Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/lcms2/src/cmsopt.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 //--------------------------------------------------------------------------------- | |
| 2 // | |
| 3 // Little Color Management System | |
| 4 // Copyright (c) 1998-2023 Marti Maria Saguer | |
| 5 // | |
| 6 // Permission is hereby granted, free of charge, to any person obtaining | |
| 7 // a copy of this software and associated documentation files (the "Software"), | |
| 8 // to deal in the Software without restriction, including without limitation | |
| 9 // the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| 10 // and/or sell copies of the Software, and to permit persons to whom the Software | |
| 11 // is furnished to do so, subject to the following conditions: | |
| 12 // | |
| 13 // The above copyright notice and this permission notice shall be included in | |
| 14 // all copies or substantial portions of the Software. | |
| 15 // | |
| 16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
| 17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |
| 18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
| 19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |
| 20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
| 21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
| 22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| 23 // | |
| 24 //--------------------------------------------------------------------------------- | |
| 25 // | |
| 26 | |
| 27 #include "lcms2_internal.h" | |
| 28 | |
| 29 | |
| 30 //---------------------------------------------------------------------------------- | |
| 31 | |
| 32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only) | |
| 33 typedef struct { | |
| 34 | |
| 35 cmsContext ContextID; | |
| 36 | |
| 37 const cmsInterpParams* p; // Tetrahedrical interpolation parameters. This is a not-owned pointer. | |
| 38 | |
| 39 cmsUInt16Number rx[256], ry[256], rz[256]; | |
| 40 cmsUInt32Number X0[256], Y0[256], Z0[256]; // Precomputed nodes and offsets for 8-bit input data | |
| 41 | |
| 42 | |
| 43 } Prelin8Data; | |
| 44 | |
| 45 | |
| 46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs) | |
| 47 typedef struct { | |
| 48 | |
| 49 cmsContext ContextID; | |
| 50 | |
| 51 // Number of channels | |
| 52 cmsUInt32Number nInputs; | |
| 53 cmsUInt32Number nOutputs; | |
| 54 | |
| 55 _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS]; // The maximum number of input channels is known in advance | |
| 56 cmsInterpParams* ParamsCurveIn16[MAX_INPUT_DIMENSIONS]; | |
| 57 | |
| 58 _cmsInterpFn16 EvalCLUT; // The evaluator for 3D grid | |
| 59 const cmsInterpParams* CLUTparams; // (not-owned pointer) | |
| 60 | |
| 61 | |
| 62 _cmsInterpFn16* EvalCurveOut16; // Points to an array of curve evaluators in 16 bits (not-owned pointer) | |
| 63 cmsInterpParams** ParamsCurveOut16; // Points to an array of references to interpolation params (not-owned pointer) | |
| 64 | |
| 65 | |
| 66 } Prelin16Data; | |
| 67 | |
| 68 | |
| 69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed | |
| 70 | |
| 71 typedef cmsInt32Number cmsS1Fixed14Number; // Note that this may hold more than 16 bits! | |
| 72 | |
| 73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5)) | |
| 74 | |
| 75 typedef struct { | |
| 76 | |
| 77 cmsContext ContextID; | |
| 78 | |
| 79 cmsS1Fixed14Number Shaper1R[256]; // from 0..255 to 1.14 (0.0...1.0) | |
| 80 cmsS1Fixed14Number Shaper1G[256]; | |
| 81 cmsS1Fixed14Number Shaper1B[256]; | |
| 82 | |
| 83 cmsS1Fixed14Number Mat[3][3]; // n.14 to n.14 (needs a saturation after that) | |
| 84 cmsS1Fixed14Number Off[3]; | |
| 85 | |
| 86 cmsUInt16Number Shaper2R[16385]; // 1.14 to 0..255 | |
| 87 cmsUInt16Number Shaper2G[16385]; | |
| 88 cmsUInt16Number Shaper2B[16385]; | |
| 89 | |
| 90 } MatShaper8Data; | |
| 91 | |
| 92 // Curves, optimization is shared between 8 and 16 bits | |
| 93 typedef struct { | |
| 94 cmsUInt32Number nCurves; // Number of curves | |
| 95 cmsUInt32Number nElements; // Elements in curves | |
| 96 cmsUInt16Number** Curves; // Points to a dynamically allocated array | |
| 97 | |
| 98 } Curves16Data; | |
| 99 | |
| 100 | |
| 101 // Simple optimizations ---------------------------------------------------------------------------------------------------------- | |
| 102 | |
| 103 | |
| 104 // Remove an element in linked chain | |
| 105 static | |
| 106 void _RemoveElement(cmsContext ContextID, cmsStage** head) | |
| 107 { | |
| 108 cmsStage* mpe = *head; | |
| 109 cmsStage* next = mpe ->Next; | |
| 110 *head = next; | |
| 111 cmsStageFree(ContextID, mpe); | |
| 112 } | |
| 113 | |
| 114 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer. | |
| 115 static | |
| 116 cmsBool _Remove1Op(cmsContext ContextID, cmsPipeline* Lut, cmsStageSignature UnaryOp) | |
| 117 { | |
| 118 cmsStage** pt = &Lut ->Elements; | |
| 119 cmsBool AnyOpt = FALSE; | |
| 120 | |
| 121 while (*pt != NULL) { | |
| 122 | |
| 123 if ((*pt) ->Implements == UnaryOp) { | |
| 124 _RemoveElement(ContextID, pt); | |
| 125 AnyOpt = TRUE; | |
| 126 } | |
| 127 else | |
| 128 pt = &((*pt) -> Next); | |
| 129 } | |
| 130 | |
| 131 return AnyOpt; | |
| 132 } | |
| 133 | |
| 134 // Same, but only if two adjacent elements are found | |
| 135 static | |
| 136 cmsBool _Remove2Op(cmsContext ContextID, cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2) | |
| 137 { | |
| 138 cmsStage** pt1; | |
| 139 cmsStage** pt2; | |
| 140 cmsBool AnyOpt = FALSE; | |
| 141 | |
| 142 pt1 = &Lut ->Elements; | |
| 143 if (*pt1 == NULL) return AnyOpt; | |
| 144 | |
| 145 while (*pt1 != NULL) { | |
| 146 | |
| 147 pt2 = &((*pt1) -> Next); | |
| 148 if (*pt2 == NULL) return AnyOpt; | |
| 149 | |
| 150 if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) { | |
| 151 _RemoveElement(ContextID, pt2); | |
| 152 _RemoveElement(ContextID, pt1); | |
| 153 AnyOpt = TRUE; | |
| 154 } | |
| 155 else | |
| 156 pt1 = &((*pt1) -> Next); | |
| 157 } | |
| 158 | |
| 159 return AnyOpt; | |
| 160 } | |
| 161 | |
| 162 | |
| 163 static | |
| 164 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b) | |
| 165 { | |
| 166 return fabs(b - a) < 0.00001f; | |
| 167 } | |
| 168 | |
| 169 static | |
| 170 cmsBool isFloatMatrixIdentity(cmsContext ContextID, const cmsMAT3* a) | |
| 171 { | |
| 172 cmsMAT3 Identity; | |
| 173 int i, j; | |
| 174 | |
| 175 _cmsMAT3identity(ContextID, &Identity); | |
| 176 | |
| 177 for (i = 0; i < 3; i++) | |
| 178 for (j = 0; j < 3; j++) | |
| 179 if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE; | |
| 180 | |
| 181 return TRUE; | |
| 182 } | |
| 183 | |
| 184 // if two adjacent matrices are found, multiply them. | |
| 185 static | |
| 186 cmsBool _MultiplyMatrix(cmsContext ContextID, cmsPipeline* Lut) | |
| 187 { | |
| 188 cmsStage** pt1; | |
| 189 cmsStage** pt2; | |
| 190 cmsStage* chain; | |
| 191 cmsBool AnyOpt = FALSE; | |
| 192 | |
| 193 pt1 = &Lut->Elements; | |
| 194 if (*pt1 == NULL) return AnyOpt; | |
| 195 | |
| 196 while (*pt1 != NULL) { | |
| 197 | |
| 198 pt2 = &((*pt1)->Next); | |
| 199 if (*pt2 == NULL) return AnyOpt; | |
| 200 | |
| 201 if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) { | |
| 202 | |
| 203 // Get both matrices | |
| 204 _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(ContextID, *pt1); | |
| 205 _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(ContextID, *pt2); | |
| 206 cmsMAT3 res; | |
| 207 | |
| 208 // Input offset and output offset should be zero to use this optimization | |
| 209 if (m1->Offset != NULL || m2 ->Offset != NULL || | |
| 210 cmsStageInputChannels(ContextID, *pt1) != 3 || cmsStageOutputChannels(ContextID, *pt1) != 3 || | |
| 211 cmsStageInputChannels(ContextID, *pt2) != 3 || cmsStageOutputChannels(ContextID, *pt2) != 3) | |
| 212 return FALSE; | |
| 213 | |
| 214 // Multiply both matrices to get the result | |
| 215 _cmsMAT3per(ContextID, &res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double); | |
| 216 | |
| 217 // Get the next in chain after the matrices | |
| 218 chain = (*pt2)->Next; | |
| 219 | |
| 220 // Remove both matrices | |
| 221 _RemoveElement(ContextID, pt2); | |
| 222 _RemoveElement(ContextID, pt1); | |
| 223 | |
| 224 // Now what if the result is a plain identity? | |
| 225 if (!isFloatMatrixIdentity(ContextID, &res)) { | |
| 226 | |
| 227 // We can not get rid of full matrix | |
| 228 cmsStage* Multmat = cmsStageAllocMatrix(ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL); | |
| 229 if (Multmat == NULL) return FALSE; // Should never happen | |
| 230 | |
| 231 // Recover the chain | |
| 232 Multmat->Next = chain; | |
| 233 *pt1 = Multmat; | |
| 234 } | |
| 235 | |
| 236 AnyOpt = TRUE; | |
| 237 } | |
| 238 else | |
| 239 pt1 = &((*pt1)->Next); | |
| 240 } | |
| 241 | |
| 242 return AnyOpt; | |
| 243 } | |
| 244 | |
| 245 | |
| 246 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed | |
| 247 // by a v4 to v2 and vice-versa. The elements are then discarded. | |
| 248 static | |
| 249 cmsBool PreOptimize(cmsContext ContextID, cmsPipeline* Lut) | |
| 250 { | |
| 251 cmsBool AnyOpt = FALSE, Opt; | |
| 252 | |
| 253 do { | |
| 254 | |
| 255 Opt = FALSE; | |
| 256 | |
| 257 // Remove all identities | |
| 258 Opt |= _Remove1Op(ContextID, Lut, cmsSigIdentityElemType); | |
| 259 | |
