the boundaries. | |
| 2157 * </pre> | |
| 2158 */ | |
| 2159 FPIX * | |
| 2160 fpixConvolve(FPIX *fpixs, | |
| 2161 L_KERNEL *kel, | |
| 2162 l_int32 normflag) | |
| 2163 { | |
| 2164 l_int32 i, j, id, jd, k, m, w, h, wd, hd, sx, sy, cx, cy, wplt, wpld; | |
| 2165 l_float32 val; | |
| 2166 l_float32 *datat, *datad, *linet, *lined; | |
| 2167 l_float32 sum; | |
| 2168 L_KERNEL *keli, *keln; | |
| 2169 FPIX *fpixt, *fpixd; | |
| 2170 | |
| 2171 if (!fpixs) | |
| 2172 return (FPIX *)ERROR_PTR("fpixs not defined", __func__, NULL); | |
| 2173 if (!kel) | |
| 2174 return (FPIX *)ERROR_PTR("kel not defined", __func__, NULL); | |
| 2175 | |
| 2176 fpixd = NULL; | |
| 2177 | |
| 2178 keli = kernelInvert(kel); | |
| 2179 kernelGetParameters(keli, &sy, &sx, &cy, &cx); | |
| 2180 if (normflag) | |
| 2181 keln = kernelNormalize(keli, 1.0); | |
| 2182 else | |
| 2183 keln = kernelCopy(keli); | |
| 2184 | |
| 2185 fpixGetDimensions(fpixs, &w, &h); | |
| 2186 fpixt = fpixAddMirroredBorder(fpixs, cx, sx - cx, cy, sy - cy); | |
| 2187 if (!fpixt) { | |
| 2188 L_ERROR("fpixt not made\n", __func__); | |
| 2189 goto cleanup; | |
| 2190 } | |
| 2191 | |
| 2192 wd = (w + ConvolveSamplingFactX - 1) / ConvolveSamplingFactX; | |
| 2193 hd = (h + ConvolveSamplingFactY - 1) / ConvolveSamplingFactY; | |
| 2194 fpixd = fpixCreate(wd, hd); | |
| 2195 datat = fpixGetData(fpixt); | |
| 2196 datad = fpixGetData(fpixd); | |
| 2197 wplt = fpixGetWpl(fpixt); | |
| 2198 wpld = fpixGetWpl(fpixd); | |
| 2199 for (i = 0, id = 0; id < hd; i += ConvolveSamplingFactY, id++) { | |
| 2200 lined = datad + id * wpld; | |
| 2201 for (j = 0, jd = 0; jd < wd; j += ConvolveSamplingFactX, jd++) { | |
| 2202 sum = 0.0; | |
| 2203 for (k = 0; k < sy; k++) { | |
| 2204 linet = datat + (i + k) * wplt; | |
| 2205 for (m = 0; m < sx; m++) { | |
| 2206 val = *(linet + j + m); | |
| 2207 sum += val * keln->data[k][m]; | |
| 2208 } | |
| 2209 } | |
| 2210 *(lined + jd) = sum; | |
| 2211 } | |
| 2212 } | |
| 2213 | |
| 2214 cleanup: | |
| 2215 kernelDestroy(&keli); | |
| 2216 kernelDestroy(&keln); | |
| 2217 fpixDestroy(&fpixt); | |
| 2218 return fpixd; | |
| 2219 } | |
| 2220 | |
| 2221 | |
| 2222 /*! | |
| 2223 * \brief fpixConvolveSep() | |
| 2224 * | |
| 2225 * \param[in] fpixs 32 bit float array | |
| 2226 * \param[in] kelx x-dependent kernel | |
| 2227 * \param[in] kely y-dependent kernel | |
| 2228 * \param[in] normflag 1 to normalize kernel to unit sum; 0 otherwise | |
| 2229 * \return fpixd 32 bit float array | |
| 2230 * | |
| 2231 * <pre> | |
| 2232 * Notes: | |
| 2233 * (1) This does a convolution with a separable kernel that is | |
| 2234 * is a sequence of convolutions in x and y. The two | |
| 2235 * one-dimensional kernel components must be input separately; | |
| 2236 * the full kernel is the product of these components. | |
| 2237 * The support for the full kernel is thus a rectangular region. | |
| 2238 * (2) The normflag parameter is used as in fpixConvolve(). | |
