Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/lcms2/src/cmsintrp.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 //--------------------------------------------------------------------------------- | |
| 2 // | |
| 3 // Little Color Management System | |
| 4 // Copyright (c) 1998-2023 Marti Maria Saguer | |
| 5 // | |
| 6 // Permission is hereby granted, free of charge, to any person obtaining | |
| 7 // a copy of this software and associated documentation files (the "Software"), | |
| 8 // to deal in the Software without restriction, including without limitation | |
| 9 // the rights to use, copy, modify, merge, publish, distribute, sublicense, | |
| 10 // and/or sell copies of the Software, and to permit persons to whom the Software | |
| 11 // is furnished to do so, subject to the following conditions: | |
| 12 // | |
| 13 // The above copyright notice and this permission notice shall be included in | |
| 14 // all copies or substantial portions of the Software. | |
| 15 // | |
| 16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
| 17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | |
| 18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
| 19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | |
| 20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | |
| 21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | |
| 22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| 23 // | |
| 24 //--------------------------------------------------------------------------------- | |
| 25 // | |
| 26 | |
| 27 #include "lcms2_internal.h" | |
| 28 | |
| 29 // This module incorporates several interpolation routines, for 1 to 8 channels on input and | |
| 30 // up to 65535 channels on output. The user may change those by using the interpolation plug-in | |
| 31 | |
| 32 // Some people may want to compile as C++ with all warnings on, in this case make compiler silent | |
| 33 #ifdef _MSC_VER | |
| 34 # if (_MSC_VER >= 1400) | |
| 35 # pragma warning( disable : 4365 ) | |
| 36 # endif | |
| 37 #endif | |
| 38 | |
| 39 // Interpolation routines by default | |
| 40 static cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags); | |
| 41 | |
| 42 // This is the default factory | |
| 43 _cmsInterpPluginChunkType _cmsInterpPluginChunk = { NULL }; | |
| 44 | |
| 45 // The interpolation plug-in memory chunk allocator/dup | |
| 46 void _cmsAllocInterpPluginChunk(struct _cmsContext_struct* ctx, const struct _cmsContext_struct* src) | |
| 47 { | |
| 48 void* from; | |
| 49 | |
| 50 _cmsAssert(ctx != NULL); | |
| 51 | |
| 52 if (src != NULL) { | |
| 53 from = src ->chunks[InterpPlugin]; | |
| 54 } | |
| 55 else { | |
| 56 static _cmsInterpPluginChunkType InterpPluginChunk = { NULL }; | |
| 57 | |
| 58 from = &InterpPluginChunk; | |
| 59 } | |
| 60 | |
| 61 _cmsAssert(from != NULL); | |
| 62 ctx ->chunks[InterpPlugin] = _cmsSubAllocDup(ctx ->MemPool, from, sizeof(_cmsInterpPluginChunkType)); | |
| 63 } | |
| 64 | |
| 65 | |
| 66 // Main plug-in entry | |
| 67 cmsBool _cmsRegisterInterpPlugin(cmsContext ContextID, cmsPluginBase* Data) | |
| 68 { | |
| 69 cmsPluginInterpolation* Plugin = (cmsPluginInterpolation*) Data; | |
| 70 _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); | |
| 71 | |
| 72 if (Data == NULL) { | |
| 73 | |
| 74 ptr ->Interpolators = NULL; | |
| 75 return TRUE; | |
| 76 } | |
| 77 | |
| 78 // Set replacement functions | |
| 79 ptr ->Interpolators = Plugin ->InterpolatorsFactory; | |
| 80 return TRUE; | |
| 81 } | |
| 82 | |
| 83 | |
| 84 // Set the interpolation method | |
| 85 cmsBool _cmsSetInterpolationRoutine(cmsContext ContextID, cmsInterpParams* p) | |
| 86 { | |
| 87 _cmsInterpPluginChunkType* ptr = (_cmsInterpPluginChunkType*) _cmsContextGetClientChunk(ContextID, InterpPlugin); | |
| 88 | |
| 89 p ->Interpolation.Lerp16 = NULL; | |
| 90 | |
| 91 // Invoke factory, possibly in the Plug-in | |
| 92 if (ptr ->Interpolators != NULL) | |
| 93 p ->Interpolation = ptr->Interpolators(ContextID, p -> nInputs, p ->nOutputs, p ->dwFlags); | |
| 94 | |
| 95 // If unsupported by the plug-in, go for the LittleCMS default. | |
| 96 // If happens only if an extern plug-in is being used | |
| 97 if (p ->Interpolation.Lerp16 == NULL) | |
| 98 p ->Interpolation = DefaultInterpolatorsFactory(p ->nInputs, p ->nOutputs, p ->dwFlags); | |
| 99 | |
| 100 // Check for valid interpolator (we just check one member of the union) | |
| 101 if (p ->Interpolation.Lerp16 == NULL) { | |
| 102 return FALSE; | |
| 103 } | |
| 104 | |
| 105 return TRUE; | |
| 106 } | |
| 107 | |
| 108 | |
| 109 // This function precalculates as many parameters as possible to speed up the interpolation. | |
| 110 cmsInterpParams* _cmsComputeInterpParamsEx(cmsContext ContextID, | |
| 111 const cmsUInt32Number nSamples[], | |
| 112 cmsUInt32Number InputChan, cmsUInt32Number OutputChan, | |
| 113 const void *Table, | |
| 114 cmsUInt32Number dwFlags) | |
| 115 { | |
| 116 cmsInterpParams* p; | |
| 117 cmsUInt32Number i; | |
| 118 | |
| 119 // Check for maximum inputs | |
| 120 if (InputChan > MAX_INPUT_DIMENSIONS) { | |
| 121 cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", InputChan, MAX_INPUT_DIMENSIONS); | |
| 122 return NULL; | |
| 123 } | |
| 124 | |
| 125 // Creates an empty object | |
| 126 p = (cmsInterpParams*) _cmsMallocZero(ContextID, sizeof(cmsInterpParams)); | |
| 127 if (p == NULL) return NULL; | |
| 128 | |
| 129 // Keep original parameters | |
| 130 p -> dwFlags = dwFlags; | |
| 131 p -> nInputs = InputChan; | |
| 132 p -> nOutputs = OutputChan; | |
| 133 p ->Table = Table; | |
| 134 | |