| 260 // Remove XYZ2Lab followed by Lab2XYZ | |
| 261 Opt |= _Remove2Op(ContextID, Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType); | |
| 262 | |
| 263 // Remove Lab2XYZ followed by XYZ2Lab | |
| 264 Opt |= _Remove2Op(ContextID, Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType); | |
| 265 | |
| 266 // Remove V4 to V2 followed by V2 to V4 | |
| 267 Opt |= _Remove2Op(ContextID, Lut, cmsSigLabV4toV2, cmsSigLabV2toV4); | |
| 268 | |
| 269 // Remove V2 to V4 followed by V4 to V2 | |
| 270 Opt |= _Remove2Op(ContextID, Lut, cmsSigLabV2toV4, cmsSigLabV4toV2); | |
| 271 | |
| 272 // Remove float pcs Lab conversions | |
| 273 Opt |= _Remove2Op(ContextID, Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab); | |
| 274 | |
| 275 // Remove float pcs Lab conversions | |
| 276 Opt |= _Remove2Op(ContextID, Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ); | |
| 277 | |
| 278 // Simplify matrix. | |
| 279 Opt |= _MultiplyMatrix(ContextID, Lut); | |
| 280 | |
| 281 if (Opt) AnyOpt = TRUE; | |
| 282 | |
| 283 } while (Opt); | |
| 284 | |
| 285 return AnyOpt; | |
| 286 } | |
| 287 | |
| 288 static | |
| 289 void Eval16nop1D(cmsContext ContextID, | |
| 290 CMSREGISTER const cmsUInt16Number Input[], | |
| 291 CMSREGISTER cmsUInt16Number Output[], | |
| 292 CMSREGISTER const struct _cms_interp_struc* p) | |
| 293 { | |
| 294 cmsUNUSED_PARAMETER(ContextID); | |
| 295 Output[0] = Input[0]; | |
| 296 | |
| 297 cmsUNUSED_PARAMETER(p); | |
| 298 } | |
| 299 | |
| 300 static | |
| 301 void PrelinEval16(cmsContext ContextID, | |
| 302 CMSREGISTER const cmsUInt16Number Input[], | |
| 303 CMSREGISTER cmsUInt16Number Output[], | |
| 304 CMSREGISTER const void* D) | |
| 305 { | |
| 306 Prelin16Data* p16 = (Prelin16Data*) D; | |
| 307 cmsUInt16Number StageABC[MAX_INPUT_DIMENSIONS]; | |
| 308 cmsUInt16Number StageDEF[cmsMAXCHANNELS]; | |
| 309 cmsUInt32Number i; | |
| 310 | |
| 311 for (i=0; i < p16 ->nInputs; i++) { | |
| 312 | |
| 313 p16 ->EvalCurveIn16[i](ContextID, &Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]); | |
| 314 } | |
| 315 | |
| 316 p16 ->EvalCLUT(ContextID, StageABC, StageDEF, p16 ->CLUTparams); | |
| 317 | |
| 318 for (i=0; i < p16 ->nOutputs; i++) { | |
| 319 | |
| 320 p16 ->EvalCurveOut16[i](ContextID, &StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]); | |
| 321 } | |
| 322 } | |
| 323 | |
| 324 | |
| 325 static | |
| 326 void PrelinOpt16free(cmsContext ContextID, void* ptr) | |
| 327 { | |
| 328 Prelin16Data* p16 = (Prelin16Data*) ptr; | |
| 329 | |
| 330 _cmsFree(ContextID, p16 ->EvalCurveOut16); | |
| 331 _cmsFree(ContextID, p16 ->ParamsCurveOut16); | |
| 332 | |
| 333 _cmsFree(ContextID, p16); | |
| 334 } | |
| 335 | |
| 336 static | |
| 337 void* Prelin16dup(cmsContext ContextID, const void* ptr) | |
| 338 { | |
| 339 Prelin16Data* p16 = (Prelin16Data*) ptr; | |
| 340 Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data)); | |
| 341 | |
| 342 if (Duped == NULL) return NULL; | |
| 343 | |
| 344 Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16)); | |
| 345 Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*)); | |
| 346 | |
| 347 return Duped; | |
| 348 } | |
| 349 | |
| 350 | |
| 351 static | |
| 352 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID, | |
| 353 const cmsInterpParams* ColorMap, | |
| 354 cmsUInt32Number nInputs, cmsToneCurve** In, | |
| 355 cmsUInt32Number nOutputs, cmsToneCurve** Out ) | |
| 356 { | |
| 357 cmsUInt32Number i; | |
| 358 Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data)); | |
| 359 if (p16 == NULL) return NULL; | |
| 360 | |
| 361 p16 ->nInputs = nInputs; | |
| 362 p16 ->nOutputs = nOutputs; | |
| 363 | |
| 364 | |
| 365 for (i=0; i < nInputs; i++) { | |
| 366 | |
| 367 if (In == NULL) { | |
| 368 p16 -> ParamsCurveIn16[i] = NULL; | |
| 369 p16 -> EvalCurveIn16[i] = Eval16nop1D; | |
| 370 | |
| 371 } | |
| 372 else { | |
| 373 p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams; | |
| 374 p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16; | |
| 375 } | |
| 376 } | |
| 377 | |
| 378 p16 ->CLUTparams = ColorMap; | |
| 379 p16 ->EvalCLUT = ColorMap ->Interpolation.Lerp16; | |
| 380 | |
| 381 | |
| 382 p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16)); | |
| 383 if (p16->EvalCurveOut16 == NULL) | |
| 384 { | |
| 385 _cmsFree(ContextID, p16); | |
| 386 return NULL; | |
| 387 } | |
| 388 | |
| 389 p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* )); | |
| 390 if (p16->ParamsCurveOut16 == NULL) | |
| 391 { | |
| 392 | |
| 393 _cmsFree(ContextID, p16->EvalCurveOut16); | |
| 394 _cmsFree(ContextID, p16); | |
| 395 return NULL; | |
| 396 } | |
| 397 | |
| 398 for (i=0; i < nOutputs; i++) { | |
| 399 | |
| 400 if (Out == NULL) { | |
| 401 p16 ->ParamsCurveOut16[i] = NULL; | |
| 402 p16 -> EvalCurveOut16[i] = Eval16nop1D; | |
| 403 } | |
| 404 else { | |
| 405 | |
| 406 p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams; | |
| 407 p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16; | |
| 408 } | |
| 409 } | |
| 410 | |
| 411 return p16; | |
| 412 } | |
| 413 | |
| 414 | |
| 415 | |
| 416 // Resampling --------------------------------------------------------------------------------- | |
| 417 | |
| 418 #define PRELINEARIZATION_POINTS 4096 | |
| 419 | |
| 420 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for | |
| 421 // almost any transform. We use floating point precision and then convert from floating point to 16 bits. | |
| 422 static | |
| 423 cmsInt32Number XFormSampler16(cmsContext ContextID, | |
| 424 CMSREGISTER const cmsUInt16Number In[], | |
| 425 CMSREGISTER cmsUInt16Number Out[], | |
| 426 CMSREGISTER void* Cargo) | |
| 427 { | |
| 428 cmsPipeline* Lut = (cmsPipeline*) Cargo; | |
| 429 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; | |
| 430 cmsUInt32Number i; | |
| 431 | |
| 432 _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS); | |
| 433 _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS); | |
| 434 | |
| 435 // From 16 bit to floating point | |
| 436 for (i=0; i < Lut ->InputChannels; i++) | |
| 437 InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0); | |
| 438 | |
| 439 // Evaluate in floating point | |
| 440 cmsPipelineEvalFloat(ContextID, InFloat, OutFloat, Lut); | |
| 441 | |
| 442 // Back to 16 bits representation | |
| 443 for (i=0; i < Lut ->OutputChannels; i++) | |
| 444 Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0); | |
| 445 | |
| 446 // Always succeed | |
| 447 return TRUE; | |
| 448 } | |
| 449 | |
| 450 // Try to see if the curves of a given MPE are linear | |
| 451 static | |
| 452 cmsBool AllCurvesAreLinear(cmsContext ContextID, cmsStage* mpe) | |
| 453 { | |
| 454 cmsToneCurve** Curves; | |
| 455 cmsUInt32Number i, n; | |
| 456 | |
| 457 Curves = _cmsStageGetPtrToCurveSet(mpe); | |
| 458 if (Curves == NULL) return FALSE; | |
| 459 | |
| 460 n = cmsStageOutputChannels(ContextID, mpe); | |
| 461 | |
| 462 for (i=0; i < n; i++) { | |
| 463 if (!cmsIsToneCurveLinear(ContextID, Curves[i])) return FALSE; | |
| 464 } | |
| 465 | |
| 466 return TRUE; | |
| 467 } | |
| 468 | |
| 469 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose | |
| 470 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels | |
| 471 static | |
| 472 cmsBool PatchLUT(cmsContext ContextID, cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[], | |
| 473 cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn) | |
| 474 { | |
| 475 _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data; | |
| 476 cmsInterpParams* p16 = Grid ->Params; | |
| 477 cmsFloat64Number px, py, pz, pw; | |
| 478 int x0, y0, z0, w0; | |
| 479 int i, index; | |
| 480 | |
| 481 if (CLUT -> Type != cmsSigCLutElemType) { | |
| 482 cmsSignalError(ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage"); | |
| 483 return FALSE; | |
| 484 } | |
| 485 | |
| 486 if (nChannelsIn == 4) { | |
| 487 | |
| 488 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | |
| 489 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; | |
| 490 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; | |
| 491 pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0; | |
| 492 | |
| 493 x0 = (int) floor(px); | |
| 494 y0 = (int) floor(py); | |
| 495 z0 = (int) floor(pz); | |
| 496 w0 = (int) floor(pw); | |
| 497 | |
| 498 if (((px - x0) != 0) || | |
| 499 ((py - y0) != 0) || | |
| 500 ((pz - z0) != 0) || | |
| 501 ((pw - w0) != 0)) return FALSE; // Not on exact node | |
| 502 | |
| 503 index = (int) p16 -> opta[3] * x0 + | |
| 504 (int) p16 -> opta[2] * y0 + | |
| 505 (int) p16 -> opta[1] * z0 + | |
| 506 (int) p16 -> opta[0] * w0; | |
| 507 } | |
| 508 else | |
| 509 if (nChannelsIn == 3) { | |
| 510 | |
| 511 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | |
| 512 py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0; | |
| 513 pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0; | |
| 514 | |
| 515 x0 = (int) floor(px); | |
| 516 y0 = (int) floor(py); | |
| 517 z0 = (int) floor(pz); | |
| 518 | |
| 519 if (((px - x0) != 0) || | |
| 520 ((py - y0) != 0) || | |
| 521 ((pz - z0) != 0)) return FALSE; // Not on exact node | |
| 522 | |
| 523 index = (int) p16 -> opta[2] * x0 + | |
| 524 (int) p16 -> opta[1] * y0 + | |
| 525 (int) p16 -> opta[0] * z0; | |
| 526 } | |
| 527 else | |
| 528 if (nChannelsIn == 1) { | |
| 529 | |
