Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/lcms2/src/cmsmtrx.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 //--------------------------------------------------------------------------------- | |
| 2 // | |
| 3 // Little Color Management System | |
| 4 // Copyright (c) 1998-2023 Marti Maria Saguer | |
| 5 // | |
| 6 // Permission is hereby granted, free of charge, to any person obtaining | |
| 7 // a copy of this software and associated documentation files (the "Software"), | |
| 8 // to deal in the Software without restriction, including without limitation | |
| 9 // the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| 10 // and/or sell copies of the Software, and to permit persons to whom the Software | |
| 11 // is furnished to do so, subject to the following conditions: | |
| 12 // | |
| 13 // The above copyright notice and this permission notice shall be included in | |
| 14 // all copies or substantial portions of the Software. | |
| 15 // | |
| 16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
| 17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |
| 18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
| 19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |
| 20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
| 21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
| 22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| 23 // | |
| 24 //--------------------------------------------------------------------------------- | |
| 25 // | |
| 26 | |
| 27 #include "lcms2_internal.h" | |
| 28 | |
| 29 | |
| 30 #define DSWAP(x, y) {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;} | |
| 31 | |
| 32 | |
| 33 // Initiate a vector | |
| 34 void CMSEXPORT _cmsVEC3init(cmsContext ContextID, cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z) | |
| 35 { | |
| 36 cmsUNUSED_PARAMETER(ContextID); | |
| 37 r -> n[VX] = x; | |
| 38 r -> n[VY] = y; | |
| 39 r -> n[VZ] = z; | |
| 40 } | |
| 41 | |
| 42 // Vector subtraction | |
| 43 void CMSEXPORT _cmsVEC3minus(cmsContext ContextID, cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b) | |
| 44 { | |
| 45 cmsUNUSED_PARAMETER(ContextID); | |
| 46 r -> n[VX] = a -> n[VX] - b -> n[VX]; | |
| 47 r -> n[VY] = a -> n[VY] - b -> n[VY]; | |
| 48 r -> n[VZ] = a -> n[VZ] - b -> n[VZ]; | |
| 49 } | |
| 50 | |
| 51 // Vector cross product | |
| 52 void CMSEXPORT _cmsVEC3cross(cmsContext ContextID, cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v) | |
| 53 { | |
| 54 cmsUNUSED_PARAMETER(ContextID); | |
| 55 r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ]; | |
| 56 r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX]; | |
| 57 r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY]; | |
| 58 } | |
| 59 | |
| 60 // Vector dot product | |
| 61 cmsFloat64Number CMSEXPORT _cmsVEC3dot(cmsContext ContextID, const cmsVEC3* u, const cmsVEC3* v) | |
| 62 { | |
| 63 cmsUNUSED_PARAMETER(ContextID); | |
| 64 return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ]; | |
| 65 } | |
| 66 | |
| 67 // Euclidean length | |
| 68 cmsFloat64Number CMSEXPORT _cmsVEC3length(cmsContext ContextID, const cmsVEC3* a) | |
| 69 { | |
| 70 cmsUNUSED_PARAMETER(ContextID); | |
| 71 return sqrt(a ->n[VX] * a ->n[VX] + | |
| 72 a ->n[VY] * a ->n[VY] + | |
| 73 a ->n[VZ] * a ->n[VZ]); | |
| 74 } | |
| 75 | |
| 76 // Euclidean distance | |
| 77 cmsFloat64Number CMSEXPORT _cmsVEC3distance(cmsContext ContextID, const cmsVEC3* a, const cmsVEC3* b) | |
| 78 { | |
| 79 cmsFloat64Number d1 = a ->n[VX] - b ->n[VX]; | |
| 80 cmsFloat64Number d2 = a ->n[VY] - b ->n[VY]; | |
| 81 cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ]; | |
| 82 | |
| 83 cmsUNUSED_PARAMETER(ContextID); | |
| 84 | |