| 135 // Fill samples per input direction and domain (which is number of nodes minus one) | |
| 136 for (i=0; i < InputChan; i++) { | |
| 137 | |
| 138 p -> nSamples[i] = nSamples[i]; | |
| 139 p -> Domain[i] = nSamples[i] - 1; | |
| 140 } | |
| 141 | |
| 142 // Compute factors to apply to each component to index the grid array | |
| 143 p -> opta[0] = p -> nOutputs; | |
| 144 for (i=1; i < InputChan; i++) | |
| 145 p ->opta[i] = p ->opta[i-1] * nSamples[InputChan-i]; | |
| 146 | |
| 147 | |
| 148 if (!_cmsSetInterpolationRoutine(ContextID, p)) { | |
| 149 cmsSignalError(ContextID, cmsERROR_UNKNOWN_EXTENSION, "Unsupported interpolation (%d->%d channels)", InputChan, OutputChan); | |
| 150 _cmsFree(ContextID, p); | |
| 151 return NULL; | |
| 152 } | |
| 153 | |
| 154 // All seems ok | |
| 155 return p; | |
| 156 } | |
| 157 | |
| 158 | |
| 159 // This one is a wrapper on the anterior, but assuming all directions have same number of nodes | |
| 160 cmsInterpParams* CMSEXPORT _cmsComputeInterpParams(cmsContext ContextID, cmsUInt32Number nSamples, | |
| 161 cmsUInt32Number InputChan, cmsUInt32Number OutputChan, const void* Table, cmsUInt32Number dwFlags) | |
| 162 { | |
| 163 int i; | |
| 164 cmsUInt32Number Samples[MAX_INPUT_DIMENSIONS]; | |
| 165 | |
| 166 // Fill the auxiliary array | |
| 167 for (i=0; i < MAX_INPUT_DIMENSIONS; i++) | |
| 168 Samples[i] = nSamples; | |
| 169 | |
| 170 // Call the extended function | |
| 171 return _cmsComputeInterpParamsEx(ContextID, Samples, InputChan, OutputChan, Table, dwFlags); | |
| 172 } | |
| 173 | |
| 174 | |
| 175 // Free all associated memory | |
| 176 void CMSEXPORT _cmsFreeInterpParams(cmsContext ContextID, cmsInterpParams* p) | |
| 177 { | |
| 178 if (p != NULL) _cmsFree(ContextID, p); | |
| 179 } | |
| 180 | |
| 181 | |
| 182 // Inline fixed point interpolation | |
| 183 cmsINLINE CMS_NO_SANITIZE cmsUInt16Number LinearInterp(cmsS15Fixed16Number a, cmsS15Fixed16Number l, cmsS15Fixed16Number h) | |
| 184 { | |
| 185 cmsUInt32Number dif = (cmsUInt32Number) (h - l) * a + 0x8000; | |
| 186 dif = (dif >> 16) + l; | |
| 187 return (cmsUInt16Number) (dif); | |
| 188 } | |
| 189 | |
| 190 | |
| 191 // Linear interpolation (Fixed-point optimized) | |
| 192 static | |
| 193 void LinLerp1D(cmsContext ContextID, | |
| 194 CMSREGISTER const cmsUInt16Number Value[], | |
| 195 CMSREGISTER cmsUInt16Number Output[], | |
| 196 CMSREGISTER const cmsInterpParams* p) | |
| 197 { | |
| 198 cmsUInt16Number y1, y0; | |
| 199 int cell0, rest; | |
| 200 int val3; | |
| 201 const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; | |
| 202 cmsUNUSED_PARAMETER(ContextID); | |
| 203 | |
| 204 // if last value or just one point | |
| 205 if (Value[0] == 0xffff || p->Domain[0] == 0) { | |
| 206 | |
| 207 Output[0] = LutTable[p -> Domain[0]]; | |
| 208 } | |
| 209 else | |
| 210 { | |
| 211 val3 = p->Domain[0] * Value[0]; | |
| 212 val3 = _cmsToFixedDomain(val3); // To fixed 15.16 | |
| 213 | |
| 214 cell0 = FIXED_TO_INT(val3); // Cell is 16 MSB bits | |
| 215 rest = FIXED_REST_TO_INT(val3); // Rest is 16 LSB bits | |
| 216 | |
| 217 y0 = LutTable[cell0]; | |
| 218 y1 = LutTable[cell0 + 1]; | |
| 219 | |
| 220 Output[0] = LinearInterp(rest, y0, y1); | |
| 221 } | |
| 222 } | |
| 223 | |
| 224 // To prevent out of bounds indexing | |
| 225 cmsINLINE cmsFloat32Number fclamp(cmsFloat32Number v) | |
| 226 { | |
| 227 return ((v < 1.0e-9f) || isnan(v)) ? 0.0f : (v > 1.0f ? 1.0f : v); | |
| 228 } | |
| 229 | |
| 230 // Floating-point version of 1D interpolation | |
| 231 static | |
| 232 void LinLerp1Dfloat(cmsContext ContextID, const cmsFloat32Number Value[], | |
| 233 cmsFloat32Number Output[], | |
| 234 const cmsInterpParams* p) | |
| 235 { | |
| 236 cmsFloat32Number y1, y0; | |
| 237 cmsFloat32Number val2, rest; | |
| 238 int cell0, cell1; | |
| 239 const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; | |
| 240 cmsUNUSED_PARAMETER(ContextID); | |
| 241 | |
| 242 val2 = fclamp(Value[0]); | |
| 243 | |
| 244 // if last value... | |
| 245 if (val2 == 1.0 || p->Domain[0] == 0) { | |
| 246 Output[0] = LutTable[p -> Domain[0]]; | |
| 247 } | |
| 248 else | |
| 249 { | |
| 250 val2 *= p->Domain[0]; | |
| 251 | |
| 252 cell0 = (int)floor(val2); | |
| 253 cell1 = (int)ceil(val2); | |
| 254 | |
| 255 // Rest is 16 LSB bits | |
| 256 rest = val2 - cell0; | |
| 257 | |
| 258 y0 = LutTable[cell0]; | |
| 259 y1 = LutTable[cell1]; | |
| 260 | |
| 261 Output[0] = y0 + (y1 - y0) * rest; | |
| 262 } | |
| 263 } | |
| 264 | |
| 265 | |
| 266 | |
| 267 // Eval gray LUT having only one input channel | |
| 268 static CMS_NO_SANITIZE | |
| 269 void Eval1Input(cmsContext ContextID, | |
| 270 CMSREGISTER const cmsUInt16Number Input[], | |
| 271 CMSREGISTER cmsUInt16Number Output[], | |
| 272 CMSREGISTER const cmsInterpParams* p16) | |
| 273 { | |
| 274 cmsS15Fixed16Number fk; | |
| 275 cmsS15Fixed16Number k0, k1, rk, K0, K1; | |
| 276 int v; | |
| 277 cmsUInt32Number OutChan; | |
| 278 const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table; | |
| 279 cmsUNUSED_PARAMETER(ContextID); | |
| 280 | |
| 281 | |
| 282 // if last value... | |
| 283 if (Input[0] == 0xffff || p16->Domain[0] == 0) { | |
| 284 | |
| 285 cmsUInt32Number y0 = p16->Domain[0] * p16->opta[0]; | |
| 286 | |
| 287 for (OutChan = 0; OutChan < p16->nOutputs; OutChan++) { | |
| 288 Output[OutChan] = LutTable[y0 + OutChan]; | |
| 289 } | |
| 290 } | |
| 291 else | |
| 292 { | |
| 293 | |
| 294 v = Input[0] * p16->Domain[0]; | |
| 295 fk = _cmsToFixedDomain(v); | |
| 296 | |
| 297 k0 = FIXED_TO_INT(fk); | |
| 298 rk = (cmsUInt16Number)FIXED_REST_TO_INT(fk); | |