| 530 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0; | |
| 531 | |
| 532 x0 = (int) floor(px); | |
| 533 | |
| 534 if (((px - x0) != 0)) return FALSE; // Not on exact node | |
| 535 | |
| 536 index = (int) p16 -> opta[0] * x0; | |
| 537 } | |
| 538 else { | |
| 539 cmsSignalError(ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn); | |
| 540 return FALSE; | |
| 541 } | |
| 542 | |
| 543 for (i = 0; i < (int) nChannelsOut; i++) | |
| 544 Grid->Tab.T[index + i] = Value[i]; | |
| 545 | |
| 546 return TRUE; | |
| 547 } | |
| 548 | |
| 549 // Auxiliary, to see if two values are equal or very different | |
| 550 static | |
| 551 cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] ) | |
| 552 { | |
| 553 cmsUInt32Number i; | |
| 554 | |
| 555 for (i=0; i < n; i++) { | |
| 556 | |
| 557 if (abs(White1[i] - White2[i]) > 0xf000) return TRUE; // Values are so extremely different that the fixup should be avoided | |
| 558 if (White1[i] != White2[i]) return FALSE; | |
| 559 } | |
| 560 return TRUE; | |
| 561 } | |
| 562 | |
| 563 | |
| 564 // Locate the node for the white point and fix it to pure white in order to avoid scum dot. | |
| 565 static | |
| 566 cmsBool FixWhiteMisalignment(cmsContext ContextID, cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace) | |
| 567 { | |
| 568 cmsUInt16Number *WhitePointIn, *WhitePointOut; | |
| 569 cmsUInt16Number WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS]; | |
| 570 cmsUInt32Number i, nOuts, nIns; | |
| 571 cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL; | |
| 572 | |
| 573 if (!_cmsEndPointsBySpace(EntryColorSpace, | |
| 574 &WhitePointIn, NULL, &nIns)) return FALSE; | |
| 575 | |
| 576 if (!_cmsEndPointsBySpace(ExitColorSpace, | |
| 577 &WhitePointOut, NULL, &nOuts)) return FALSE; | |
| 578 | |
| 579 // It needs to be fixed? | |
| 580 if (Lut ->InputChannels != nIns) return FALSE; | |
| 581 if (Lut ->OutputChannels != nOuts) return FALSE; | |
| 582 | |
| 583 cmsPipelineEval16(ContextID, WhitePointIn, ObtainedOut, Lut); | |
| 584 | |
| 585 if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match | |
| 586 | |
| 587 // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations | |
| 588 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin)) | |
| 589 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT)) | |
| 590 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin)) | |
| 591 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 1, cmsSigCLutElemType, &CLUT)) | |
| 592 return FALSE; | |
| 593 | |
| 594 // We need to interpolate white points of both, pre and post curves | |
| 595 if (PreLin) { | |
| 596 | |
| 597 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin); | |
| 598 | |
| 599 for (i=0; i < nIns; i++) { | |
| 600 WhiteIn[i] = cmsEvalToneCurve16(ContextID, Curves[i], WhitePointIn[i]); | |
| 601 } | |
| 602 } | |
| 603 else { | |
| 604 for (i=0; i < nIns; i++) | |
| 605 WhiteIn[i] = WhitePointIn[i]; | |
| 606 } | |
| 607 | |
| 608 // If any post-linearization, we need to find how is represented white before the curve, do | |
| 609 // a reverse interpolation in this case. | |
| 610 if (PostLin) { | |
| 611 | |
| 612 cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin); | |
| 613 | |
| 614 for (i=0; i < nOuts; i++) { | |
| 615 | |
| 616 cmsToneCurve* InversePostLin = cmsReverseToneCurve(ContextID, Curves[i]); | |
| 617 if (InversePostLin == NULL) { | |
| 618 WhiteOut[i] = WhitePointOut[i]; | |
| 619 | |
| 620 } else { | |
| 621 | |
| 622 WhiteOut[i] = cmsEvalToneCurve16(ContextID, InversePostLin, WhitePointOut[i]); | |
| 623 cmsFreeToneCurve(ContextID, InversePostLin); | |
| 624 } | |
| 625 } | |
| 626 } | |
| 627 else { | |
| 628 for (i=0; i < nOuts; i++) | |
| 629 WhiteOut[i] = WhitePointOut[i]; | |
| 630 } | |
| 631 | |
| 632 // Ok, proceed with patching. May fail and we don't care if it fails | |
| 633 PatchLUT(ContextID, CLUT, WhiteIn, WhiteOut, nOuts, nIns); | |
| 634 | |
| 635 return TRUE; | |
| 636 } | |
| 637 | |
| 638 // ----------------------------------------------------------------------------------------------------------------------------------------------- | |
| 639 // This function creates simple LUT from complex ones. The generated LUT has an optional set of | |
| 640 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables. | |
| 641 // These curves have to exist in the original LUT in order to be used in the simplified output. | |
| 642 // Caller may also use the flags to allow this feature. | |
| 643 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost. | |
| 644 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified | |
| 645 // ----------------------------------------------------------------------------------------------------------------------------------------------- | |
| 646 | |
| 647 static | |
| 648 cmsBool OptimizeByResampling(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | |
| 649 { | |
| 650 cmsPipeline* Src = NULL; | |
| 651 cmsPipeline* Dest = NULL; | |
| 652 cmsStage* CLUT; | |
| 653 cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL; | |
| 654 cmsUInt32Number nGridPoints; | |
| 655 cmsColorSpaceSignature ColorSpace, OutputColorSpace; | |
| 656 cmsStage *NewPreLin = NULL; | |
| 657 cmsStage *NewPostLin = NULL; | |
| 658 _cmsStageCLutData* DataCLUT; | |
| 659 cmsToneCurve** DataSetIn; | |
| 660 cmsToneCurve** DataSetOut; | |
| 661 Prelin16Data* p16; | |
| 662 | |
| 663 // This is a lossy optimization! does not apply in floating-point cases | |
| 664 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; | |
| 665 | |
| 666 ColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*InputFormat)); | |
| 667 OutputColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*OutputFormat)); | |
| 668 | |
| 669 // Color space must be specified | |
| 670 if (ColorSpace == (cmsColorSpaceSignature)0 || | |
| 671 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; | |
| 672 | |
| 673 nGridPoints = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, *dwFlags); | |
| 674 | |
| 675 // For empty LUTs, 2 points are enough | |
| 676 if (cmsPipelineStageCount(ContextID, *Lut) == 0) | |
| 677 nGridPoints = 2; | |
| 678 | |
| 679 Src = *Lut; | |
| 680 | |
| 681 // Allocate an empty LUT | |
| 682 Dest = cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels); | |
| 683 if (!Dest) return FALSE; | |
| 684 | |
| 685 // Prelinearization tables are kept unless indicated by flags | |
| 686 if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) { | |
| 687 | |
| 688 // Get a pointer to the prelinearization element | |
| 689 cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(ContextID, Src); | |
| 690 | |
| 691 // Check if suitable | |
| 692 if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) { | |
| 693 | |
| 694 // Maybe this is a linear tram, so we can avoid the whole stuff | |
| 695 if (!AllCurvesAreLinear(ContextID, PreLin)) { | |
| 696 | |
| 697 // All seems ok, proceed. | |
| 698 NewPreLin = cmsStageDup(ContextID, PreLin); | |
| 699 if(!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, NewPreLin)) | |
| 700 goto Error; | |
| 701 | |
| 702 // Remove prelinearization. Since we have duplicated the curve | |
| 703 // in destination LUT, the sampling should be applied after this stage. | |
| 704 cmsPipelineUnlinkStage(ContextID, Src, cmsAT_BEGIN, &KeepPreLin); | |
| 705 } | |
| 706 } | |
| 707 } | |
| 708 | |
| 709 // Allocate the CLUT | |
| 710 CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL); | |
| 711 if (CLUT == NULL) goto Error; | |
| 712 | |
| 713 // Add the CLUT to the destination LUT | |
| 714 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, CLUT)) { | |
| 715 goto Error; | |
| 716 } | |
| 717 | |
| 718 // Postlinearization tables are kept unless indicated by flags | |
| 719 if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) { | |
| 720 | |
| 721 // Get a pointer to the postlinearization if present | |
| 722 cmsStage* PostLin = cmsPipelineGetPtrToLastStage(ContextID, Src); | |
| 723 | |
| 724 // Check if suitable | |
| 725 if (PostLin && cmsStageType(ContextID, PostLin) == cmsSigCurveSetElemType) { | |
| 726 | |
| 727 // Maybe this is a linear tram, so we can avoid the whole stuff | |
| 728 if (!AllCurvesAreLinear(ContextID, PostLin)) { | |
| 729 | |
| 730 // All seems ok, proceed. | |
| 731 NewPostLin = cmsStageDup(ContextID, PostLin); | |
| 732 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, NewPostLin)) | |
| 733 goto Error; | |
| 734 | |
| 735 // In destination LUT, the sampling should be applied after this stage. | |
| 736 cmsPipelineUnlinkStage(ContextID, Src, cmsAT_END, &KeepPostLin); | |
| 737 } | |
| 738 } | |
| 739 } | |
| 740 | |
| 741 // Now its time to do the sampling. We have to ignore pre/post linearization | |
| 742 // The source LUT without pre/post curves is passed as parameter. | |
| 743 if (!cmsStageSampleCLut16bit(ContextID, CLUT, XFormSampler16, (void*) Src, 0)) { | |
| 744 Error: | |
| 745 // Ops, something went wrong, Restore stages | |
| 746 if (KeepPreLin != NULL) { | |
| 747 if (!cmsPipelineInsertStage(ContextID, Src, cmsAT_BEGIN, KeepPreLin)) { | |
| 748 _cmsAssert(0); // This never happens | |
| 749 } | |
| 750 } | |
| 751 if (KeepPostLin != NULL) { | |
| 752 if (!cmsPipelineInsertStage(ContextID, Src, cmsAT_END, KeepPostLin)) { | |