| 2239 * (3) Warning: if you use l_setConvolveSampling() to get a | |
| 2240 * subsampled output, and the sampling factor is larger than | |
| 2241 * the kernel half-width, it is faster to use the non-separable | |
| 2242 * version pixConvolve(). This is because the first convolution | |
| 2243 * here must be done on every raster line, regardless of the | |
| 2244 * vertical sampling factor. If the sampling factor is smaller | |
| 2245 * than kernel half-width, it's faster to use the separable | |
| 2246 * convolution. | |
| 2247 * (4) This uses mirrored borders to avoid special casing on | |
| 2248 * the boundaries. | |
| 2249 * </pre> | |
| 2250 */ | |
| 2251 FPIX * | |
| 2252 fpixConvolveSep(FPIX *fpixs, | |
| 2253 L_KERNEL *kelx, | |
| 2254 L_KERNEL *kely, | |
| 2255 l_int32 normflag) | |
| 2256 { | |
| 2257 l_int32 xfact, yfact; | |
| 2258 L_KERNEL *kelxn, *kelyn; | |
| 2259 FPIX *fpixt, *fpixd; | |
| 2260 | |
| 2261 if (!fpixs) | |
| 2262 return (FPIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 2263 if (!kelx) | |
| 2264 return (FPIX *)ERROR_PTR("kelx not defined", __func__, NULL); | |
| 2265 if (!kely) | |
| 2266 return (FPIX *)ERROR_PTR("kely not defined", __func__, NULL); | |
| 2267 | |
| 2268 xfact = ConvolveSamplingFactX; | |
| 2269 yfact = ConvolveSamplingFactY; | |
| 2270 if (normflag) { | |
| 2271 kelxn = kernelNormalize(kelx, 1.0); | |
| 2272 kelyn = kernelNormalize(kely, 1.0); | |
| 2273 l_setConvolveSampling(xfact, 1); | |
| 2274 fpixt = fpixConvolve(fpixs, kelxn, 0); | |
| 2275 l_setConvolveSampling(1, yfact); | |
| 2276 fpixd = fpixConvolve(fpixt, kelyn, 0); | |
| 2277 l_setConvolveSampling(xfact, yfact); /* restore */ | |
| 2278 kernelDestroy(&kelxn); | |
| 2279 kernelDestroy(&kelyn); | |
| 2280 } else { /* don't normalize */ | |
| 2281 l_setConvolveSampling(xfact, 1); | |
| 2282 fpixt = fpixConvolve(fpixs, kelx, 0); | |
| 2283 l_setConvolveSampling(1, yfact); | |
| 2284 fpixd = fpixConvolve(fpixt, kely, 0); | |
| 2285 l_setConvolveSampling(xfact, yfact); | |
| 2286 } | |
| 2287 | |
| 2288 fpixDestroy(&fpixt); | |
| 2289 return fpixd; | |
| 2290 } | |
| 2291 | |
| 2292 | |
| 2293 /*------------------------------------------------------------------------* | |
| 2294 * Convolution with bias (for non-negative output) * | |
| 2295 *------------------------------------------------------------------------*/ | |
| 2296 /*! | |
| 2297 * \brief pixConvolveWithBias() | |
| 2298 * | |
| 2299 * \param[in] pixs 8 bpp; no colormap | |
| 2300 * \param[in] kel1 | |
| 2301 * \param[in] kel2 can be null; use if separable | |
| 2302 * \param[in] force8 if 1, force output to 8 bpp; otherwise, determine | |
| 2303 * output depth by the dynamic range of pixel values | |
| 2304 * \param[out] pbias applied bias | |
| 2305 * \return pixd 8 or 16 bpp | |
| 2306 * | |
| 2307 * <pre> | |
| 2308 * Notes: | |
| 2309 * (1) This does a convolution with either a single kernel or | |
| 2310 * a pair of separable kernels, and automatically applies whatever | |