| 299 | |
| 300 k1 = k0 + (Input[0] != 0xFFFFU ? 1 : 0); | |
| 301 | |
| 302 K0 = p16->opta[0] * k0; | |
| 303 K1 = p16->opta[0] * k1; | |
| 304 | |
| 305 for (OutChan = 0; OutChan < p16->nOutputs; OutChan++) { | |
| 306 | |
| 307 Output[OutChan] = LinearInterp(rk, LutTable[K0 + OutChan], LutTable[K1 + OutChan]); | |
| 308 } | |
| 309 } | |
| 310 } | |
| 311 | |
| 312 | |
| 313 | |
| 314 // Eval gray LUT having only one input channel | |
| 315 static | |
| 316 void Eval1InputFloat(cmsContext ContextID, const cmsFloat32Number Value[], | |
| 317 cmsFloat32Number Output[], | |
| 318 const cmsInterpParams* p) | |
| 319 { | |
| 320 cmsFloat32Number y1, y0; | |
| 321 cmsFloat32Number val2, rest; | |
| 322 int cell0, cell1; | |
| 323 cmsUInt32Number OutChan; | |
| 324 const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; | |
| 325 cmsUNUSED_PARAMETER(ContextID); | |
| 326 | |
| 327 val2 = fclamp(Value[0]); | |
| 328 | |
| 329 // if last value... | |
| 330 if (val2 == 1.0 || p->Domain[0] == 0) { | |
| 331 | |
| 332 cmsUInt32Number start = p->Domain[0] * p->opta[0]; | |
| 333 | |
| 334 for (OutChan = 0; OutChan < p->nOutputs; OutChan++) { | |
| 335 Output[OutChan] = LutTable[start + OutChan]; | |
| 336 } | |
| 337 } | |
| 338 else | |
| 339 { | |
| 340 val2 *= p->Domain[0]; | |
| 341 | |
| 342 cell0 = (int)floor(val2); | |
| 343 cell1 = (int)ceil(val2); | |
| 344 | |
| 345 // Rest is 16 LSB bits | |
| 346 rest = val2 - cell0; | |
| 347 | |
| 348 cell0 *= p->opta[0]; | |
| 349 cell1 *= p->opta[0]; | |
| 350 | |
| 351 for (OutChan = 0; OutChan < p->nOutputs; OutChan++) { | |
| 352 | |
| 353 y0 = LutTable[cell0 + OutChan]; | |
| 354 y1 = LutTable[cell1 + OutChan]; | |
| 355 | |
| 356 Output[OutChan] = y0 + (y1 - y0) * rest; | |
| 357 } | |
| 358 } | |
| 359 } | |
| 360 | |
| 361 // Bilinear interpolation (16 bits) - cmsFloat32Number version | |
| 362 static | |
| 363 void BilinearInterpFloat(cmsContext ContextID, const cmsFloat32Number Input[], | |
| 364 cmsFloat32Number Output[], | |
| 365 const cmsInterpParams* p) | |
| 366 | |
| 367 { | |
| 368 # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) | |
| 369 # define DENS(i,j) (LutTable[(i)+(j)+OutChan]) | |
| 370 | |
| 371 const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; | |
| 372 cmsFloat32Number px, py; | |
| 373 int x0, y0, | |
| 374 X0, Y0, X1, Y1; | |
| 375 int TotalOut, OutChan; | |
| 376 cmsFloat32Number fx, fy, | |
| 377 d00, d01, d10, d11, | |
| 378 dx0, dx1, | |
| 379 dxy; | |
| 380 cmsUNUSED_PARAMETER(ContextID); | |
| 381 | |
| 382 TotalOut = p -> nOutputs; | |
| 383 px = fclamp(Input[0]) * p->Domain[0]; | |
| 384 py = fclamp(Input[1]) * p->Domain[1]; | |
| 385 | |
| 386 x0 = (int) _cmsQuickFloor(px); fx = px - (cmsFloat32Number) x0; | |
| 387 y0 = (int) _cmsQuickFloor(py); fy = py - (cmsFloat32Number) y0; | |
| 388 | |
| 389 X0 = p -> opta[1] * x0; | |
| 390 X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[1]); | |
| 391 | |
| 392 Y0 = p -> opta[0] * y0; | |
| 393 Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[0]); | |
| 394 | |
| 395 for (OutChan = 0; OutChan < TotalOut; OutChan++) { | |
| 396 | |
| 397 d00 = DENS(X0, Y0); | |
| 398 d01 = DENS(X0, Y1); | |
| 399 d10 = DENS(X1, Y0); | |
| 400 d11 = DENS(X1, Y1); | |
| 401 | |
| 402 dx0 = LERP(fx, d00, d10); | |
| 403 dx1 = LERP(fx, d01, d11); | |
| 404 | |
| 405 dxy = LERP(fy, dx0, dx1); | |
| 406 | |
| 407 Output[OutChan] = dxy; | |
| 408 } | |
| 409 | |
| 410 | |
| 411 # undef LERP | |
| 412 # undef DENS | |
| 413 } | |
| 414 | |
| 415 // Bilinear interpolation (16 bits) - optimized version | |
| 416 static CMS_NO_SANITIZE | |
| 417 void BilinearInterp16(cmsContext ContextID, | |
| 418 CMSREGISTER const cmsUInt16Number Input[], | |
| 419 CMSREGISTER cmsUInt16Number Output[], | |
| 420 CMSREGISTER const cmsInterpParams* p) | |
| 421 | |
| 422 { | |
| 423 #define DENS(i,j) (LutTable[(i)+(j)+OutChan]) | |
| 424 #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) | |
| 425 | |
| 426 const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; | |
| 427 int OutChan, TotalOut; | |
| 428 cmsS15Fixed16Number fx, fy; | |
| 429 CMSREGISTER int rx, ry; | |
| 430 int x0, y0; | |
| 431 CMSREGISTER int X0, X1, Y0, Y1; | |
| 432 | |
| 433 int d00, d01, d10, d11, | |
| 434 dx0, dx1, | |
| 435 dxy; | |
| 436 cmsUNUSED_PARAMETER(ContextID); | |
| 437 | |
| 438 TotalOut = p -> nOutputs; | |
| 439 | |
| 440 fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); | |
| 441 x0 = FIXED_TO_INT(fx); | |
| 442 rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain | |
| 443 | |
| 444 | |
| 445 fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); | |
| 446 y0 = FIXED_TO_INT(fy); | |
| 447 ry = FIXED_REST_TO_INT(fy); | |
| 448 | |
| 449 | |
| 450 X0 = p -> opta[1] * x0; | |
| 451 X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[1]); | |
| 452 | |
| 453 Y0 = p -> opta[0] * y0; | |
| 454 Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[0]); | |
| 455 | |
| 456 for (OutChan = 0; OutChan < TotalOut; OutChan++) { | |
| 457 | |
| 458 d00 = DENS(X0, Y0); | |
| 459 d01 = DENS(X0, Y1); | |
| 460 d10 = DENS(X1, Y0); | |
| 461 d11 = DENS(X1, Y1); | |
| 462 | |
| 463 dx0 = LERP(rx, d00, d10); | |
| 464 dx1 = LERP(rx, d01, d11); | |
| 465 | |
| 466 dxy = LERP(ry, dx0, dx1); | |
| 467 | |
| 468 Output[OutChan] = (cmsUInt16Number) dxy; | |
| 469 } | |
| 470 | |
| 471 | |
| 472 # undef LERP | |
| 473 # undef DENS | |
| 474 } | |
| 475 | |
| 476 | |
| 477 // Trilinear interpolation (16 bits) - cmsFloat32Number version | |
| 478 static | |
| 479 void TrilinearInterpFloat(cmsContext ContextID, const cmsFloat32Number Input[], | |