| 753 _cmsAssert(0); // This never happens | |
| 754 } | |
| 755 } | |
| 756 cmsPipelineFree(ContextID, Dest); | |
| 757 return FALSE; | |
| 758 } | |
| 759 | |
| 760 // Done. | |
| 761 | |
| 762 if (KeepPreLin != NULL) cmsStageFree(ContextID, KeepPreLin); | |
| 763 if (KeepPostLin != NULL) cmsStageFree(ContextID, KeepPostLin); | |
| 764 cmsPipelineFree(ContextID, Src); | |
| 765 | |
| 766 DataCLUT = (_cmsStageCLutData*) CLUT ->Data; | |
| 767 | |
| 768 if (NewPreLin == NULL) DataSetIn = NULL; | |
| 769 else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves; | |
| 770 | |
| 771 if (NewPostLin == NULL) DataSetOut = NULL; | |
| 772 else DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves; | |
| 773 | |
| 774 | |
| 775 if (DataSetIn == NULL && DataSetOut == NULL) { | |
| 776 | |
| 777 _cmsPipelineSetOptimizationParameters(ContextID, Dest, (_cmsPipelineEval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL); | |
| 778 } | |
| 779 else { | |
| 780 | |
| 781 p16 = PrelinOpt16alloc(ContextID, | |
| 782 DataCLUT ->Params, | |
| 783 Dest ->InputChannels, | |
| 784 DataSetIn, | |
| 785 Dest ->OutputChannels, | |
| 786 DataSetOut); | |
| 787 | |
| 788 _cmsPipelineSetOptimizationParameters(ContextID, Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); | |
| 789 } | |
| 790 | |
| 791 | |
| 792 // Don't fix white on absolute colorimetric | |
| 793 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) | |
| 794 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; | |
| 795 | |
| 796 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { | |
| 797 | |
| 798 FixWhiteMisalignment(ContextID, Dest, ColorSpace, OutputColorSpace); | |
| 799 } | |
| 800 | |
| 801 *Lut = Dest; | |
| 802 return TRUE; | |
| 803 | |
| 804 cmsUNUSED_PARAMETER(Intent); | |
| 805 } | |
| 806 | |
| 807 | |
| 808 // ----------------------------------------------------------------------------------------------------------------------------------------------- | |
| 809 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on | |
| 810 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works | |
| 811 // for RGB transforms. See the paper for more details | |
| 812 // ----------------------------------------------------------------------------------------------------------------------------------------------- | |
| 813 | |
| 814 | |
| 815 // Normalize endpoints by slope limiting max and min. This assures endpoints as well. | |
| 816 // Descending curves are handled as well. | |
| 817 static | |
| 818 void SlopeLimiting(cmsContext ContextID, cmsToneCurve* g) | |
| 819 { | |
| 820 int BeginVal, EndVal; | |
| 821 int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5); // Cutoff at 2% | |
| 822 int AtEnd = (int) g ->nEntries - AtBegin - 1; // And 98% | |
| 823 cmsFloat64Number Val, Slope, beta; | |
| 824 int i; | |
| 825 | |
| 826 if (cmsIsToneCurveDescending(ContextID, g)) { | |
| 827 BeginVal = 0xffff; EndVal = 0; | |
| 828 } | |
| 829 else { | |
| 830 BeginVal = 0; EndVal = 0xffff; | |
| 831 } | |
| 832 | |
| 833 // Compute slope and offset for begin of curve | |
| 834 Val = g ->Table16[AtBegin]; | |
| 835 Slope = (Val - BeginVal) / AtBegin; | |
| 836 beta = Val - Slope * AtBegin; | |
| 837 | |
| 838 for (i=0; i < AtBegin; i++) | |
| 839 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); | |
| 840 | |
| 841 // Compute slope and offset for the end | |
| 842 Val = g ->Table16[AtEnd]; | |
| 843 Slope = (EndVal - Val) / AtBegin; // AtBegin holds the X interval, which is same in both cases | |
| 844 beta = Val - Slope * AtEnd; | |
| 845 | |
| 846 for (i = AtEnd; i < (int) g ->nEntries; i++) | |
| 847 g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta); | |
| 848 } | |
| 849 | |
| 850 | |
| 851 // Precomputes tables for 8-bit on input devicelink. | |
| 852 static | |
| 853 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3]) | |
| 854 { | |
| 855 int i; | |
| 856 cmsUInt16Number Input[3]; | |
| 857 cmsS15Fixed16Number v1, v2, v3; | |
| 858 Prelin8Data* p8; | |
| 859 | |
| 860 p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data)); | |
| 861 if (p8 == NULL) return NULL; | |
| 862 | |
| 863 // Since this only works for 8 bit input, values comes always as x * 257, | |
| 864 // we can safely take msb byte (x << 8 + x) | |
| 865 | |
| 866 for (i=0; i < 256; i++) { | |
| 867 | |
| 868 if (G != NULL) { | |
| 869 | |
| 870 // Get 16-bit representation | |
| 871 Input[0] = cmsEvalToneCurve16(ContextID, G[0], FROM_8_TO_16(i)); | |
| 872 Input[1] = cmsEvalToneCurve16(ContextID, G[1], FROM_8_TO_16(i)); | |
| 873 Input[2] = cmsEvalToneCurve16(ContextID, G[2], FROM_8_TO_16(i)); | |
| 874 } | |
| 875 else { | |
| 876 Input[0] = FROM_8_TO_16(i); | |
| 877 Input[1] = FROM_8_TO_16(i); | |
| 878 Input[2] = FROM_8_TO_16(i); | |
| 879 } | |
| 880 | |
| 881 | |
| 882 // Move to 0..1.0 in fixed domain | |
| 883 v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0])); | |
| 884 v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1])); | |
| 885 v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2])); | |
| 886 | |
| 887 // Store the precalculated table of nodes | |
| 888 p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1)); | |
| 889 p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2)); | |
| 890 p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3)); | |
| 891 | |
| 892 // Store the precalculated table of offsets | |
| 893 p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1); | |
| 894 p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2); | |
| 895 p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3); | |
| 896 } | |
| 897 | |
| 898 p8 ->ContextID = ContextID; | |
| 899 p8 ->p = p; | |
| 900 | |
| 901 return p8; | |
| 902 } | |
| 903 | |
| 904 static | |
| 905 void Prelin8free(cmsContext ContextID, void* ptr) | |
| 906 { | |
| 907 _cmsFree(ContextID, ptr); | |
| 908 } | |
| 909 | |
| 910 static | |
| 911 void* Prelin8dup(cmsContext ContextID, const void* ptr) | |
| 912 { | |
| 913 return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data)); | |
| 914 } | |
| 915 | |
| 916 | |
| 917 | |
| 918 // A optimized interpolation for 8-bit input. | |
| 919 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |
| 920 static CMS_NO_SANITIZE | |
| 921 void PrelinEval8(cmsContext ContextID, | |
| 922 CMSREGISTER const cmsUInt16Number Input[], | |
| 923 CMSREGISTER cmsUInt16Number Output[], | |
| 924 CMSREGISTER const void* D) | |
| 925 { | |
| 926 cmsUInt8Number r, g, b; | |
| 927 cmsS15Fixed16Number rx, ry, rz; | |
| 928 cmsS15Fixed16Number c0, c1, c2, c3, Rest; | |
| 929 int OutChan; | |
| 930 CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; | |
| 931 Prelin8Data* p8 = (Prelin8Data*) D; | |
| 932 CMSREGISTER const cmsInterpParams* p = p8 ->p; | |
| 933 int TotalOut = (int) p -> nOutputs; | |
| 934 const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table; | |
| 935 cmsUNUSED_PARAMETER(ContextID); | |
| 936 | |
| 937 r = (cmsUInt8Number) (Input[0] >> 8); | |
| 938 g = (cmsUInt8Number) (Input[1] >> 8); | |
| 939 b = (cmsUInt8Number) (Input[2] >> 8); | |
| 940 | |
| 941 X0 = (cmsS15Fixed16Number) p8->X0[r]; | |
| 942 Y0 = (cmsS15Fixed16Number) p8->Y0[g]; | |
| 943 Z0 = (cmsS15Fixed16Number) p8->Z0[b]; | |
| 944 | |
| 945 rx = p8 ->rx[r]; | |
| 946 ry = p8 ->ry[g]; | |
| 947 rz = p8 ->rz[b]; | |
| 948 | |
| 949 X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 : p ->opta[2]); | |
| 950 Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 : p ->opta[1]); | |
| 951 Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 : p ->opta[0]); | |
| 952 | |
| 953 | |
| 954 // These are the 6 Tetrahedral | |
| 955 for (OutChan=0; OutChan < TotalOut; OutChan++) { | |
| 956 | |
| 957 c0 = DENS(X0, Y0, Z0); | |
| 958 | |
| 959 if (rx >= ry && ry >= rz) | |
| 960 { | |
| 961 c1 = DENS(X1, Y0, Z0) - c0; | |
| 962 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | |
| 963 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |
| 964 } | |
| 965 else | |
| 966 if (rx >= rz && rz >= ry) | |
| 967 { | |
| 968 c1 = DENS(X1, Y0, Z0) - c0; | |
| 969 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |
| 970 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | |
| 971 } | |
| 972 else | |
| 973 if (rz >= rx && rx >= ry) | |
| 974 { | |
| 975 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | |
| 976 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |
| 977 c3 = DENS(X0, Y0, Z1) - c0; | |
| 978 } | |
| 979 else | |
| 980 if (ry >= rx && rx >= rz) | |
| 981 { | |
| 982 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | |
| 983 c2 = DENS(X0, Y1, Z0) - c0; | |
| 984 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |
| 985 } | |
| 986 else | |
| 987 if (ry >= rz && rz >= rx) | |
| 988 { | |
| 989 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |
| 990 c2 = DENS(X0, Y1, Z0) - c0; | |
| 991 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | |
| 992 } | |
| 993 else | |
| 994 if (rz >= ry && ry >= rx) | |
| 995 { | |
| 996 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |
| 997 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | |
| 998 c3 = DENS(X0, Y0, Z1) - c0; | |
| 999 } | |
| 1000 else { | |
| 1001 c1 = c2 = c3 = 0; | |
| 1002 } | |
| 1003 | |
| 1004 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |
| 1005 Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16)); | |