| 85 return sqrt(d1*d1 + d2*d2 + d3*d3); | |
| 86 } | |
| 87 | |
| 88 | |
| 89 | |
| 90 // 3x3 Identity | |
| 91 void CMSEXPORT _cmsMAT3identity(cmsContext ContextID, cmsMAT3* a) | |
| 92 { | |
| 93 _cmsVEC3init(ContextID, &a-> v[0], 1.0, 0.0, 0.0); | |
| 94 _cmsVEC3init(ContextID, &a-> v[1], 0.0, 1.0, 0.0); | |
| 95 _cmsVEC3init(ContextID, &a-> v[2], 0.0, 0.0, 1.0); | |
| 96 } | |
| 97 | |
| 98 static | |
| 99 cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b) | |
| 100 { | |
| 101 return fabs(b - a) < (1.0 / 65535.0); | |
| 102 } | |
| 103 | |
| 104 | |
| 105 cmsBool CMSEXPORT _cmsMAT3isIdentity(cmsContext ContextID, const cmsMAT3* a) | |
| 106 { | |
| 107 cmsMAT3 Identity; | |
| 108 int i, j; | |
| 109 | |
| 110 _cmsMAT3identity(ContextID, &Identity); | |
| 111 | |
| 112 for (i=0; i < 3; i++) | |
| 113 for (j=0; j < 3; j++) | |
| 114 if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE; | |
| 115 | |
| 116 return TRUE; | |
| 117 } | |
| 118 | |
| 119 | |
| 120 // Multiply two matrices | |
| 121 void CMSEXPORT _cmsMAT3per(cmsContext ContextID, cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b) | |
| 122 { | |
| 123 #define ROWCOL(i, j) \ | |
| 124 a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j] | |
| 125 | |
| 126 _cmsVEC3init(ContextID, &r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)); | |
| 127 _cmsVEC3init(ContextID, &r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)); | |
| 128 _cmsVEC3init(ContextID, &r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)); | |
| 129 | |
| 130 #undef ROWCOL //(i, j) | |
| 131 } | |
| 132 | |
| 133 | |
| 134 | |
| 135 // Inverse of a matrix b = a^(-1) | |
| 136 cmsBool CMSEXPORT _cmsMAT3inverse(cmsContext ContextID, const cmsMAT3* a, cmsMAT3* b) | |
| 137 { | |
| 138 cmsFloat64Number det, c0, c1, c2; | |
| 139 cmsUNUSED_PARAMETER(ContextID); | |
| 140 | |
| 141 c0 = a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1]; | |
| 142 c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0]; | |
| 143 c2 = a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0]; | |
| 144 | |
| 145 det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2; | |
| 146 | |
| 147 if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE; // singular matrix; can't invert | |
| 148 | |
| 149 b -> v[0].n[0] = c0/det; | |
| 150 b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det; | |
| 151 b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det; | |
| 152 b -> v[1].n[0] = c1/det; | |
| 153 b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det; | |
| 154 b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det; | |
| 155 b -> v[2].n[0] = c2/det; | |
| 156 b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det; | |
| 157 b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det; | |
| 158 | |
| 159 return TRUE; | |
| 160 } | |
| 161 | |
| 162 | |
| 163 // Solve a system in the form Ax = b | |
| 164 cmsBool CMSEXPORT _cmsMAT3solve(cmsContext ContextID, cmsVEC3* x, cmsMAT3* a, cmsVEC3* b) | |
| 165 { | |
| 166 cmsMAT3 m, a_1; | |
| 167 | |
| 168 memmove(&m, a, sizeof(cmsMAT3)); | |
| 169 | |
| 170 if (!_cmsMAT3inverse(ContextID, &m, &a_1)) return FALSE; // Singular matrix | |
| 171 | |
| 172 _cmsMAT3eval(ContextID, x, &a_1, b); | |
| 173 return TRUE; | |
| 174 } | |
| 175 | |
| 176 // Evaluate a vector across a matrix | |
| 177 void CMSEXPORT _cmsMAT3eval(cmsContext ContextID, cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v) | |
| 178 { | |
| 179 cmsUNUSED_PARAMETER(ContextID); | |
| 180 | |
| 181 r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ]; | |
| 182 r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ]; | |
| 183 r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ]; | |
| 184 } | |
| 185 | |
| 186 |