| 480 cmsFloat32Number Output[], | |
| 481 const cmsInterpParams* p) | |
| 482 | |
| 483 { | |
| 484 # define LERP(a,l,h) (cmsFloat32Number) ((l)+(((h)-(l))*(a))) | |
| 485 # define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |
| 486 | |
| 487 const cmsFloat32Number* LutTable = (cmsFloat32Number*) p ->Table; | |
| 488 cmsFloat32Number px, py, pz; | |
| 489 int x0, y0, z0, | |
| 490 X0, Y0, Z0, X1, Y1, Z1; | |
| 491 int TotalOut, OutChan; | |
| 492 | |
| 493 cmsFloat32Number fx, fy, fz, | |
| 494 d000, d001, d010, d011, | |
| 495 d100, d101, d110, d111, | |
| 496 dx00, dx01, dx10, dx11, | |
| 497 dxy0, dxy1, dxyz; | |
| 498 cmsUNUSED_PARAMETER(ContextID); | |
| 499 | |
| 500 TotalOut = p -> nOutputs; | |
| 501 | |
| 502 // We need some clipping here | |
| 503 px = fclamp(Input[0]) * p->Domain[0]; | |
| 504 py = fclamp(Input[1]) * p->Domain[1]; | |
| 505 pz = fclamp(Input[2]) * p->Domain[2]; | |
| 506 | |
| 507 x0 = (int) floor(px); fx = px - (cmsFloat32Number) x0; // We need full floor funcionality here | |
| 508 y0 = (int) floor(py); fy = py - (cmsFloat32Number) y0; | |
| 509 z0 = (int) floor(pz); fz = pz - (cmsFloat32Number) z0; | |
| 510 | |
| 511 X0 = p -> opta[2] * x0; | |
| 512 X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); | |
| 513 | |
| 514 Y0 = p -> opta[1] * y0; | |
| 515 Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); | |
| 516 | |
| 517 Z0 = p -> opta[0] * z0; | |
| 518 Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); | |
| 519 | |
| 520 for (OutChan = 0; OutChan < TotalOut; OutChan++) { | |
| 521 | |
| 522 d000 = DENS(X0, Y0, Z0); | |
| 523 d001 = DENS(X0, Y0, Z1); | |
| 524 d010 = DENS(X0, Y1, Z0); | |
| 525 d011 = DENS(X0, Y1, Z1); | |
| 526 | |
| 527 d100 = DENS(X1, Y0, Z0); | |
| 528 d101 = DENS(X1, Y0, Z1); | |
| 529 d110 = DENS(X1, Y1, Z0); | |
| 530 d111 = DENS(X1, Y1, Z1); | |
| 531 | |
| 532 | |
| 533 dx00 = LERP(fx, d000, d100); | |
| 534 dx01 = LERP(fx, d001, d101); | |
| 535 dx10 = LERP(fx, d010, d110); | |
| 536 dx11 = LERP(fx, d011, d111); | |
| 537 | |
| 538 dxy0 = LERP(fy, dx00, dx10); | |
| 539 dxy1 = LERP(fy, dx01, dx11); | |
| 540 | |
| 541 dxyz = LERP(fz, dxy0, dxy1); | |
| 542 | |
| 543 Output[OutChan] = dxyz; | |
| 544 } | |
| 545 | |
| 546 | |
| 547 # undef LERP | |
| 548 # undef DENS | |
| 549 } | |
| 550 | |
| 551 // Trilinear interpolation (16 bits) - optimized version | |
| 552 static CMS_NO_SANITIZE | |
| 553 void TrilinearInterp16(cmsContext ContextID, | |
| 554 CMSREGISTER const cmsUInt16Number Input[], | |
| 555 CMSREGISTER cmsUInt16Number Output[], | |
| 556 CMSREGISTER const cmsInterpParams* p) | |
| 557 | |
| 558 { | |
| 559 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |
| 560 #define LERP(a,l,h) (cmsUInt16Number) (l + ROUND_FIXED_TO_INT(((h-l)*a))) | |
| 561 | |
| 562 const cmsUInt16Number* LutTable = (cmsUInt16Number*) p ->Table; | |
| 563 int OutChan, TotalOut; | |
| 564 cmsS15Fixed16Number fx, fy, fz; | |
| 565 CMSREGISTER int rx, ry, rz; | |
| 566 int x0, y0, z0; | |
| 567 CMSREGISTER int X0, X1, Y0, Y1, Z0, Z1; | |
| 568 int d000, d001, d010, d011, | |
| 569 d100, d101, d110, d111, | |
| 570 dx00, dx01, dx10, dx11, | |
| 571 dxy0, dxy1, dxyz; | |
| 572 cmsUNUSED_PARAMETER(ContextID); | |
| 573 | |
| 574 TotalOut = p -> nOutputs; | |
| 575 | |
| 576 fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); | |
| 577 x0 = FIXED_TO_INT(fx); | |
| 578 rx = FIXED_REST_TO_INT(fx); // Rest in 0..1.0 domain | |
| 579 | |
| 580 | |
| 581 fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); | |
| 582 y0 = FIXED_TO_INT(fy); | |
| 583 ry = FIXED_REST_TO_INT(fy); | |
| 584 | |
| 585 fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); | |
| 586 z0 = FIXED_TO_INT(fz); | |
| 587 rz = FIXED_REST_TO_INT(fz); | |
| 588 | |
| 589 | |
| 590 X0 = p -> opta[2] * x0; | |
| 591 X1 = X0 + (Input[0] == 0xFFFFU ? 0 : p->opta[2]); | |
| 592 | |
| 593 Y0 = p -> opta[1] * y0; | |
| 594 Y1 = Y0 + (Input[1] == 0xFFFFU ? 0 : p->opta[1]); | |
| 595 | |
| 596 Z0 = p -> opta[0] * z0; | |
| 597 Z1 = Z0 + (Input[2] == 0xFFFFU ? 0 : p->opta[0]); | |
| 598 | |
| 599 for (OutChan = 0; OutChan < TotalOut; OutChan++) { | |
| 600 | |
| 601 d000 = DENS(X0, Y0, Z0); | |
| 602 d001 = DENS(X0, Y0, Z1); | |
| 603 d010 = DENS(X0, Y1, Z0); | |
| 604 d011 = DENS(X0, Y1, Z1); | |
| 605 | |
| 606 d100 = DENS(X1, Y0, Z0); | |
| 607 d101 = DENS(X1, Y0, Z1); | |
| 608 d110 = DENS(X1, Y1, Z0); | |
| 609 d111 = DENS(X1, Y1, Z1); | |
| 610 | |
| 611 | |
| 612 dx00 = LERP(rx, d000, d100); | |
| 613 dx01 = LERP(rx, d001, d101); | |
| 614 dx10 = LERP(rx, d010, d110); | |
| 615 dx11 = LERP(rx, d011, d111); | |
| 616 | |
| 617 dxy0 = LERP(ry, dx00, dx10); | |
| 618 dxy1 = LERP(ry, dx01, dx11); | |
| 619 | |
| 620 dxyz = LERP(rz, dxy0, dxy1); | |
| 621 | |
| 622 Output[OutChan] = (cmsUInt16Number) dxyz; | |
| 623 } | |
| 624 | |
| 625 | |
| 626 # undef LERP | |
| 627 # undef DENS | |
| 628 } | |
| 629 | |
| 630 | |
| 631 // Tetrahedral interpolation, using Sakamoto algorithm. | |
| 632 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |
| 633 static | |
| 634 void TetrahedralInterpFloat(cmsContext ContextID, const cmsFloat32Number Input[], | |
| 635 cmsFloat32Number Output[], | |
| 636 const cmsInterpParams* p) | |
| 637 { | |
| 638 const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; | |
| 639 cmsFloat32Number px, py, pz; | |
| 640 int x0, y0, z0, | |
| 641 X0, Y0, Z0, X1, Y1, Z1; | |
| 642 cmsFloat32Number rx, ry, rz; | |
| 643 cmsFloat32Number c0, c1=0, c2=0, c3=0; | |
| 644 int OutChan, TotalOut; | |
| 645 cmsUNUSED_PARAMETER(ContextID); | |