| 1006 | |
| 1007 } | |
| 1008 } | |
| 1009 | |
| 1010 #undef DENS | |
| 1011 | |
| 1012 | |
| 1013 // Curves that contain wide empty areas are not optimizeable | |
| 1014 static | |
| 1015 cmsBool IsDegenerated(const cmsToneCurve* g) | |
| 1016 { | |
| 1017 cmsUInt32Number i, Zeros = 0, Poles = 0; | |
| 1018 cmsUInt32Number nEntries = g ->nEntries; | |
| 1019 | |
| 1020 for (i=0; i < nEntries; i++) { | |
| 1021 | |
| 1022 if (g ->Table16[i] == 0x0000) Zeros++; | |
| 1023 if (g ->Table16[i] == 0xffff) Poles++; | |
| 1024 } | |
| 1025 | |
| 1026 if (Zeros == 1 && Poles == 1) return FALSE; // For linear tables | |
| 1027 if (Zeros > (nEntries / 20)) return TRUE; // Degenerated, many zeros | |
| 1028 if (Poles > (nEntries / 20)) return TRUE; // Degenerated, many poles | |
| 1029 | |
| 1030 return FALSE; | |
| 1031 } | |
| 1032 | |
| 1033 // -------------------------------------------------------------------------------------------------------------- | |
| 1034 // We need xput over here | |
| 1035 | |
| 1036 static | |
| 1037 cmsBool OptimizeByComputingLinearization(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | |
| 1038 { | |
| 1039 cmsPipeline* OriginalLut; | |
| 1040 cmsUInt32Number nGridPoints; | |
| 1041 cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS]; | |
| 1042 cmsUInt32Number t, i; | |
| 1043 cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS]; | |
| 1044 cmsBool lIsSuitable, lIsLinear; | |
| 1045 cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL; | |
| 1046 cmsStage* OptimizedCLUTmpe; | |
| 1047 cmsColorSpaceSignature ColorSpace, OutputColorSpace; | |
| 1048 cmsStage* OptimizedPrelinMpe; | |
| 1049 cmsToneCurve** OptimizedPrelinCurves; | |
| 1050 _cmsStageCLutData* OptimizedPrelinCLUT; | |
| 1051 | |
| 1052 | |
| 1053 // This is a lossy optimization! does not apply in floating-point cases | |
| 1054 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; | |
| 1055 | |
| 1056 // Only on chunky RGB | |
| 1057 if (T_COLORSPACE(*InputFormat) != PT_RGB) return FALSE; | |
| 1058 if (T_PLANAR(*InputFormat)) return FALSE; | |
| 1059 | |
| 1060 if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE; | |
| 1061 if (T_PLANAR(*OutputFormat)) return FALSE; | |
| 1062 | |
| 1063 // On 16 bits, user has to specify the feature | |
| 1064 if (!_cmsFormatterIs8bit(*InputFormat)) { | |
| 1065 if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE; | |
| 1066 } | |
| 1067 | |
| 1068 OriginalLut = *Lut; | |
| 1069 ColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*InputFormat)); | |
| 1070 OutputColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*OutputFormat)); | |
| 1071 | |
| 1072 // Color space must be specified | |
| 1073 if (ColorSpace == (cmsColorSpaceSignature)0 || | |
| 1074 OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE; | |
| 1075 | |
| 1076 nGridPoints = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, *dwFlags); | |
| 1077 | |
| 1078 // Empty gamma containers | |
| 1079 memset(Trans, 0, sizeof(Trans)); | |
| 1080 memset(TransReverse, 0, sizeof(TransReverse)); | |
| 1081 | |
| 1082 // If the last stage of the original lut are curves, and those curves are | |
| 1083 // degenerated, it is likely the transform is squeezing and clipping | |
| 1084 // the output from previous CLUT. We cannot optimize this case | |
| 1085 { | |
| 1086 cmsStage* last = cmsPipelineGetPtrToLastStage(ContextID, OriginalLut); | |
| 1087 | |
| 1088 if (last == NULL) goto Error; | |
| 1089 if (cmsStageType(ContextID, last) == cmsSigCurveSetElemType) { | |
| 1090 | |
| 1091 _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(ContextID, last); | |
| 1092 for (i = 0; i < Data->nCurves; i++) { | |
| 1093 if (IsDegenerated(Data->TheCurves[i])) | |
| 1094 goto Error; | |
| 1095 } | |
| 1096 } | |
| 1097 } | |
| 1098 | |
| 1099 for (t = 0; t < OriginalLut ->InputChannels; t++) { | |
| 1100 Trans[t] = cmsBuildTabulatedToneCurve16(ContextID, PRELINEARIZATION_POINTS, NULL); | |
| 1101 if (Trans[t] == NULL) goto Error; | |
| 1102 } | |
| 1103 | |
| 1104 // Populate the curves | |
| 1105 for (i=0; i < PRELINEARIZATION_POINTS; i++) { | |
| 1106 | |
| 1107 v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); | |
| 1108 | |
| 1109 // Feed input with a gray ramp | |
| 1110 for (t=0; t < OriginalLut ->InputChannels; t++) | |
| 1111 In[t] = v; | |
| 1112 | |
| 1113 // Evaluate the gray value | |
| 1114 cmsPipelineEvalFloat(ContextID, In, Out, OriginalLut); | |
| 1115 | |
| 1116 // Store result in curve | |
| 1117 for (t=0; t < OriginalLut ->InputChannels; t++) | |
| 1118 { | |
| 1119 if (Trans[t]->Table16 != NULL) | |
| 1120 Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0); | |
| 1121 } | |
| 1122 } | |
| 1123 | |
| 1124 // Slope-limit the obtained curves | |
| 1125 for (t = 0; t < OriginalLut ->InputChannels; t++) | |
| 1126 SlopeLimiting(ContextID, Trans[t]); | |
| 1127 | |
| 1128 // Check for validity. lIsLinear is here for debug purposes | |
| 1129 lIsSuitable = TRUE; | |
| 1130 lIsLinear = TRUE; | |
| 1131 for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) { | |
| 1132 | |
| 1133 // Exclude if already linear | |
| 1134 if (!cmsIsToneCurveLinear(ContextID, Trans[t])) | |
| 1135 lIsLinear = FALSE; | |
| 1136 | |
| 1137 // Exclude if non-monotonic | |
| 1138 if (!cmsIsToneCurveMonotonic(ContextID, Trans[t])) | |
| 1139 lIsSuitable = FALSE; | |
| 1140 | |
| 1141 if (IsDegenerated(Trans[t])) | |
| 1142 lIsSuitable = FALSE; | |
| 1143 } | |
| 1144 | |
| 1145 // If it is not suitable, just quit | |
| 1146 if (!lIsSuitable) goto Error; | |
| 1147 | |
| 1148 // Invert curves if possible | |
| 1149 for (t = 0; t < OriginalLut ->InputChannels; t++) { | |
| 1150 TransReverse[t] = cmsReverseToneCurveEx(ContextID, PRELINEARIZATION_POINTS, Trans[t]); | |
| 1151 if (TransReverse[t] == NULL) goto Error; | |
| 1152 } | |
| 1153 | |
| 1154 // Now inset the reversed curves at the begin of transform | |
| 1155 LutPlusCurves = cmsPipelineDup(ContextID, OriginalLut); | |
| 1156 if (LutPlusCurves == NULL) goto Error; | |
| 1157 | |
| 1158 if (!cmsPipelineInsertStage(ContextID, LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(ContextID, OriginalLut ->InputChannels, TransReverse))) | |
| 1159 goto Error; | |
| 1160 | |
| 1161 // Create the result LUT | |
| 1162 OptimizedLUT = cmsPipelineAlloc(ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels); | |
| 1163 if (OptimizedLUT == NULL) goto Error; | |
| 1164 | |
| 1165 OptimizedPrelinMpe = cmsStageAllocToneCurves(ContextID, OriginalLut ->InputChannels, Trans); | |
| 1166 | |
| 1167 // Create and insert the curves at the beginning | |
| 1168 if (!cmsPipelineInsertStage(ContextID, OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe)) | |
| 1169 goto Error; | |
| 1170 | |
| 1171 // Allocate the CLUT for result | |
| 1172 OptimizedCLUTmpe = cmsStageAllocCLut16bit(ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL); | |
| 1173 | |
| 1174 // Add the CLUT to the destination LUT | |
| 1175 if (!cmsPipelineInsertStage(ContextID, OptimizedLUT, cmsAT_END, OptimizedCLUTmpe)) | |
| 1176 goto Error; | |
| 1177 | |
| 1178 // Resample the LUT | |
| 1179 if (!cmsStageSampleCLut16bit(ContextID, OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error; | |
| 1180 | |
| 1181 // Free resources | |
| 1182 for (t = 0; t < OriginalLut ->InputChannels; t++) { | |
| 1183 | |
| 1184 if (Trans[t]) cmsFreeToneCurve(ContextID, Trans[t]); | |
| 1185 if (TransReverse[t]) cmsFreeToneCurve(ContextID, TransReverse[t]); | |
| 1186 } | |
| 1187 | |
| 1188 cmsPipelineFree(ContextID, LutPlusCurves); | |
| 1189 | |
| 1190 | |
| 1191 OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe); | |
| 1192 OptimizedPrelinCLUT = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data; | |
| 1193 | |
| 1194 // Set the evaluator if 8-bit | |
| 1195 if (_cmsFormatterIs8bit(*InputFormat)) { | |
| 1196 | |
| 1197 Prelin8Data* p8 = PrelinOpt8alloc(ContextID, | |
| 1198 OptimizedPrelinCLUT ->Params, | |
| 1199 OptimizedPrelinCurves); | |
| 1200 if (p8 == NULL) return FALSE; | |
| 1201 | |
| 1202 _cmsPipelineSetOptimizationParameters(ContextID, OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup); | |
| 1203 | |
| 1204 } | |
| 1205 else | |
| 1206 { | |
| 1207 Prelin16Data* p16 = PrelinOpt16alloc(ContextID, | |
| 1208 OptimizedPrelinCLUT ->Params, | |
| 1209 3, OptimizedPrelinCurves, 3, NULL); | |
| 1210 if (p16 == NULL) return FALSE; | |
| 1211 | |
| 1212 _cmsPipelineSetOptimizationParameters(ContextID, OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup); | |
| 1213 | |
| 1214 } | |
| 1215 | |
| 1216 // Don't fix white on absolute colorimetric | |
| 1217 if (Intent == INTENT_ABSOLUTE_COLORIMETRIC) | |
| 1218 *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP; | |
| 1219 | |
| 1220 if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) { | |
| 1221 | |
| 1222 if (!FixWhiteMisalignment(ContextID, OptimizedLUT, ColorSpace, OutputColorSpace)) { | |
| 1223 | |
| 1224 return FALSE; | |
| 1225 } | |
| 1226 } | |
| 1227 | |
| 1228 // And return the obtained LUT | |
| 1229 | |
| 1230 cmsPipelineFree(ContextID, OriginalLut); | |
| 1231 *Lut = OptimizedLUT; | |
| 1232 return TRUE; | |
| 1233 | |
| 1234 Error: | |
| 1235 | |
| 1236 for (t = 0; t < OriginalLut ->InputChannels; t++) { | |
| 1237 | |
