Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/source/fitz/draw-imp.h @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 // Copyright (C) 2004-2021 Artifex Software, Inc. | |
| 2 // | |
| 3 // This file is part of MuPDF. | |
| 4 // | |
| 5 // MuPDF is free software: you can redistribute it and/or modify it under the | |
| 6 // terms of the GNU Affero General Public License as published by the Free | |
| 7 // Software Foundation, either version 3 of the License, or (at your option) | |
| 8 // any later version. | |
| 9 // | |
| 10 // MuPDF is distributed in the hope that it will be useful, but WITHOUT ANY | |
| 11 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | |
| 12 // FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more | |
| 13 // details. | |
| 14 // | |
| 15 // You should have received a copy of the GNU Affero General Public License | |
| 16 // along with MuPDF. If not, see <https://www.gnu.org/licenses/agpl-3.0.en.html> | |
| 17 // | |
| 18 // Alternative licensing terms are available from the licensor. | |
| 19 // For commercial licensing, see <https://www.artifex.com/> or contact | |
| 20 // Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco, | |
| 21 // CA 94129, USA, for further information. | |
| 22 | |
| 23 #ifndef MUPDF_DRAW_IMP_H | |
| 24 #define MUPDF_DRAW_IMP_H | |
| 25 | |
| 26 #define BBOX_MIN -(1<<20) | |
| 27 #define BBOX_MAX (1<<20) | |
| 28 | |
| 29 /* divide and floor towards -inf */ | |
| 30 static inline int fz_idiv(int a, int b) | |
| 31 { | |
| 32 return a < 0 ? (a - b + 1) / b : a / b; | |
| 33 } | |
| 34 | |
| 35 /* divide and ceil towards inf */ | |
| 36 static inline int fz_idiv_up(int a, int b) | |
| 37 { | |
| 38 return a < 0 ? a / b : (a + b - 1) / b; | |
| 39 } | |
| 40 | |
| 41 #ifdef AA_BITS | |
| 42 | |
| 43 #define fz_aa_scale 0 | |
| 44 #define fz_rasterizer_aa_scale(ras) 0 | |
| 45 | |
| 46 #if AA_BITS > 6 | |
| 47 #define AA_SCALE(s, x) (x) | |
| 48 #define fz_aa_hscale 17 | |
| 49 #define fz_aa_vscale 15 | |
| 50 #define fz_aa_bits 8 | |
| 51 #define fz_aa_text_bits 8 | |
| 52 #define fz_rasterizer_aa_hscale(ras) 17 | |
| 53 #define fz_rasterizer_aa_vscale(ras) 15 | |
| 54 #define fz_rasterizer_aa_bits(ras) 8 | |
| 55 #define fz_rasterizer_aa_text_bits(ras) 8 | |
| 56 | |
| 57 #elif AA_BITS > 4 | |
| 58 #define AA_SCALE(s, x) ((x * 255) >> 6) | |
| 59 #define fz_aa_hscale 8 | |
| 60 #define fz_aa_vscale 8 | |
| 61 #define fz_aa_bits 6 | |
| 62 #define fz_aa_text_bits 6 | |
| 63 #define fz_rasterizer_aa_hscale(ras) 8 | |
| 64 #define fz_rasterizer_aa_vscale(ras) 8 | |
| 65 #define fz_rasterizer_aa_bits(ras) 6 | |
| 66 #define fz_rasterizer_aa_text_bits(ras) 6 | |
| 67 | |
| 68 #elif AA_BITS > 2 | |
| 69 #define AA_SCALE(s, x) (x * 17) | |
| 70 #define fz_aa_hscale 5 | |
| 71 #define fz_aa_vscale 3 | |
| 72 #define fz_aa_bits 4 | |
| 73 #define fz_aa_text_bits 4 | |
| 74 #define fz_rasterizer_aa_hscale(ras) 5 | |
| 75 #define fz_rasterizer_aa_vscale(ras) 3 | |
| 76 #define fz_rasterizer_aa_bits(ras) 4 | |
| 77 #define fz_rasterizer_aa_text_bits(ras) 4 | |
| 78 | |