| 646 | |
| 647 TotalOut = p -> nOutputs; | |
| 648 | |
| 649 // We need some clipping here | |
| 650 px = fclamp(Input[0]) * p->Domain[0]; | |
| 651 py = fclamp(Input[1]) * p->Domain[1]; | |
| 652 pz = fclamp(Input[2]) * p->Domain[2]; | |
| 653 | |
| 654 x0 = (int) floor(px); rx = (px - (cmsFloat32Number) x0); // We need full floor functionality here | |
| 655 y0 = (int) floor(py); ry = (py - (cmsFloat32Number) y0); | |
| 656 z0 = (int) floor(pz); rz = (pz - (cmsFloat32Number) z0); | |
| 657 | |
| 658 | |
| 659 X0 = p -> opta[2] * x0; | |
| 660 X1 = X0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[2]); | |
| 661 | |
| 662 Y0 = p -> opta[1] * y0; | |
| 663 Y1 = Y0 + (fclamp(Input[1]) >= 1.0 ? 0 : p->opta[1]); | |
| 664 | |
| 665 Z0 = p -> opta[0] * z0; | |
| 666 Z1 = Z0 + (fclamp(Input[2]) >= 1.0 ? 0 : p->opta[0]); | |
| 667 | |
| 668 for (OutChan=0; OutChan < TotalOut; OutChan++) { | |
| 669 | |
| 670 // These are the 6 Tetrahedral | |
| 671 | |
| 672 c0 = DENS(X0, Y0, Z0); | |
| 673 | |
| 674 if (rx >= ry && ry >= rz) { | |
| 675 | |
| 676 c1 = DENS(X1, Y0, Z0) - c0; | |
| 677 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | |
| 678 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |
| 679 | |
| 680 } | |
| 681 else | |
| 682 if (rx >= rz && rz >= ry) { | |
| 683 | |
| 684 c1 = DENS(X1, Y0, Z0) - c0; | |
| 685 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |
| 686 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | |
| 687 | |
| 688 } | |
| 689 else | |
| 690 if (rz >= rx && rx >= ry) { | |
| 691 | |
| 692 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | |
| 693 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |
| 694 c3 = DENS(X0, Y0, Z1) - c0; | |
| 695 | |
| 696 } | |
| 697 else | |
| 698 if (ry >= rx && rx >= rz) { | |
| 699 | |
| 700 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | |
| 701 c2 = DENS(X0, Y1, Z0) - c0; | |
| 702 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |
| 703 | |
| 704 } | |
| 705 else | |
| 706 if (ry >= rz && rz >= rx) { | |
| 707 | |
| 708 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |
| 709 c2 = DENS(X0, Y1, Z0) - c0; | |
| 710 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | |
| 711 | |
| 712 } | |
| 713 else | |
| 714 if (rz >= ry && ry >= rx) { | |
| 715 | |
| 716 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |
| 717 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | |
| 718 c3 = DENS(X0, Y0, Z1) - c0; | |
| 719 | |
| 720 } | |
| 721 else { | |
| 722 c1 = c2 = c3 = 0; | |
| 723 } | |
| 724 | |
| 725 Output[OutChan] = c0 + c1 * rx + c2 * ry + c3 * rz; | |
| 726 } | |
| 727 | |
| 728 } | |
| 729 | |
| 730 #undef DENS | |
| 731 | |
| 732 static CMS_NO_SANITIZE | |
| 733 void TetrahedralInterp16(cmsContext ContextID, | |
| 734 CMSREGISTER const cmsUInt16Number Input[], | |
| 735 CMSREGISTER cmsUInt16Number Output[], | |
| 736 CMSREGISTER const cmsInterpParams* p) | |
| 737 { | |
| 738 const cmsUInt16Number* LutTable = (cmsUInt16Number*) p -> Table; | |
| 739 cmsS15Fixed16Number fx, fy, fz; | |
| 740 cmsS15Fixed16Number rx, ry, rz; | |
| 741 int x0, y0, z0; | |
| 742 cmsS15Fixed16Number c0, c1, c2, c3, Rest; | |
| 743 cmsUInt32Number X0, X1, Y0, Y1, Z0, Z1; | |
| 744 cmsUInt32Number TotalOut = p -> nOutputs; | |
| 745 cmsUNUSED_PARAMETER(ContextID); | |
| 746 | |
| 747 fx = _cmsToFixedDomain((int) Input[0] * p -> Domain[0]); | |
| 748 fy = _cmsToFixedDomain((int) Input[1] * p -> Domain[1]); | |
| 749 fz = _cmsToFixedDomain((int) Input[2] * p -> Domain[2]); | |
| 750 | |
| 751 x0 = FIXED_TO_INT(fx); | |
| 752 y0 = FIXED_TO_INT(fy); | |
| 753 z0 = FIXED_TO_INT(fz); | |
| 754 | |
| 755 rx = FIXED_REST_TO_INT(fx); | |
| 756 ry = FIXED_REST_TO_INT(fy); | |
| 757 rz = FIXED_REST_TO_INT(fz); | |
| 758 | |
| 759 X0 = p -> opta[2] * x0; | |
| 760 X1 = (Input[0] == 0xFFFFU ? 0 : p->opta[2]); | |
| 761 | |
| 762 Y0 = p -> opta[1] * y0; | |
| 763 Y1 = (Input[1] == 0xFFFFU ? 0 : p->opta[1]); | |
| 764 | |
| 765 Z0 = p -> opta[0] * z0; | |
| 766 Z1 = (Input[2] == 0xFFFFU ? 0 : p->opta[0]); | |
| 767 | |
| 768 LutTable += X0+Y0+Z0; | |
| 769 | |
| 770 // Output should be computed as x = ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest)) | |
| 771 // which expands as: x = (Rest + ((Rest+0x7fff)/0xFFFF) + 0x8000)>>16 | |
| 772 // This can be replaced by: t = Rest+0x8001, x = (t + (t>>16))>>16 | |
| 773 // at the cost of being off by one at 7fff and 17ffe. | |
| 774 | |
| 775 if (rx >= ry) { | |
| 776 if (ry >= rz) { | |
| 777 Y1 += X1; | |
| 778 Z1 += Y1; | |
| 779 for (; TotalOut; TotalOut--) { | |
| 780 c1 = LutTable[X1]; | |
| 781 c2 = LutTable[Y1]; | |
| 782 c3 = LutTable[Z1]; | |
| 783 c0 = *LutTable++; | |
| 784 c3 -= c2; | |
| 785 c2 -= c1; | |
| 786 c1 -= c0; | |
| 787 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |
| 788 *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |
| 789 } | |
| 790 } else if (rz >= rx) { | |
| 791 X1 += Z1; | |
| 792 Y1 += X1; | |
| 793 for (; TotalOut; TotalOut--) { | |
| 794 c1 = LutTable[X1]; | |
| 795 c2 = LutTable[Y1]; | |
| 796 c3 = LutTable[Z1]; | |
| 797 c0 = *LutTable++; | |
| 798 c2 -= c1; | |
| 799 c1 -= c3; | |
| 800 c3 -= c0; | |
| 801 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |
| 802 *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |
| 803 } | |
| 804 } else { | |
| 805 Z1 += X1; | |
| 806 Y1 += Z1; | |
| 807 for (; TotalOut; TotalOut--) { | |
| 808 c1 = LutTable[X1]; | |
| 809 c2 = LutTable[Y1]; | |
| 810 c3 = LutTable[Z1]; | |
| 811 c0 = *LutTable++; | |
| 812 c2 -= c3; | |
| 813 c3 -= c1; | |
| 814 c1 -= c0; | |