| 1238 if (Trans[t]) cmsFreeToneCurve(ContextID, Trans[t]); | |
| 1239 if (TransReverse[t]) cmsFreeToneCurve(ContextID, TransReverse[t]); | |
| 1240 } | |
| 1241 | |
| 1242 if (LutPlusCurves != NULL) cmsPipelineFree(ContextID, LutPlusCurves); | |
| 1243 if (OptimizedLUT != NULL) cmsPipelineFree(ContextID, OptimizedLUT); | |
| 1244 | |
| 1245 return FALSE; | |
| 1246 | |
| 1247 cmsUNUSED_PARAMETER(Intent); | |
| 1248 cmsUNUSED_PARAMETER(lIsLinear); | |
| 1249 } | |
| 1250 | |
| 1251 | |
| 1252 // Curves optimizer ------------------------------------------------------------------------------------------------------------------ | |
| 1253 | |
| 1254 static | |
| 1255 void CurvesFree(cmsContext ContextID, void* ptr) | |
| 1256 { | |
| 1257 Curves16Data* Data = (Curves16Data*) ptr; | |
| 1258 cmsUInt32Number i; | |
| 1259 | |
| 1260 for (i=0; i < Data -> nCurves; i++) { | |
| 1261 | |
| 1262 _cmsFree(ContextID, Data ->Curves[i]); | |
| 1263 } | |
| 1264 | |
| 1265 _cmsFree(ContextID, Data ->Curves); | |
| 1266 _cmsFree(ContextID, ptr); | |
| 1267 } | |
| 1268 | |
| 1269 static | |
| 1270 void* CurvesDup(cmsContext ContextID, const void* ptr) | |
| 1271 { | |
| 1272 Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data)); | |
| 1273 cmsUInt32Number i; | |
| 1274 | |
| 1275 if (Data == NULL) return NULL; | |
| 1276 | |
| 1277 Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*)); | |
| 1278 | |
| 1279 for (i=0; i < Data -> nCurves; i++) { | |
| 1280 Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number)); | |
| 1281 } | |
| 1282 | |
| 1283 return (void*) Data; | |
| 1284 } | |
| 1285 | |
| 1286 // Precomputes tables for 8-bit on input devicelink. | |
| 1287 static | |
| 1288 Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G) | |
| 1289 { | |
| 1290 cmsUInt32Number i, j; | |
| 1291 Curves16Data* c16; | |
| 1292 | |
| 1293 c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data)); | |
| 1294 if (c16 == NULL) return NULL; | |
| 1295 | |
| 1296 c16 ->nCurves = nCurves; | |
| 1297 c16 ->nElements = nElements; | |
| 1298 | |
| 1299 c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*)); | |
| 1300 if (c16->Curves == NULL) { | |
| 1301 _cmsFree(ContextID, c16); | |
| 1302 return NULL; | |
| 1303 } | |
| 1304 | |
| 1305 for (i=0; i < nCurves; i++) { | |
| 1306 | |
| 1307 c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number)); | |
| 1308 | |
| 1309 if (c16->Curves[i] == NULL) { | |
| 1310 | |
| 1311 for (j=0; j < i; j++) { | |
| 1312 _cmsFree(ContextID, c16->Curves[j]); | |
| 1313 } | |
| 1314 _cmsFree(ContextID, c16->Curves); | |
| 1315 _cmsFree(ContextID, c16); | |
| 1316 return NULL; | |
| 1317 } | |
| 1318 | |
| 1319 if (nElements == 256U) { | |
| 1320 | |
| 1321 for (j=0; j < nElements; j++) { | |
| 1322 | |
| 1323 c16 ->Curves[i][j] = cmsEvalToneCurve16(ContextID, G[i], FROM_8_TO_16(j)); | |
| 1324 } | |
| 1325 } | |
| 1326 else { | |
| 1327 | |
| 1328 for (j=0; j < nElements; j++) { | |
| 1329 c16 ->Curves[i][j] = cmsEvalToneCurve16(ContextID, G[i], (cmsUInt16Number) j); | |
| 1330 } | |
| 1331 } | |
| 1332 } | |
| 1333 | |
| 1334 return c16; | |
| 1335 } | |
| 1336 | |
| 1337 static | |
| 1338 void FastEvaluateCurves8(cmsContext ContextID, | |
| 1339 CMSREGISTER const cmsUInt16Number In[], | |
| 1340 CMSREGISTER cmsUInt16Number Out[], | |
| 1341 CMSREGISTER const void* D) | |
| 1342 { | |
| 1343 Curves16Data* Data = (Curves16Data*) D; | |
| 1344 int x; | |
| 1345 cmsUInt32Number i; | |
| 1346 cmsUNUSED_PARAMETER(ContextID); | |
| 1347 | |
| 1348 for (i=0; i < Data ->nCurves; i++) { | |
| 1349 | |
| 1350 x = (In[i] >> 8); | |
| 1351 Out[i] = Data -> Curves[i][x]; | |
| 1352 } | |
| 1353 } | |
| 1354 | |
| 1355 | |
| 1356 static | |
| 1357 void FastEvaluateCurves16(cmsContext ContextID, | |
| 1358 CMSREGISTER const cmsUInt16Number In[], | |
| 1359 CMSREGISTER cmsUInt16Number Out[], | |
| 1360 CMSREGISTER const void* D) | |
| 1361 { | |
| 1362 Curves16Data* Data = (Curves16Data*) D; | |
| 1363 cmsUInt32Number i; | |
| 1364 cmsUNUSED_PARAMETER(ContextID); | |
| 1365 | |
| 1366 for (i=0; i < Data ->nCurves; i++) { | |
| 1367 Out[i] = Data -> Curves[i][In[i]]; | |
| 1368 } | |
| 1369 } | |
| 1370 | |
| 1371 | |
| 1372 static | |
| 1373 void FastIdentity16(cmsContext ContextID, | |
| 1374 CMSREGISTER const cmsUInt16Number In[], | |
| 1375 CMSREGISTER cmsUInt16Number Out[], | |
| 1376 CMSREGISTER const void* D) | |
| 1377 { | |
| 1378 cmsPipeline* Lut = (cmsPipeline*) D; | |
| 1379 cmsUInt32Number i; | |
| 1380 cmsUNUSED_PARAMETER(ContextID); | |
| 1381 | |
| 1382 for (i=0; i < Lut ->InputChannels; i++) { | |
| 1383 Out[i] = In[i]; | |
| 1384 } | |
| 1385 } | |
| 1386 | |
| 1387 | |
| 1388 // If the target LUT holds only curves, the optimization procedure is to join all those | |
| 1389 // curves together. That only works on curves and does not work on matrices. | |
| 1390 static | |
| 1391 cmsBool OptimizeByJoiningCurves(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | |
| 1392 { | |
| 1393 cmsToneCurve** GammaTables = NULL; | |
| 1394 cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS]; | |
| 1395 cmsUInt32Number i, j; | |
| 1396 cmsPipeline* Src = *Lut; | |
| 1397 cmsPipeline* Dest = NULL; | |
| 1398 cmsStage* mpe; | |
| 1399 cmsStage* ObtainedCurves = NULL; | |
| 1400 | |
| 1401 | |
| 1402 // This is a lossy optimization! does not apply in floating-point cases | |
| 1403 if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE; | |
| 1404 | |
| 1405 // Only curves in this LUT? | |
| 1406 for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, Src); | |
| 1407 mpe != NULL; | |
| 1408 mpe = cmsStageNext(ContextID, mpe)) { | |
| 1409 if (cmsStageType(ContextID, mpe) != cmsSigCurveSetElemType) return FALSE; | |
| 1410 } | |
| 1411 | |
| 1412 // Allocate an empty LUT | |
| 1413 Dest = cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels); | |
| 1414 if (Dest == NULL) return FALSE; | |
| 1415 | |
| 1416 // Create target curves | |
| 1417 GammaTables = (cmsToneCurve**) _cmsCalloc(ContextID, Src ->InputChannels, sizeof(cmsToneCurve*)); | |
| 1418 if (GammaTables == NULL) goto Error; | |
| 1419 | |
| 1420 for (i=0; i < Src ->InputChannels; i++) { | |
| 1421 GammaTables[i] = cmsBuildTabulatedToneCurve16(ContextID, PRELINEARIZATION_POINTS, NULL); | |
| 1422 if (GammaTables[i] == NULL) goto Error; | |
| 1423 } | |
| 1424 | |
| 1425 // Compute 16 bit result by using floating point | |
| 1426 for (i=0; i < PRELINEARIZATION_POINTS; i++) { | |
| 1427 | |
| 1428 for (j=0; j < Src ->InputChannels; j++) | |
| 1429 InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1)); | |
| 1430 | |
| 1431 cmsPipelineEvalFloat(ContextID, InFloat, OutFloat, Src); | |
| 1432 | |
| 1433 for (j=0; j < Src ->InputChannels; j++) | |
| 1434 GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0); | |
| 1435 } | |
| 1436 | |
| 1437 ObtainedCurves = cmsStageAllocToneCurves(ContextID, Src ->InputChannels, GammaTables); | |
| 1438 if (ObtainedCurves == NULL) goto Error; | |
| 1439 | |
| 1440 for (i=0; i < Src ->InputChannels; i++) { | |
| 1441 cmsFreeToneCurve(ContextID, GammaTables[i]); | |
| 1442 GammaTables[i] = NULL; | |
| 1443 } | |
| 1444 | |
| 1445 if (GammaTables != NULL) { | |
| 1446 _cmsFree(ContextID, GammaTables); | |
| 1447 GammaTables = NULL; | |
| 1448 } | |
| 1449 | |
| 1450 // Maybe the curves are linear at the end | |
| 1451 if (!AllCurvesAreLinear(ContextID, ObtainedCurves)) { | |
| 1452 _cmsStageToneCurvesData* Data; | |
| 1453 | |
| 1454 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, ObtainedCurves)) | |
| 1455 goto Error; | |
| 1456 Data = (_cmsStageToneCurvesData*) cmsStageData(ContextID, ObtainedCurves); | |
| 1457 ObtainedCurves = NULL; | |
| 1458 | |
| 1459 // If the curves are to be applied in 8 bits, we can save memory | |
| 1460 if (_cmsFormatterIs8bit(*InputFormat)) { | |
| 1461 Curves16Data* c16 = CurvesAlloc(ContextID, Data ->nCurves, 256, Data ->TheCurves); | |
| 1462 | |
| 1463 if (c16 == NULL) goto Error; | |
| 1464 *dwFlags |= cmsFLAGS_NOCACHE; | |
| 1465 _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup); | |
| 1466 | |
| 1467 } | |
| 1468 else { | |
| 1469 Curves16Data* c16 = CurvesAlloc(ContextID, Data ->nCurves, 65536, Data ->TheCurves); | |
| 1470 | |
| 1471 if (c16 == NULL) goto Error; | |
| 1472 *dwFlags |= cmsFLAGS_NOCACHE; | |
| 1473 _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup); | |
| 1474 } | |
| 1475 } | |
| 1476 else { | |
| 1477 | |
| 1478 // LUT optimizes to nothing. Set the identity LUT | |
| 1479 cmsStageFree(ContextID, ObtainedCurves); | |
| 1480 ObtainedCurves = NULL; | |
| 1481 | |
| 1482 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, cmsStageAllocIdentity(ContextID, Src ->InputChannels))) | |
| 1483 goto Error; | |
| 1484 | |
| 1485 *dwFlags |= cmsFLAGS_NOCACHE; | |
| 1486 _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastIdentity16, (void*) Dest, NULL, NULL); | |
| 1487 } | |
| 1488 | |
| 1489 // We are done. | |
| 1490 cmsPipelineFree(ContextID, Src); | |
| 1491 *Lut = Dest; | |
| 1492 return TRUE; | |
| 1493 | |
| 1494 Error: | |
| 1495 | |
| 1496 if (ObtainedCurves != NULL) cmsStageFree(ContextID, ObtainedCurves); | |
| 1497 if (GammaTables != NULL) { | |
| 1498 for (i=0; i < Src ->InputChannels; i++) { | |
| 1499 if (GammaTables[i] != NULL) cmsFreeToneCurve(ContextID, GammaTables[i]); | |