| 2311 * bias (shift) is required so that the resulting pixel values | |
| 2312 * are non-negative. | |
| 2313 * (2) The kernel is always normalized. If there are no negative | |
| 2314 * values in the kernel, a standard normalized convolution is | |
| 2315 * performed, with 8 bpp output. If the sum of kernel values is | |
| 2316 * very close to zero, the kernel can not be normalized and | |
| 2317 * the convolution will not be performed. An error message results. | |
| 2318 * (3) If there are negative values in the kernel, the pix is | |
| 2319 * converted to an fpix, the convolution is done on the fpix, and | |
| 2320 * a bias (shift) may need to be applied. | |
| 2321 * (4) If force8 == TRUE and the range of values after the convolution | |
| 2322 * is > 255, the output values will be scaled to fit in [0 ... 255]. | |
| 2323 * If force8 == FALSE, the output will be either 8 or 16 bpp, | |
| 2324 * to accommodate the dynamic range of output values without scaling. | |
| 2325 * </pre> | |
| 2326 */ | |
| 2327 PIX * | |
| 2328 pixConvolveWithBias(PIX *pixs, | |
| 2329 L_KERNEL *kel1, | |
| 2330 L_KERNEL *kel2, | |
| 2331 l_int32 force8, | |
| 2332 l_int32 *pbias) | |
| 2333 { | |
| 2334 l_int32 outdepth; | |
| 2335 l_float32 min1, min2, min, minval, maxval, range; | |
| 2336 FPIX *fpix1, *fpix2; | |
| 2337 PIX *pixd; | |
| 2338 | |
| 2339 if (!pbias) | |
| 2340 return (PIX *)ERROR_PTR("&bias not defined", __func__, NULL); | |
| 2341 *pbias = 0; | |
| 2342 if (!pixs || pixGetDepth(pixs) != 8) | |
| 2343 return (PIX *)ERROR_PTR("pixs undefined or not 8 bpp", __func__, NULL); | |
| 2344 if (pixGetColormap(pixs)) | |
| 2345 return (PIX *)ERROR_PTR("pixs has colormap", __func__, NULL); | |
| 2346 if (!kel1) | |
| 2347 return (PIX *)ERROR_PTR("kel1 not defined", __func__, NULL); | |
| 2348 | |
| 2349 /* Determine if negative values can be produced in the convolution */ | |
| 2350 kernelGetMinMax(kel1, &min1, NULL); | |
| 2351 min2 = 0.0; | |
| 2352 if (kel2) | |
| 2353 kernelGetMinMax(kel2, &min2, NULL); | |
| 2354 min = L_MIN(min1, min2); | |
| 2355 | |
| 2356 if (min >= 0.0) { | |
| 2357 if (!kel2) | |
| 2358 return pixConvolve(pixs, kel1, 8, 1); | |
| 2359 else | |
| 2360 return pixConvolveSep(pixs, kel1, kel2, 8, 1); | |
| 2361 } | |
| 2362 | |
| 2363 /* Bias may need to be applied; convert to fpix and convolve */ | |
| 2364 fpix1 = pixConvertToFPix(pixs, 1); | |
| 2365 if (!kel2) | |
| 2366 fpix2 = fpixConvolve(fpix1, kel1, 1); | |
| 2367 else | |
| 2368 fpix2 = fpixConvolveSep(fpix1, kel1, kel2, 1); | |
| 2369 fpixDestroy(&fpix1); | |
| 2370 | |
| 2371 /* Determine the bias and the dynamic range. | |
| 2372 * If the dynamic range is <= 255, just shift the values by the | |
| 2373 * bias, if any. | |
| 2374 * If the dynamic range is > 255, there are two cases: | |
| 2375 * (1) the output depth is not forced to 8 bpp | |
| 2376 * ==> apply the bias without scaling; outdepth = 16 | |