| 815 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |
| 816 *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |
| 817 } | |
| 818 } | |
| 819 } else { | |
| 820 if (rx >= rz) { | |
| 821 X1 += Y1; | |
| 822 Z1 += X1; | |
| 823 for (; TotalOut; TotalOut--) { | |
| 824 c1 = LutTable[X1]; | |
| 825 c2 = LutTable[Y1]; | |
| 826 c3 = LutTable[Z1]; | |
| 827 c0 = *LutTable++; | |
| 828 c3 -= c1; | |
| 829 c1 -= c2; | |
| 830 c2 -= c0; | |
| 831 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |
| 832 *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |
| 833 } | |
| 834 } else if (ry >= rz) { | |
| 835 Z1 += Y1; | |
| 836 X1 += Z1; | |
| 837 for (; TotalOut; TotalOut--) { | |
| 838 c1 = LutTable[X1]; | |
| 839 c2 = LutTable[Y1]; | |
| 840 c3 = LutTable[Z1]; | |
| 841 c0 = *LutTable++; | |
| 842 c1 -= c3; | |
| 843 c3 -= c2; | |
| 844 c2 -= c0; | |
| 845 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |
| 846 *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |
| 847 } | |
| 848 } else { | |
| 849 Y1 += Z1; | |
| 850 X1 += Y1; | |
| 851 for (; TotalOut; TotalOut--) { | |
| 852 c1 = LutTable[X1]; | |
| 853 c2 = LutTable[Y1]; | |
| 854 c3 = LutTable[Z1]; | |
| 855 c0 = *LutTable++; | |
| 856 c1 -= c2; | |
| 857 c2 -= c3; | |
| 858 c3 -= c0; | |
| 859 Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001; | |
| 860 *Output++ = (cmsUInt16Number) c0 + ((Rest + (Rest>>16))>>16); | |
| 861 } | |
| 862 } | |
| 863 } | |
| 864 } | |
| 865 | |
| 866 | |
| 867 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan]) | |
| 868 static CMS_NO_SANITIZE | |
| 869 void Eval4Inputs(cmsContext ContextID, | |
| 870 CMSREGISTER const cmsUInt16Number Input[], | |
| 871 CMSREGISTER cmsUInt16Number Output[], | |
| 872 CMSREGISTER const cmsInterpParams* p16) | |
| 873 { | |
| 874 const cmsUInt16Number* LutTable; | |
| 875 cmsS15Fixed16Number fk; | |
| 876 cmsS15Fixed16Number k0, rk; | |
| 877 int K0, K1; | |
| 878 cmsS15Fixed16Number fx, fy, fz; | |
| 879 cmsS15Fixed16Number rx, ry, rz; | |
| 880 int x0, y0, z0; | |
| 881 cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1; | |
| 882 cmsUInt32Number i; | |
| 883 cmsS15Fixed16Number c0, c1, c2, c3, Rest; | |
| 884 cmsUInt32Number OutChan; | |
| 885 cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; | |
| 886 cmsUNUSED_PARAMETER(ContextID); | |
| 887 | |
| 888 | |
| 889 fk = _cmsToFixedDomain((int) Input[0] * p16 -> Domain[0]); | |
| 890 fx = _cmsToFixedDomain((int) Input[1] * p16 -> Domain[1]); | |
| 891 fy = _cmsToFixedDomain((int) Input[2] * p16 -> Domain[2]); | |
| 892 fz = _cmsToFixedDomain((int) Input[3] * p16 -> Domain[3]); | |
| 893 | |
| 894 k0 = FIXED_TO_INT(fk); | |
| 895 x0 = FIXED_TO_INT(fx); | |
| 896 y0 = FIXED_TO_INT(fy); | |
| 897 z0 = FIXED_TO_INT(fz); | |
| 898 | |
| 899 rk = FIXED_REST_TO_INT(fk); | |
| 900 rx = FIXED_REST_TO_INT(fx); | |
| 901 ry = FIXED_REST_TO_INT(fy); | |
| 902 rz = FIXED_REST_TO_INT(fz); | |
| 903 | |
| 904 K0 = p16 -> opta[3] * k0; | |
| 905 K1 = K0 + (Input[0] == 0xFFFFU ? 0 : p16->opta[3]); | |
| 906 | |
| 907 X0 = p16 -> opta[2] * x0; | |
| 908 X1 = X0 + (Input[1] == 0xFFFFU ? 0 : p16->opta[2]); | |
| 909 | |
| 910 Y0 = p16 -> opta[1] * y0; | |
| 911 Y1 = Y0 + (Input[2] == 0xFFFFU ? 0 : p16->opta[1]); | |
| 912 | |
| 913 Z0 = p16 -> opta[0] * z0; | |
| 914 Z1 = Z0 + (Input[3] == 0xFFFFU ? 0 : p16->opta[0]); | |
| 915 | |
| 916 LutTable = (cmsUInt16Number*) p16 -> Table; | |
| 917 LutTable += K0; | |
| 918 | |
| 919 for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { | |
| 920 | |
| 921 c0 = DENS(X0, Y0, Z0); | |
| 922 | |
| 923 if (rx >= ry && ry >= rz) { | |
| 924 | |
| 925 c1 = DENS(X1, Y0, Z0) - c0; | |
| 926 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | |
| 927 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |
| 928 | |
| 929 } | |
| 930 else | |
| 931 if (rx >= rz && rz >= ry) { | |
| 932 | |
| 933 c1 = DENS(X1, Y0, Z0) - c0; | |
| 934 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |
| 935 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | |
| 936 | |
| 937 } | |
| 938 else | |
| 939 if (rz >= rx && rx >= ry) { | |
| 940 | |
| 941 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | |
| 942 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |
| 943 c3 = DENS(X0, Y0, Z1) - c0; | |
| 944 | |
| 945 } | |
| 946 else | |
| 947 if (ry >= rx && rx >= rz) { | |
| 948 | |
| 949 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | |
| 950 c2 = DENS(X0, Y1, Z0) - c0; | |
| 951 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |
| 952 | |
| 953 } | |
| 954 else | |
| 955 if (ry >= rz && rz >= rx) { | |
| 956 | |
| 957 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |
| 958 c2 = DENS(X0, Y1, Z0) - c0; | |
| 959 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | |
| 960 | |
| 961 } | |
| 962 else | |
| 963 if (rz >= ry && ry >= rx) { | |
| 964 | |
| 965 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |
| 966 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | |
| 967 c3 = DENS(X0, Y0, Z1) - c0; | |
| 968 | |
| 969 } | |
| 970 else { | |
| 971 c1 = c2 = c3 = 0; | |
| 972 } | |
| 973 | |
| 974 Rest = c1 * rx + c2 * ry + c3 * rz; | |
| 975 | |
| 976 Tmp1[OutChan] = (cmsUInt16Number)(c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))); | |
| 977 } | |
| 978 | |
| 979 | |
| 980 LutTable = (cmsUInt16Number*) p16 -> Table; | |
| 981 LutTable += K1; | |
| 982 | |
| 983 for (OutChan=0; OutChan < p16 -> nOutputs; OutChan++) { | |
| 984 | |
| 985 c0 = DENS(X0, Y0, Z0); | |
| 986 | |
| 987 if (rx >= ry && ry >= rz) { | |
| 988 | |
| 989 c1 = DENS(X1, Y0, Z0) - c0; | |