| 1500 } | |
| 1501 | |
| 1502 _cmsFree(ContextID, GammaTables); | |
| 1503 } | |
| 1504 | |
| 1505 if (Dest != NULL) cmsPipelineFree(ContextID, Dest); | |
| 1506 return FALSE; | |
| 1507 | |
| 1508 cmsUNUSED_PARAMETER(Intent); | |
| 1509 cmsUNUSED_PARAMETER(InputFormat); | |
| 1510 cmsUNUSED_PARAMETER(OutputFormat); | |
| 1511 cmsUNUSED_PARAMETER(dwFlags); | |
| 1512 } | |
| 1513 | |
| 1514 // ------------------------------------------------------------------------------------------------------------------------------------- | |
| 1515 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles | |
| 1516 | |
| 1517 | |
| 1518 static | |
| 1519 void FreeMatShaper(cmsContext ContextID, void* Data) | |
| 1520 { | |
| 1521 if (Data != NULL) _cmsFree(ContextID, Data); | |
| 1522 } | |
| 1523 | |
| 1524 static | |
| 1525 void* DupMatShaper(cmsContext ContextID, const void* Data) | |
| 1526 { | |
| 1527 return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data)); | |
| 1528 } | |
| 1529 | |
| 1530 | |
| 1531 // A fast matrix-shaper evaluator for 8 bits. This is a bit tricky since I'm using 1.14 signed fixed point | |
| 1532 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits, | |
| 1533 // in total about 50K, and the performance boost is huge! | |
| 1534 static CMS_NO_SANITIZE | |
| 1535 void MatShaperEval16(cmsContext ContextID, | |
| 1536 CMSREGISTER const cmsUInt16Number In[], | |
| 1537 CMSREGISTER cmsUInt16Number Out[], | |
| 1538 CMSREGISTER const void* D) | |
| 1539 { | |
| 1540 MatShaper8Data* p = (MatShaper8Data*) D; | |
| 1541 cmsS1Fixed14Number l1, l2, l3, r, g, b; | |
| 1542 cmsUInt32Number ri, gi, bi; | |
| 1543 cmsUNUSED_PARAMETER(ContextID); | |
| 1544 | |
| 1545 // In this case (and only in this case!) we can use this simplification since | |
| 1546 // In[] is assured to come from a 8 bit number. (a << 8 | a) | |
| 1547 ri = In[0] & 0xFFU; | |
| 1548 gi = In[1] & 0xFFU; | |
| 1549 bi = In[2] & 0xFFU; | |
| 1550 | |
| 1551 // Across first shaper, which also converts to 1.14 fixed point | |
| 1552 r = p->Shaper1R[ri]; | |
| 1553 g = p->Shaper1G[gi]; | |
| 1554 b = p->Shaper1B[bi]; | |
| 1555 | |
| 1556 // Evaluate the matrix in 1.14 fixed point | |
| 1557 l1 = (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14; | |
| 1558 l2 = (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14; | |
| 1559 l3 = (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14; | |
| 1560 | |
| 1561 // Now we have to clip to 0..1.0 range | |
| 1562 ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1); | |
| 1563 gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2); | |
| 1564 bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3); | |
| 1565 | |
| 1566 // And across second shaper, | |
| 1567 Out[0] = p->Shaper2R[ri]; | |
| 1568 Out[1] = p->Shaper2G[gi]; | |
| 1569 Out[2] = p->Shaper2B[bi]; | |
| 1570 | |
| 1571 } | |
| 1572 | |
| 1573 // This table converts from 8 bits to 1.14 after applying the curve | |
| 1574 static | |
| 1575 void FillFirstShaper(cmsContext ContextID, cmsS1Fixed14Number* Table, cmsToneCurve* Curve) | |
| 1576 { | |
| 1577 int i; | |
| 1578 cmsFloat32Number R, y; | |
| 1579 | |
| 1580 for (i=0; i < 256; i++) { | |
| 1581 | |
| 1582 R = (cmsFloat32Number) (i / 255.0); | |
| 1583 y = cmsEvalToneCurveFloat(ContextID, Curve, R); | |
| 1584 | |
| 1585 if (y < 131072.0) | |
| 1586 Table[i] = DOUBLE_TO_1FIXED14(y); | |
| 1587 else | |
| 1588 Table[i] = 0x7fffffff; | |
| 1589 } | |
| 1590 } | |
| 1591 | |
| 1592 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve | |
| 1593 static | |
| 1594 void FillSecondShaper(cmsContext ContextID, cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput) | |
| 1595 { | |
| 1596 int i; | |
| 1597 cmsFloat32Number R, Val; | |
| 1598 | |
| 1599 for (i=0; i < 16385; i++) { | |
| 1600 | |
| 1601 R = (cmsFloat32Number) (i / 16384.0); | |
| 1602 Val = cmsEvalToneCurveFloat(ContextID, Curve, R); // Val comes 0..1.0 | |
| 1603 | |
| 1604 if (Val < 0) | |
| 1605 Val = 0; | |
| 1606 | |
| 1607 if (Val > 1.0) | |
| 1608 Val = 1.0; | |
| 1609 | |
| 1610 if (Is8BitsOutput) { | |
| 1611 | |
| 1612 // If 8 bits output, we can optimize further by computing the / 257 part. | |
| 1613 // first we compute the resulting byte and then we store the byte times | |
| 1614 // 257. This quantization allows to round very quick by doing a >> 8, but | |
| 1615 // since the low byte is always equal to msb, we can do a & 0xff and this works! | |
| 1616 cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0); | |
| 1617 cmsUInt8Number b = FROM_16_TO_8(w); | |
| 1618 | |
| 1619 Table[i] = FROM_8_TO_16(b); | |
| 1620 } | |
| 1621 else Table[i] = _cmsQuickSaturateWord(Val * 65535.0); | |
| 1622 } | |
| 1623 } | |
| 1624 | |
| 1625 // Compute the matrix-shaper structure | |
| 1626 static | |
| 1627 cmsBool SetMatShaper(cmsContext ContextID, cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat) | |
| 1628 { | |
| 1629 MatShaper8Data* p; | |
| 1630 int i, j; | |
| 1631 cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat); | |
| 1632 | |
| 1633 // Allocate a big chuck of memory to store precomputed tables | |
| 1634 p = (MatShaper8Data*) _cmsMalloc(ContextID, sizeof(MatShaper8Data)); | |
| 1635 if (p == NULL) return FALSE; | |
| 1636 | |
| 1637 // Precompute tables | |
| 1638 FillFirstShaper(ContextID, p ->Shaper1R, Curve1[0]); | |
| 1639 FillFirstShaper(ContextID, p ->Shaper1G, Curve1[1]); | |
| 1640 FillFirstShaper(ContextID, p ->Shaper1B, Curve1[2]); | |
| 1641 | |
| 1642 FillSecondShaper(ContextID, p ->Shaper2R, Curve2[0], Is8Bits); | |
| 1643 FillSecondShaper(ContextID, p ->Shaper2G, Curve2[1], Is8Bits); | |
| 1644 FillSecondShaper(ContextID, p ->Shaper2B, Curve2[2], Is8Bits); | |
| 1645 | |
| 1646 // Convert matrix to nFixed14. Note that those values may take more than 16 bits | |
| 1647 for (i=0; i < 3; i++) { | |
| 1648 for (j=0; j < 3; j++) { | |
| 1649 p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]); | |
| 1650 } | |
| 1651 } | |
| 1652 | |
| 1653 for (i=0; i < 3; i++) { | |
| 1654 | |
| 1655 if (Off == NULL) { | |
| 1656 p ->Off[i] = 0; | |
| 1657 } | |
| 1658 else { | |
| 1659 p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]); | |
| 1660 } | |
| 1661 } | |
| 1662 | |
| 1663 // Mark as optimized for faster formatter | |
| 1664 if (Is8Bits) | |
| 1665 *OutputFormat |= OPTIMIZED_SH(1); | |
| 1666 | |
| 1667 // Fill function pointers | |
| 1668 _cmsPipelineSetOptimizationParameters(ContextID, Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper); | |
| 1669 return TRUE; | |
| 1670 } | |
| 1671 | |
| 1672 // 8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast! | |
| 1673 static | |
| 1674 cmsBool OptimizeMatrixShaper(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags) | |
| 1675 { | |
| 1676 cmsStage* Curve1, *Curve2; | |
| 1677 cmsStage* Matrix1, *Matrix2; | |
| 1678 cmsMAT3 res; | |
| 1679 cmsBool IdentityMat; | |
| 1680 cmsPipeline* Dest, *Src; | |
| 1681 cmsFloat64Number* Offset; | |
| 1682 | |
| 1683 // Only works on RGB to RGB | |
| 1684 if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE; | |
| 1685 | |
| 1686 // Only works on 8 bit input | |
| 1687 if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE; | |
| 1688 | |
| 1689 // Does not work in the presence of premultiplied alpha, as that causes the values | |
| 1690 // passed in to not actually be '8 bit' in the way that we rely on. | |
| 1691 if (*dwFlags & cmsFLAGS_PREMULT) return FALSE; | |
| 1692 | |
| 1693 // Seems suitable, proceed | |
| 1694 Src = *Lut; | |
| 1695 | |
| 1696 // Check for: | |
| 1697 // | |
| 1698 // shaper-matrix-matrix-shaper | |
| 1699 // shaper-matrix-shaper | |
| 1700 // | |
| 1701 // Both of those constructs are possible (first because abs. colorimetric). | |
| 1702 // additionally, In the first case, the input matrix offset should be zero. | |
| 1703 | |
| 1704 IdentityMat = FALSE; | |
| 1705 if (cmsPipelineCheckAndRetreiveStages(ContextID, Src, 4, | |
| 1706 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, | |
| 1707 &Curve1, &Matrix1, &Matrix2, &Curve2)) { | |
| 1708 | |
| 1709 // Get both matrices | |
| 1710 _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix1); | |
| 1711 _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix2); | |
| 1712 | |
| 1713 // Only RGB to RGB | |
| 1714 if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3 || | |
| 1715 Matrix2->InputChannels != 3 || Matrix2->OutputChannels != 3) return FALSE; | |
| 1716 | |
| 1717 // Input offset should be zero | |
| 1718 if (Data1->Offset != NULL) return FALSE; | |
| 1719 | |
| 1720 // Multiply both matrices to get the result | |
| 1721 _cmsMAT3per(ContextID, &res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double); | |
| 1722 | |
| 1723 // Only 2nd matrix has offset, or it is zero | |
| 1724 Offset = Data2->Offset; | |
| 1725 | |
| 1726 // Now the result is in res + Data2 -> Offset. Maybe is a plain identity? | |
| 1727 if (_cmsMAT3isIdentity(ContextID, &res) && Offset == NULL) { | |
| 1728 | |
| 1729 // We can get rid of full matrix | |
| 1730 IdentityMat = TRUE; | |
| 1731 } | |
| 1732 | |
| 1733 } | |
| 1734 else { | |
| 1735 | |
| 1736 if (cmsPipelineCheckAndRetreiveStages(ContextID, Src, 3, | |
| 1737 cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType, | |