| 79 #elif AA_BITS > 0 | |
| 80 #define AA_SCALE(s, x) ((x * 255) >> 2) | |
| 81 #define fz_aa_hscale 2 | |
| 82 #define fz_aa_vscale 2 | |
| 83 #define fz_aa_bits 2 | |
| 84 #define fz_aa_text_bits 2 | |
| 85 #define fz_rasterizer_aa_hscale(ras) 2 | |
| 86 #define fz_rasterizer_aa_vscale(ras) 2 | |
| 87 #define fz_rasterizer_aa_bits(ras) 2 | |
| 88 #define fz_rasterizer_aa_text_bits(ras) 2 | |
| 89 | |
| 90 #else | |
| 91 #define AA_SCALE(s, x) (x * 255) | |
| 92 #define fz_aa_hscale 1 | |
| 93 #define fz_aa_vscale 1 | |
| 94 #define fz_aa_bits 0 | |
| 95 #define fz_aa_text_bits 0 | |
| 96 #define fz_rasterizer_aa_hscale(ras) 1 | |
| 97 #define fz_rasterizer_aa_vscale(ras) 1 | |
| 98 #define fz_rasterizer_aa_bits(ras) 0 | |
| 99 #define fz_rasterizer_aa_text_bits(ras) 0 | |
| 100 | |
| 101 #endif | |
| 102 #else | |
| 103 | |
| 104 #define AA_SCALE(scale, x) ((x * scale) >> 8) | |
| 105 #define fz_aa_hscale (ctx->aa.hscale) | |
| 106 #define fz_aa_vscale (ctx->aa.vscale) | |
| 107 #define fz_aa_scale (ctx->aa.scale) | |
| 108 #define fz_aa_bits (ctx->aa.bits) | |
| 109 #define fz_aa_text_bits (ctx->aa.text_bits) | |
| 110 #define fz_rasterizer_aa_hscale(ras) ((ras)->aa.hscale) | |
| 111 #define fz_rasterizer_aa_vscale(ras) ((ras)->aa.vscale) | |
| 112 #define fz_rasterizer_aa_scale(ras) ((ras)->aa.scale) | |
| 113 #define fz_rasterizer_aa_bits(ras) ((ras)->aa.bits) | |
| 114 #define fz_rasterizer_aa_text_bits(ras) ((ras)->aa.text_bits) | |
| 115 | |
| 116 #endif | |
| 117 | |
| 118 /* If AA_BITS is defined, then we assume constant N bits of antialiasing. We | |
| 119 * will attempt to provide at least that number of bits of accuracy in the | |
| 120 * antialiasing (to a maximum of 8). If it is defined to be 0 then no | |
| 121 * antialiasing is done. If it is undefined to we will leave the antialiasing | |
| 122 * accuracy as a run time choice. | |
| 123 */ | |
| 124 | |
| 125 struct fz_overprint | |
| 126 { | |
| 127 /* Bit i set -> never alter this color */ | |
| 128 uint32_t mask[(FZ_MAX_COLORS+31)/32]; | |
| 129 }; | |
| 130 | |
| 131 static void inline fz_set_overprint(fz_overprint *op, int i) | |
| 132 { | |
| 133 op->mask[i>>5] |= 1<<(i&31); | |
| 134 } | |
| 135 | |
| 136 static int inline fz_overprint_component(const fz_overprint *op, int i) | |
| 137 { | |
| 138 return ((op->mask[i>>5]>>(i & 31)) & 1) == 0; | |
| 139 } | |
| 140 | |
| 141 static int inline fz_overprint_required(const fz_overprint *op) | |
| 142 { | |
| 143 int i; | |
| 144 | |
| 145 if (op == NULL) | |
| 146 return 0; | |
| 147 | |
| 148 for (i = 0; i < (FZ_MAX_COLORS+31)/32; i++) | |
| 149 if (op->mask[i] != 0) | |
| 150 return 1; | |
| 151 | |
| 152 return 0; | |
| 153 } | |
| 154 | |
| 155 typedef struct fz_rasterizer fz_rasterizer; | |
| 156 | |
| 157 typedef void (fz_rasterizer_drop_fn)(fz_context *ctx, fz_rasterizer *r); | |
| 158 typedef int (fz_rasterizer_reset_fn)(fz_context *ctx, fz_rasterizer *r); | |
| 159 typedef void (fz_rasterizer_postindex_fn)(fz_context *ctx, fz_rasterizer *r); | |