| 990 c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0); | |
| 991 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |
| 992 | |
| 993 } | |
| 994 else | |
| 995 if (rx >= rz && rz >= ry) { | |
| 996 | |
| 997 c1 = DENS(X1, Y0, Z0) - c0; | |
| 998 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |
| 999 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0); | |
| 1000 | |
| 1001 } | |
| 1002 else | |
| 1003 if (rz >= rx && rx >= ry) { | |
| 1004 | |
| 1005 c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1); | |
| 1006 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1); | |
| 1007 c3 = DENS(X0, Y0, Z1) - c0; | |
| 1008 | |
| 1009 } | |
| 1010 else | |
| 1011 if (ry >= rx && rx >= rz) { | |
| 1012 | |
| 1013 c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0); | |
| 1014 c2 = DENS(X0, Y1, Z0) - c0; | |
| 1015 c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0); | |
| 1016 | |
| 1017 } | |
| 1018 else | |
| 1019 if (ry >= rz && rz >= rx) { | |
| 1020 | |
| 1021 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |
| 1022 c2 = DENS(X0, Y1, Z0) - c0; | |
| 1023 c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0); | |
| 1024 | |
| 1025 } | |
| 1026 else | |
| 1027 if (rz >= ry && ry >= rx) { | |
| 1028 | |
| 1029 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1); | |
| 1030 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1); | |
| 1031 c3 = DENS(X0, Y0, Z1) - c0; | |
| 1032 | |
| 1033 } | |
| 1034 else { | |
| 1035 c1 = c2 = c3 = 0; | |
| 1036 } | |
| 1037 | |
| 1038 Rest = c1 * rx + c2 * ry + c3 * rz; | |
| 1039 | |
| 1040 Tmp2[OutChan] = (cmsUInt16Number) (c0 + ROUND_FIXED_TO_INT(_cmsToFixedDomain(Rest))); | |
| 1041 } | |
| 1042 | |
| 1043 | |
| 1044 | |
| 1045 for (i=0; i < p16 -> nOutputs; i++) { | |
| 1046 Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]); | |
| 1047 } | |
| 1048 } | |
| 1049 #undef DENS | |
| 1050 | |
| 1051 | |
| 1052 // For more that 3 inputs (i.e., CMYK) | |
| 1053 // evaluate two 3-dimensional interpolations and then linearly interpolate between them. | |
| 1054 static | |
| 1055 void Eval4InputsFloat(cmsContext ContextID, const cmsFloat32Number Input[], | |
| 1056 cmsFloat32Number Output[], | |
| 1057 const cmsInterpParams* p) | |
| 1058 { | |
| 1059 const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table; | |
| 1060 cmsFloat32Number rest; | |
| 1061 cmsFloat32Number pk; | |
| 1062 int k0, K0, K1; | |
| 1063 const cmsFloat32Number* T; | |
| 1064 cmsUInt32Number i; | |
| 1065 cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS]; | |
| 1066 cmsInterpParams p1; | |
| 1067 | |
| 1068 pk = fclamp(Input[0]) * p->Domain[0]; | |
| 1069 k0 = _cmsQuickFloor(pk); | |
| 1070 rest = pk - (cmsFloat32Number) k0; | |
| 1071 | |
| 1072 K0 = p -> opta[3] * k0; | |
| 1073 K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[3]); | |
| 1074 | |
| 1075 p1 = *p; | |
| 1076 memmove(&p1.Domain[0], &p ->Domain[1], 3*sizeof(cmsUInt32Number)); | |
| 1077 | |
| 1078 T = LutTable + K0; | |
| 1079 p1.Table = T; | |
| 1080 | |
| 1081 TetrahedralInterpFloat(ContextID, Input + 1, Tmp1, &p1); | |
| 1082 | |
| 1083 T = LutTable + K1; | |
| 1084 p1.Table = T; | |
| 1085 TetrahedralInterpFloat(ContextID, Input + 1, Tmp2, &p1); | |
| 1086 | |
| 1087 for (i=0; i < p -> nOutputs; i++) | |
| 1088 { | |
| 1089 cmsFloat32Number y0 = Tmp1[i]; | |
| 1090 cmsFloat32Number y1 = Tmp2[i]; | |
| 1091 | |
| 1092 Output[i] = y0 + (y1 - y0) * rest; | |
| 1093 } | |
| 1094 } | |
| 1095 | |
| 1096 #define EVAL_FNS(N,NM) static CMS_NO_SANITIZE \ | |
| 1097 void Eval##N##Inputs(cmsContext contextID, CMSREGISTER const cmsUInt16Number Input[], CMSREGISTER cmsUInt16Number Output[], CMSREGISTER const cmsInterpParams* p16) \ | |
| 1098 {\ | |
| 1099 const cmsUInt16Number* LutTable = (cmsUInt16Number*) p16 -> Table;\ | |
| 1100 cmsS15Fixed16Number fk;\ | |
| 1101 cmsS15Fixed16Number k0, rk;\ | |
| 1102 int K0, K1;\ | |
| 1103 const cmsUInt16Number* T;\ | |
| 1104 cmsUInt32Number i;\ | |
| 1105 cmsUInt16Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];\ | |
| 1106 cmsInterpParams p1;\ | |
| 1107 \ | |
| 1108 fk = _cmsToFixedDomain((cmsS15Fixed16Number) Input[0] * p16 -> Domain[0]);\ | |
| 1109 k0 = FIXED_TO_INT(fk);\ | |
| 1110 rk = FIXED_REST_TO_INT(fk);\ | |
| 1111 \ | |
| 1112 K0 = p16 -> opta[NM] * k0;\ | |
| 1113 K1 = p16 -> opta[NM] * (k0 + (Input[0] != 0xFFFFU ? 1 : 0));\ | |
| 1114 \ | |
| 1115 p1 = *p16;\ | |
| 1116 memmove(&p1.Domain[0], &p16 ->Domain[1], NM*sizeof(cmsUInt32Number));\ | |
| 1117 \ | |
| 1118 T = LutTable + K0;\ | |
| 1119 p1.Table = T;\ | |
| 1120 \ | |
| 1121 Eval##NM##Inputs(contextID, Input + 1, Tmp1, &p1);\ | |
| 1122 \ | |
| 1123 T = LutTable + K1;\ | |
| 1124 p1.Table = T;\ | |
| 1125 \ | |
| 1126 Eval##NM##Inputs(contextID, Input + 1, Tmp2, &p1);\ | |
| 1127 \ | |
| 1128 for (i=0; i < p16 -> nOutputs; i++) {\ | |
| 1129 \ | |
| 1130 Output[i] = LinearInterp(rk, Tmp1[i], Tmp2[i]);\ | |
| 1131 }\ | |
| 1132 }\ | |
| 1133 \ | |
| 1134 static void Eval##N##InputsFloat(cmsContext contextID,\ | |
| 1135 const cmsFloat32Number Input[], \ | |
| 1136 cmsFloat32Number Output[],\ | |
| 1137 const cmsInterpParams * p)\ | |
| 1138 {\ | |
| 1139 const cmsFloat32Number* LutTable = (cmsFloat32Number*) p -> Table;\ | |
| 1140 cmsFloat32Number rest;\ | |
| 1141 cmsFloat32Number pk;\ | |
| 1142 int k0, K0, K1;\ | |
| 1143 const cmsFloat32Number* T;\ | |
| 1144 cmsUInt32Number i;\ | |
| 1145 cmsFloat32Number Tmp1[MAX_STAGE_CHANNELS], Tmp2[MAX_STAGE_CHANNELS];\ | |
| 1146 cmsInterpParams p1;\ | |
| 1147 \ | |
| 1148 pk = fclamp(Input[0]) * p->Domain[0];\ | |
| 1149 k0 = _cmsQuickFloor(pk);\ | |