| 1738 &Curve1, &Matrix1, &Curve2)) { | |
| 1739 | |
| 1740 _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix1); | |
| 1741 | |
| 1742 if (Matrix1->InputChannels != 3 || Matrix1->OutputChannels != 3) return FALSE; | |
| 1743 | |
| 1744 // Copy the matrix to our result | |
| 1745 memcpy(&res, Data->Double, sizeof(res)); | |
| 1746 | |
| 1747 // Preserve the Odffset (may be NULL as a zero offset) | |
| 1748 Offset = Data->Offset; | |
| 1749 | |
| 1750 if (_cmsMAT3isIdentity(ContextID, &res) && Offset == NULL) { | |
| 1751 | |
| 1752 // We can get rid of full matrix | |
| 1753 IdentityMat = TRUE; | |
| 1754 } | |
| 1755 } | |
| 1756 else | |
| 1757 return FALSE; // Not optimizeable this time | |
| 1758 | |
| 1759 } | |
| 1760 | |
| 1761 // Allocate an empty LUT | |
| 1762 Dest = cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels); | |
| 1763 if (!Dest) return FALSE; | |
| 1764 | |
| 1765 // Assamble the new LUT | |
| 1766 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, cmsStageDup(ContextID, Curve1))) | |
| 1767 goto Error; | |
| 1768 | |
| 1769 if (!IdentityMat) { | |
| 1770 | |
| 1771 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, cmsStageAllocMatrix(ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset))) | |
| 1772 goto Error; | |
| 1773 } | |
| 1774 | |
| 1775 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, cmsStageDup(ContextID, Curve2))) | |
| 1776 goto Error; | |
| 1777 | |
| 1778 // If identity on matrix, we can further optimize the curves, so call the join curves routine | |
| 1779 if (IdentityMat) { | |
| 1780 | |
| 1781 OptimizeByJoiningCurves(ContextID, &Dest, Intent, InputFormat, OutputFormat, dwFlags); | |
| 1782 } | |
| 1783 else { | |
| 1784 _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(ContextID, Curve1); | |
| 1785 _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(ContextID, Curve2); | |
| 1786 | |
| 1787 // In this particular optimization, cache does not help as it takes more time to deal with | |
| 1788 // the cache than with the pixel handling | |
| 1789 *dwFlags |= cmsFLAGS_NOCACHE; | |
| 1790 | |
| 1791 // Setup the optimizarion routines | |
| 1792 SetMatShaper(ContextID, Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat); | |
| 1793 } | |
| 1794 | |
| 1795 cmsPipelineFree(ContextID, Src); | |
| 1796 *Lut = Dest; | |
| 1797 return TRUE; | |
| 1798 Error: | |
| 1799 // Leave Src unchanged | |
| 1800 cmsPipelineFree(ContextID, Dest); | |
| 1801 return FALSE; | |
| 1802 } | |
| 1803 | |
| 1804 | |
| 1805 // ------------------------------------------------------------------------------------------------------------------------------------- | |
| 1806 // Optimization plug-ins | |
| 1807 | |
| 1808 // List of optimizations | |
| 1809 typedef struct _cmsOptimizationCollection_st { | |
| 1810 | |
| 1811 _cmsOPToptimizeFn OptimizePtr; | |
| 1812 | |
| 1813 struct _cmsOptimizationCollection_st *Next; | |
| 1814 | |
| 1815 } _cmsOptimizationCollection; | |
| 1816 | |
| 1817 | |
| 1818 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling | |
| 1819 static _cmsOptimizationCollection DefaultOptimization[] = { | |
| 1820 | |
| 1821 { OptimizeByJoiningCurves, &DefaultOptimization[1] }, | |
| 1822 { OptimizeMatrixShaper, &DefaultOptimization[2] }, | |
| 1823 { OptimizeByComputingLinearization, &DefaultOptimization[3] }, | |
| 1824 { OptimizeByResampling, NULL } | |
| 1825 }; | |
| 1826 | |
| 1827 // The linked list head | |
| 1828 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL }; | |
| 1829 | |
| 1830 | |
| 1831 // Duplicates the zone of memory used by the plug-in in the new context | |
| 1832 static | |
| 1833 void DupPluginOptimizationList(struct _cmsContext_struct* ctx, | |
| 1834 const struct _cmsContext_struct* src) | |
| 1835 { | |
| 1836 _cmsOptimizationPluginChunkType newHead = { NULL }; | |
| 1837 _cmsOptimizationCollection* entry; | |
| 1838 _cmsOptimizationCollection* Anterior = NULL; | |
| 1839 _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin]; | |
| 1840 | |
| 1841 _cmsAssert(ctx != NULL); | |
| 1842 _cmsAssert(head != NULL); | |
| 1843 | |
| 1844 // Walk the list copying all nodes | |
| 1845 for (entry = head->OptimizationCollection; | |
| 1846 entry != NULL; | |
| 1847 entry = entry ->Next) { | |
| 1848 | |
| 1849 _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection)); | |
| 1850 | |
| 1851 if (newEntry == NULL) | |
| 1852 return; | |
| 1853 | |
| 1854 // We want to keep the linked list order, so this is a little bit tricky | |
| 1855 newEntry -> Next = NULL; | |
| 1856 if (Anterior) | |
| 1857 Anterior -> Next = newEntry; | |
| 1858 | |
| 1859 Anterior = newEntry; | |
| 1860 | |
| 1861 if (newHead.OptimizationCollection == NULL) | |
| 1862 newHead.OptimizationCollection = newEntry; | |
| 1863 } | |
| 1864 | |
| 1865 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType)); | |
| 1866 } | |
| 1867 | |
| 1868 void _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx, | |
| 1869 const struct _cmsContext_struct* src) | |
| 1870 { | |
| 1871 if (src != NULL) { | |
| 1872 | |
| 1873 // Copy all linked list | |
| 1874 DupPluginOptimizationList(ctx, src); | |
| 1875 } | |
| 1876 else { | |
| 1877 static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL }; | |
| 1878 ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType)); | |
| 1879 } | |
| 1880 } | |
| 1881 | |
| 1882 | |
| 1883 // Register new ways to optimize | |
| 1884 cmsBool _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data) | |
| 1885 { | |
| 1886 cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data; | |
| 1887 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); | |
| 1888 _cmsOptimizationCollection* fl; | |
| 1889 | |
| 1890 if (Data == NULL) { | |
| 1891 | |
| 1892 ctx->OptimizationCollection = NULL; | |
| 1893 return TRUE; | |
| 1894 } | |
| 1895 | |
| 1896 // Optimizer callback is required | |
| 1897 if (Plugin ->OptimizePtr == NULL) return FALSE; | |
| 1898 | |
| 1899 fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection)); | |
| 1900 if (fl == NULL) return FALSE; | |
| 1901 | |
| 1902 // Copy the parameters | |
| 1903 fl ->OptimizePtr = Plugin ->OptimizePtr; | |
| 1904 | |
| 1905 // Keep linked list | |
| 1906 fl ->Next = ctx->OptimizationCollection; | |
| 1907 | |
| 1908 // Set the head | |
| 1909 ctx ->OptimizationCollection = fl; | |
| 1910 | |
| 1911 // All is ok | |
| 1912 return TRUE; | |
| 1913 } | |
| 1914 | |
| 1915 // The entry point for LUT optimization | |
| 1916 cmsBool CMSEXPORT _cmsOptimizePipeline(cmsContext ContextID, | |
| 1917 cmsPipeline** PtrLut, | |
| 1918 cmsUInt32Number Intent, | |
| 1919 cmsUInt32Number* InputFormat, | |
| 1920 cmsUInt32Number* OutputFormat, | |
| 1921 cmsUInt32Number* dwFlags) | |
| 1922 { | |
| 1923 _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin); | |
| 1924 _cmsOptimizationCollection* Opts; | |
| 1925 cmsBool AnySuccess = FALSE; | |
| 1926 cmsStage* mpe; | |
| 1927 | |
| 1928 // A CLUT is being asked, so force this specific optimization | |
| 1929 if (*dwFlags & cmsFLAGS_FORCE_CLUT) { | |
| 1930 | |
| 1931 PreOptimize(ContextID, *PtrLut); | |
| 1932 return OptimizeByResampling(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags); | |
| 1933 } | |
| 1934 | |
| 1935 // Anything to optimize? | |
| 1936 if ((*PtrLut) ->Elements == NULL) { | |
| 1937 _cmsPipelineSetOptimizationParameters(ContextID, *PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); | |
| 1938 return TRUE; | |
| 1939 } | |
| 1940 | |
| 1941 // Named color pipelines cannot be optimized | |
| 1942 for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, *PtrLut); | |
| 1943 mpe != NULL; | |
| 1944 mpe = cmsStageNext(ContextID, mpe)) { | |
| 1945 if (cmsStageType(ContextID, mpe) == cmsSigNamedColorElemType) return FALSE; | |
| 1946 } | |
| 1947 | |
| 1948 // Try to get rid of identities and trivial conversions. | |
| 1949 AnySuccess = PreOptimize(ContextID, *PtrLut); | |
| 1950 | |
| 1951 // After removal do we end with an identity? | |
| 1952 if ((*PtrLut) ->Elements == NULL) { | |
| 1953 _cmsPipelineSetOptimizationParameters(ContextID, *PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL); | |
| 1954 return TRUE; | |
| 1955 } | |
| 1956 | |
| 1957 // Do not optimize, keep all precision | |
| 1958 if (*dwFlags & cmsFLAGS_NOOPTIMIZE) | |
| 1959 return FALSE; | |
| 1960 | |
| 1961 // Try plug-in optimizations | |
| 1962 for (Opts = ctx->OptimizationCollection; | |
| 1963 Opts != NULL; | |
| 1964 Opts = Opts ->Next) { | |
| 1965 | |
| 1966 // If one schema succeeded, we are done | |
| 1967 if (Opts ->OptimizePtr(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { | |
| 1968 | |
| 1969 return TRUE; // Optimized! | |
| 1970 } | |
| 1971 } | |
| 1972 | |
| 1973 // Try built-in optimizations | |
| 1974 for (Opts = DefaultOptimization; | |
| 1975 Opts != NULL; | |
| 1976 Opts = Opts ->Next) { | |
| 1977 | |
| 1978 if (Opts ->OptimizePtr(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) { | |
| 1979 | |
| 1980 return TRUE; | |
| 1981 } | |
| 1982 } | |
| 1983 | |
| 1984 // Only simple optimizations succeeded | |
| 1985 return AnySuccess; | |
| 1986 } | |
| 1987 | |
| 1988 cmsBool _cmsLutIsIdentity(cmsPipeline *PtrLut) | |
| 1989 { | |
| 1990 return !PtrLut || PtrLut->Eval16Fn == FastIdentity16; | |
| 1991 } |