| 2377 * (2) the output depth is forced to 8 | |
| 2378 * ==> linearly map the pixel values to [0 ... 255]. */ | |
| 2379 fpixGetMin(fpix2, &minval, NULL, NULL); | |
| 2380 fpixGetMax(fpix2, &maxval, NULL, NULL); | |
| 2381 range = maxval - minval; | |
| 2382 *pbias = (minval < 0.0) ? -minval : 0.0; | |
| 2383 fpixAddMultConstant(fpix2, *pbias, 1.0); /* shift: min val ==> 0 */ | |
| 2384 if (range <= 255 || !force8) { /* no scaling of output values */ | |
| 2385 outdepth = (range > 255) ? 16 : 8; | |
| 2386 } else { /* scale output values to fit in 8 bpp */ | |
| 2387 fpixAddMultConstant(fpix2, 0.0, (255.0 / range)); | |
| 2388 outdepth = 8; | |
| 2389 } | |
| 2390 | |
| 2391 /* Convert back to pix; it won't do any clipping */ | |
| 2392 pixd = fpixConvertToPix(fpix2, outdepth, L_CLIP_TO_ZERO, 0); | |
| 2393 fpixDestroy(&fpix2); | |
| 2394 | |
| 2395 return pixd; | |
| 2396 } | |
| 2397 | |
| 2398 | |
| 2399 /*------------------------------------------------------------------------* | |
| 2400 * Set parameter for convolution subsampling * | |
| 2401 *------------------------------------------------------------------------*/ | |
| 2402 /*! | |
| 2403 * \brief l_setConvolveSampling() | |
| 2404 | |
| 2405 * | |
| 2406 * \param[in] xfact, yfact integer >= 1 | |
| 2407 * \return void | |
| 2408 * | |
| 2409 * <pre> | |
| 2410 * Notes: | |
| 2411 * (1) This sets the x and y output subsampling factors for generic pix | |
| 2412 * and fpix convolution. The default values are 1 (no subsampling). | |
| 2413 * </pre> | |
| 2414 */ | |
| 2415 void | |
| 2416 l_setConvolveSampling(l_int32 xfact, | |
| 2417 l_int32 yfact) | |
| 2418 { | |
| 2419 if (xfact < 1) xfact = 1; | |
| 2420 if (yfact < 1) yfact = 1; | |
| 2421 ConvolveSamplingFactX = xfact; | |
| 2422 ConvolveSamplingFactY = yfact; | |
| 2423 } | |
| 2424 | |
| 2425 | |
| 2426 /*------------------------------------------------------------------------* | |
| 2427 * Additive gaussian noise * | |
| 2428 *------------------------------------------------------------------------*/ | |
| 2429 /*! | |
| 2430 * \brief pixAddGaussianNoise() | |
| 2431 * | |
| 2432 * \param[in] pixs 8 bpp gray or 32 bpp rgb; no colormap | |
| 2433 * \param[in] stdev of noise | |
| 2434 * \return pixd 8 or 32 bpp, or NULL on error | |
| 2435 * | |
| 2436 * <pre> | |
| 2437 * Notes: | |
| 2438 * (1) This adds noise to each pixel, taken from a normal | |
| 2439 * distribution with zero mean and specified standard deviation. | |
| 2440 * </pre> | |
| 2441 */ | |
| 2442 PIX * | |
| 2443 pixAddGaussianNoise(PIX *pixs, | |
| 2444 l_float32 stdev) | |
| 2445 { | |
| 2446 l_int32 i, j, w, h, d, wpls, wpld, val, rval, gval, bval; | |
| 2447 l_uint32 pixel; | |
| 2448 l_uint32 *datas, *datad, *lines, *lined; | |
| 2449 PIX *pixd; | |
| 2450 | |
| 2451 if (!pixs) | |
| 2452 return (PIX *)ERROR_PTR("pixs not defined", __func__, NULL); | |
| 2453 if (pixGetColormap(pixs)) | |
| 2454 return (PIX *)ERROR_PTR("pixs has colormap", __func__, NULL); | |