| 160 typedef void (fz_rasterizer_insert_fn)(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1, int rev); | |
| 161 typedef void (fz_rasterizer_insert_rect_fn)(fz_context *ctx, fz_rasterizer *r, float fx0, float fy0, float fx1, float fy1); | |
| 162 typedef void (fz_rasterizer_gap_fn)(fz_context *ctx, fz_rasterizer *r); | |
| 163 typedef fz_irect *(fz_rasterizer_bound_fn)(fz_context *ctx, const fz_rasterizer *r, fz_irect *bbox); | |
| 164 typedef void (fz_rasterizer_fn)(fz_context *ctx, fz_rasterizer *r, int eofill, const fz_irect *clip, fz_pixmap *pix, unsigned char *colorbv, fz_overprint *eop); | |
| 165 typedef int (fz_rasterizer_is_rect_fn)(fz_context *ctx, fz_rasterizer *r); | |
| 166 | |
| 167 typedef struct | |
| 168 { | |
| 169 fz_rasterizer_drop_fn *drop; | |
| 170 fz_rasterizer_reset_fn *reset; | |
| 171 fz_rasterizer_postindex_fn *postindex; | |
| 172 fz_rasterizer_insert_fn *insert; | |
| 173 fz_rasterizer_insert_rect_fn *rect; | |
| 174 fz_rasterizer_gap_fn *gap; | |
| 175 fz_rasterizer_fn *convert; | |
| 176 fz_rasterizer_is_rect_fn *is_rect; | |
| 177 int reusable; | |
| 178 } fz_rasterizer_fns; | |
| 179 | |
| 180 struct fz_rasterizer | |
| 181 { | |
| 182 fz_rasterizer_fns fns; | |
| 183 fz_aa_context aa; | |
| 184 fz_irect clip; /* Specified clip rectangle */ | |
| 185 fz_irect bbox; /* Measured bbox of path while stroking/filling */ | |
| 186 }; | |
| 187 | |
| 188 /* | |
| 189 When rasterizing a shape, we first create a rasterizer then | |
| 190 run through the edges of the shape, feeding them in. | |
| 191 | |
| 192 For a fill, this is easy as we just run along the path, feeding | |
| 193 edges as we go. | |
| 194 | |
| 195 For a stroke, this is trickier, as we feed in edges from | |
| 196 alternate sides of the stroke as we proceed along it. It is only | |
| 197 when we reach the end of a subpath that we know whether we need | |
| 198 an initial cap, or whether the list of edges match up. | |
| 199 | |
| 200 To identify whether a given edge fed in is forward or reverse, | |
| 201 we tag it with a 'rev' value. | |
| 202 | |
| 203 Consider the following simplified example: | |
| 204 | |
| 205 Consider a simple path A, B, C, D, close. | |
| 206 | |
| 207 +------->-------+ The outside edge of this shape is the | |
| 208 | A B | forward edge. This is fed into the rasterizer | |
| 209 | +---<---+ | in order, with rev=0. | |
| 210 | | | | | |
| 211 ^ v ^ v The inside edge of this shape is the reverse | |
| 212 | | | | edge. These edges are generated as we step | |
| 213 | +--->---+ | through the path in clockwise order, but | |
| 214 | D C | conceptually the path runs the other way. | |
| 215 +-------<-------+ These are fed into the rasterizer in clockwise | |
| 216 order, with rev=1. | |
| 217 | |
| 218 Consider another path, this time an open one: A,B,C,D | |
| 219 | |
| 220 +--->-------+ The outside edge of this shape is again the | |
| 221 * A B | forward edge. This is fed into the rasterizer | |
| 222 +---<---+ | in order, with rev=0. | |
| 223 | | | |
| 224 ^ v The inside edge of this shape is the reverse | |
| 225 | | edge. These edges are generated as we step | |