| 1150 rest = pk - (cmsFloat32Number) k0;\ | |
| 1151 \ | |
| 1152 K0 = p -> opta[NM] * k0;\ | |
| 1153 K1 = K0 + (fclamp(Input[0]) >= 1.0 ? 0 : p->opta[NM]);\ | |
| 1154 \ | |
| 1155 p1 = *p;\ | |
| 1156 memmove(&p1.Domain[0], &p ->Domain[1], NM*sizeof(cmsUInt32Number));\ | |
| 1157 \ | |
| 1158 T = LutTable + K0;\ | |
| 1159 p1.Table = T;\ | |
| 1160 \ | |
| 1161 Eval##NM##InputsFloat(contextID, Input + 1, Tmp1, &p1);\ | |
| 1162 \ | |
| 1163 T = LutTable + K1;\ | |
| 1164 p1.Table = T;\ | |
| 1165 \ | |
| 1166 Eval##NM##InputsFloat(contextID, Input + 1, Tmp2, &p1);\ | |
| 1167 \ | |
| 1168 for (i=0; i < p -> nOutputs; i++) {\ | |
| 1169 \ | |
| 1170 cmsFloat32Number y0 = Tmp1[i];\ | |
| 1171 cmsFloat32Number y1 = Tmp2[i];\ | |
| 1172 \ | |
| 1173 Output[i] = y0 + (y1 - y0) * rest;\ | |
| 1174 }\ | |
| 1175 } | |
| 1176 | |
| 1177 | |
| 1178 /** | |
| 1179 * Thanks to Carles Llopis for the templating idea | |
| 1180 */ | |
| 1181 EVAL_FNS(5, 4) | |
| 1182 EVAL_FNS(6, 5) | |
| 1183 EVAL_FNS(7, 6) | |
| 1184 EVAL_FNS(8, 7) | |
| 1185 EVAL_FNS(9, 8) | |
| 1186 EVAL_FNS(10, 9) | |
| 1187 EVAL_FNS(11, 10) | |
| 1188 EVAL_FNS(12, 11) | |
| 1189 EVAL_FNS(13, 12) | |
| 1190 EVAL_FNS(14, 13) | |
| 1191 EVAL_FNS(15, 14) | |
| 1192 | |
| 1193 // The default factory | |
| 1194 static | |
| 1195 cmsInterpFunction DefaultInterpolatorsFactory(cmsUInt32Number nInputChannels, cmsUInt32Number nOutputChannels, cmsUInt32Number dwFlags) | |
| 1196 { | |
| 1197 | |
| 1198 cmsInterpFunction Interpolation; | |
| 1199 cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT); | |
| 1200 cmsBool IsTrilinear = (dwFlags & CMS_LERP_FLAGS_TRILINEAR); | |
| 1201 | |
| 1202 memset(&Interpolation, 0, sizeof(Interpolation)); | |
| 1203 | |
| 1204 // Safety check | |
| 1205 if (nInputChannels >= 4 && nOutputChannels >= MAX_STAGE_CHANNELS) | |
| 1206 return Interpolation; | |
| 1207 | |
| 1208 switch (nInputChannels) { | |
| 1209 | |
| 1210 case 1: // Gray LUT / linear | |
| 1211 | |
| 1212 if (nOutputChannels == 1) { | |
| 1213 | |
| 1214 if (IsFloat) | |
| 1215 Interpolation.LerpFloat = LinLerp1Dfloat; | |
| 1216 else | |
| 1217 Interpolation.Lerp16 = LinLerp1D; | |
| 1218 | |
| 1219 } | |
| 1220 else { | |
| 1221 | |
| 1222 if (IsFloat) | |
| 1223 Interpolation.LerpFloat = Eval1InputFloat; | |
| 1224 else | |
| 1225 Interpolation.Lerp16 = Eval1Input; | |
| 1226 } | |
| 1227 break; | |
| 1228 | |
| 1229 case 2: // Duotone | |
| 1230 if (IsFloat) | |
| 1231 Interpolation.LerpFloat = BilinearInterpFloat; | |
| 1232 else | |
| 1233 Interpolation.Lerp16 = BilinearInterp16; | |
| 1234 break; | |
| 1235 | |
| 1236 case 3: // RGB et al | |
| 1237 | |
| 1238 if (IsTrilinear) { | |
| 1239 | |
| 1240 if (IsFloat) | |
| 1241 Interpolation.LerpFloat = TrilinearInterpFloat; | |
| 1242 else | |
| 1243 Interpolation.Lerp16 = TrilinearInterp16; | |
| 1244 } | |
| 1245 else { | |
| 1246 | |
| 1247 if (IsFloat) | |
| 1248 Interpolation.LerpFloat = TetrahedralInterpFloat; | |
| 1249 else { | |
| 1250 | |
| 1251 Interpolation.Lerp16 = TetrahedralInterp16; | |
| 1252 } | |
| 1253 } | |
| 1254 break; | |
| 1255 | |
| 1256 case 4: // CMYK lut | |
| 1257 | |
| 1258 if (IsFloat) | |
| 1259 Interpolation.LerpFloat = Eval4InputsFloat; | |
| 1260 else | |
| 1261 Interpolation.Lerp16 = Eval4Inputs; | |
| 1262 break; | |
| 1263 | |
| 1264 case 5: // 5 Inks | |
| 1265 if (IsFloat) | |
| 1266 Interpolation.LerpFloat = Eval5InputsFloat; | |
| 1267 else | |
| 1268 Interpolation.Lerp16 = Eval5Inputs; | |
| 1269 break; | |
| 1270 | |
| 1271 case 6: // 6 Inks | |
| 1272 if (IsFloat) | |
| 1273 Interpolation.LerpFloat = Eval6InputsFloat; | |
| 1274 else | |
| 1275 Interpolation.Lerp16 = Eval6Inputs; | |
| 1276 break; | |
| 1277 | |
| 1278 case 7: // 7 inks | |
| 1279 if (IsFloat) | |
| 1280 Interpolation.LerpFloat = Eval7InputsFloat; | |
| 1281 else | |
| 1282 Interpolation.Lerp16 = Eval7Inputs; | |
| 1283 break; | |
| 1284 | |
| 1285 case 8: // 8 inks | |
| 1286 if (IsFloat) | |
| 1287 Interpolation.LerpFloat = Eval8InputsFloat; | |
| 1288 else | |
| 1289 Interpolation.Lerp16 = Eval8Inputs; | |
| 1290 break; | |
| 1291 | |
| 1292 case 9: | |
| 1293 if (IsFloat) | |
| 1294 Interpolation.LerpFloat = Eval9InputsFloat; | |
| 1295 else | |
| 1296 Interpolation.Lerp16 = Eval9Inputs; | |
| 1297 break; | |
| 1298 | |
| 1299 case 10: | |
| 1300 if (IsFloat) | |
| 1301 Interpolation.LerpFloat = Eval10InputsFloat; | |
| 1302 else | |
| 1303 Interpolation.Lerp16 = Eval10Inputs; | |
| 1304 break; | |
| 1305 | |
| 1306 case 11: | |
| 1307 if (IsFloat) | |
| 1308 Interpolation.LerpFloat = Eval11InputsFloat; | |
| 1309 else | |
| 1310 Interpolation.Lerp16 = Eval11Inputs; | |
| 1311 break; | |
| 1312 | |
| 1313 case 12: | |
| 1314 if (IsFloat) | |
| 1315 Interpolation.LerpFloat = Eval12InputsFloat; | |
| 1316 else | |
| 1317 Interpolation.Lerp16 = Eval12Inputs; | |
| 1318 break; | |
| 1319 | |
| 1320 case 13: | |
| 1321 if (IsFloat) | |
| 1322 Interpolation.LerpFloat = Eval13InputsFloat; | |
| 1323 else | |
| 1324 Interpolation.Lerp16 = Eval13Inputs; | |
| 1325 break; | |
| 1326 | |
| 1327 case 14: | |
| 1328 if (IsFloat) | |
| 1329 Interpolation.LerpFloat = Eval14InputsFloat; | |
| 1330 else | |
| 1331 Interpolation.Lerp16 = Eval14Inputs; | |
| 1332 break; | |
| 1333 | |
| 1334 case 15: | |
| 1335 if (IsFloat) | |
| 1336 Interpolation.LerpFloat = Eval15InputsFloat; | |
| 1337 else | |
| 1338 Interpolation.Lerp16 = Eval15Inputs; | |
| 1339 break; | |
| 1340 | |
| 1341 default: | |
| 1342 Interpolation.Lerp16 = NULL; | |
| 1343 } | |
| 1344 | |
| 1345 return Interpolation; | |
| 1346 } |