| 2455 pixGetDimensions(pixs, &w, &h, &d); | |
| 2456 if (d != 8 && d != 32) | |
| 2457 return (PIX *)ERROR_PTR("pixs not 8 or 32 bpp", __func__, NULL); | |
| 2458 | |
| 2459 pixd = pixCreateTemplate(pixs); | |
| 2460 datas = pixGetData(pixs); | |
| 2461 datad = pixGetData(pixd); | |
| 2462 wpls = pixGetWpl(pixs); | |
| 2463 wpld = pixGetWpl(pixd); | |
| 2464 for (i = 0; i < h; i++) { | |
| 2465 lines = datas + i * wpls; | |
| 2466 lined = datad + i * wpld; | |
| 2467 for (j = 0; j < w; j++) { | |
| 2468 if (d == 8) { | |
| 2469 val = GET_DATA_BYTE(lines, j); | |
| 2470 val += (l_int32)(stdev * gaussDistribSampling() + 0.5); | |
| 2471 val = L_MIN(255, L_MAX(0, val)); | |
| 2472 SET_DATA_BYTE(lined, j, val); | |
| 2473 } else { /* d = 32 */ | |
| 2474 pixel = *(lines + j); | |
| 2475 extractRGBValues(pixel, &rval, &gval, &bval); | |
| 2476 rval += (l_int32)(stdev * gaussDistribSampling() + 0.5); | |
| 2477 rval = L_MIN(255, L_MAX(0, rval)); | |
| 2478 gval += (l_int32)(stdev * gaussDistribSampling() + 0.5); | |
| 2479 gval = L_MIN(255, L_MAX(0, gval)); | |
| 2480 bval += (l_int32)(stdev * gaussDistribSampling() + 0.5); | |
| 2481 bval = L_MIN(255, L_MAX(0, bval)); | |
| 2482 composeRGBPixel(rval, gval, bval, lined + j); | |
| 2483 } | |
| 2484 } | |
| 2485 } | |
| 2486 return pixd; | |
| 2487 } | |
| 2488 | |
| 2489 | |
| 2490 /*! | |
| 2491 * \brief gaussDistribSampling() | |
| 2492 * | |
| 2493 * \return gaussian distributed variable with zero mean and unit stdev | |
| 2494 * | |
| 2495 * <pre> | |
| 2496 * Notes: | |
| 2497 * (1) For an explanation of the Box-Muller method for generating | |
| 2498 * a normally distributed random variable with zero mean and | |
| 2499 * unit standard deviation, see Numerical Recipes in C, | |
| 2500 * 2nd edition, p. 288ff. | |
| 2501 * (2) This can be called sequentially to get samples that can be | |
| 2502 * used for adding noise to each pixel of an image, for example. | |
| 2503 * </pre> | |
| 2504 */ | |
| 2505 l_float32 | |
| 2506 gaussDistribSampling(void) | |
| 2507 { | |
| 2508 static l_int32 select = 0; /* flips between 0 and 1 on successive calls */ | |
| 2509 static l_float32 saveval; | |
| 2510 l_float32 frand, xval, yval, rsq, factor; | |
| 2511 | |
| 2512 if (select == 0) { | |
| 2513 while (1) { /* choose a point in a 2x2 square, centered at origin */ | |
| 2514 frand = (l_float32)rand() / (l_float32)RAND_MAX; | |
| 2515 xval = 2.0 * frand - 1.0; | |
| 2516 frand = (l_float32)rand() / (l_float32)RAND_MAX; | |
| 2517 yval = 2.0 * frand - 1.0; | |
| 2518 rsq = xval * xval + yval * yval; | |
| 2519 if (rsq > 0.0 && rsq < 1.0) /* point is inside the unit circle */ | |
| 2520 break; | |
| 2521 } | |
| 2522 factor = sqrt(-2.0 * log(rsq) / rsq); | |
| 2523 saveval = xval * factor; | |
| 2524 select = 1; | |
| 2525 return yval * factor; | |
| 2526 } | |
| 2527 else { | |
| 2528 select = 0; | |
| 2529 return saveval; | |
| 2530 } | |
| 2531 } |