| 226 +--->---+ | through the path in clockwise order, but | |
| 227 ^ D C | conceptually the path runs the other way. | |
| 228 +---<-------+ These are fed into the rasterizer in clockwise | |
| 229 order, with rev=1. | |
| 230 | |
| 231 At the end of the path, we realise that this is an open path, and we | |
| 232 therefore have to put caps on. The cap at 'D' is easy, because it's | |
| 233 a simple continuation of the rev=0 edge list that joins to the end | |
| 234 of the rev=1 edge list. | |
| 235 | |
| 236 The cap at 'A' is trickier; it either needs to be (an) edge(s) prepended | |
| 237 to the rev=0 list or the rev=1 list. We signal this special case by | |
| 238 sending them with the special value rev=2. | |
| 239 | |
| 240 The "edge" rasterizer ignores these values. The "edgebuffer" rasterizer | |
| 241 needs to use them to ensure that edges are correctly joined together | |
| 242 to allow for any part of a pixel operation. | |
| 243 */ | |
| 244 | |
| 245 /* | |
| 246 fz_new_rasterizer: Create a new rasterizer instance. | |
| 247 This encapsulates a scan converter. | |
| 248 | |
| 249 A single rasterizer instance can be used to scan convert many | |
| 250 things. | |
| 251 | |
| 252 aa: The antialiasing settings to use (or NULL). | |
| 253 */ | |
| 254 fz_rasterizer *fz_new_rasterizer(fz_context *ctx, const fz_aa_context *aa); | |
| 255 | |
| 256 /* | |
| 257 fz_drop_rasterizer: Dispose of a rasterizer once | |
| 258 finished with. | |
| 259 */ | |
| 260 static inline void fz_drop_rasterizer(fz_context *ctx, fz_rasterizer *r) | |
| 261 { | |
| 262 if (r) | |
| 263 r->fns.drop(ctx, r); | |
| 264 } | |
| 265 | |
| 266 /* | |
| 267 fz_reset_rasterizer: Reset a rasterizer, ready to scan convert | |
| 268 a new shape. | |
| 269 | |
| 270 clip: A pointer to a (device space) clipping rectangle. | |
| 271 | |
| 272 Returns 1 if a indexing pass is required, or 0 if not. | |
| 273 | |
| 274 After this, the edges should be 'inserted' into the rasterizer. | |
| 275 */ | |
| 276 int fz_reset_rasterizer(fz_context *ctx, fz_rasterizer *r, fz_irect clip); | |
| 277 | |
| 278 /* | |
| 279 fz_insert_rasterizer: Insert an edge into a rasterizer. | |
| 280 | |
| 281 x0, y0: Initial point | |
| 282 | |
| 283 x1, y1: Final point | |
| 284 | |
| 285 rev: 'reverse' value, 0, 1 or 2. See above. | |
| 286 */ | |
| 287 static inline void fz_insert_rasterizer(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1, int rev) | |
| 288 { | |
| 289 r->fns.insert(ctx, r, x0, y0, x1, y1, rev); | |
| 290 } | |
| 291 | |
| 292 /* | |
| 293 fz_insert_rasterizer_rect: Insert a rectangle into a rasterizer. | |
| 294 | |
| 295 x0, y0: One corner of the rectangle. | |
| 296 | |
| 297 x1, y1: The opposite corner of the rectangle. | |
| 298 | |
| 299 The rectangle inserted is conceptually: | |
| 300 (x0,y0)->(x1,y0)->(x1,y1)->(x0,y1)->(x0,y0). | |
| 301 | |
| 302 This method is only used for axis aligned rectangles, | |
| 303 and enables rasterizers to perform special 'anti-dropout' | |
| 304 processing to ensure that horizontal artifacts aren't | |
| 305 lost. | |
| 306 */ | |
| 307 static inline void fz_insert_rasterizer_rect(fz_context *ctx, fz_rasterizer *r, float x0, float y0, float x1, float y1) | |
| 308 { | |
| 309 r->fns.rect(ctx, r, x0, y0, x1, y1); | |
| 310 } | |
| 311 | |
| 312 /* | |
| 313 fz_gap_rasterizer: Called to indicate that there is a gap | |
| 314 in the lists of edges fed into the rasterizer (i.e. when | |
| 315 a path hits a move). | |
| 316 */ | |
| 317 static inline void fz_gap_rasterizer(fz_context *ctx, fz_rasterizer *r) | |
| 318 { | |
| 319 if (r->fns.gap) | |
| 320 r->fns.gap(ctx, r); | |
| 321 } | |
| 322 | |
| 323 /* | |
| 324 fz_antidropout_rasterizer: Detect whether antidropout | |
| 325 behaviour is required with this rasterizer. | |
| 326 | |
| 327 Returns 1 if required, 0 otherwise. | |
| 328 */ | |
| 329 static inline int fz_antidropout_rasterizer(fz_context *ctx, fz_rasterizer *r) | |
| 330 { | |
| 331 return r->fns.rect != NULL; | |
| 332 } | |
| 333 | |
| 334 /* | |
| 335 fz_postindex_rasterizer: Called to signify the end of the | |
| 336 indexing phase. | |
| 337 | |
| 338 After this has been called, the edges should be inserted | |
| 339 again. | |
| 340 */ | |
| 341 static inline void fz_postindex_rasterizer(fz_context *ctx, fz_rasterizer *r) | |
| 342 { | |
| 343 if (r->fns.postindex) | |
| 344 r->fns.postindex(ctx, r); | |
| 345 } | |
| 346 | |
| 347 /* | |
| 348 fz_bound_rasterizer: Once a set of edges has been fed into a | |
| 349 rasterizer, the (device space) bounding box can be retrieved. | |
| 350 */ | |
| 351 fz_irect fz_bound_rasterizer(fz_context *ctx, const fz_rasterizer *rast); | |
| 352 | |
| 353 /* | |
| 354 fz_scissor_rasterizer: Retrieve the clipping box with which the | |
| 355 rasterizer was reset. | |
| 356 */ | |
| 357 fz_rect fz_scissor_rasterizer(fz_context *ctx, const fz_rasterizer *rast); | |
| 358 | |
| 359 /* | |
| 360 fz_convert_rasterizer: Convert the set of edges that have | |
| 361 been fed in, into pixels within the pixmap. | |
| 362 | |
| 363 eofill: Fill rule; True for even odd, false for non zero. | |
| 364 | |
| 365 pix: The pixmap to fill into. | |
| 366 | |
| 367 colorbv: The color components corresponding to the pixmap. | |
| 368 | |
| 369 eop: effective overprint. | |
| 370 */ | |
| 371 void fz_convert_rasterizer(fz_context *ctx, fz_rasterizer *r, int eofill, fz_pixmap *pix, unsigned char *colorbv, fz_overprint *eop); | |
| 372 | |
| 373 /* | |
| 374 fz_is_rect_rasterizer: Detect if the edges fed into a | |
| 375 rasterizer make up a simple rectangle. | |
| 376 */ | |
| 377 static inline int fz_is_rect_rasterizer(fz_context *ctx, fz_rasterizer *r) | |
| 378 { | |
| 379 return r->fns.is_rect(ctx, r); | |
| 380 } | |
| 381 | |
| 382 void *fz_new_rasterizer_of_size(fz_context *ctx, int size, const fz_rasterizer_fns *fns); | |
| 383 | |
| 384 #define fz_new_derived_rasterizer(C,M,F) \ | |
| 385 ((M*)Memento_label(fz_new_rasterizer_of_size(C, sizeof(M), F), #M)) | |
| 386 | |
| 387 /* | |
| 388 fz_rasterizer_text_aa_level: Get the number of bits of | |
| 389 antialiasing we are using for text in a given rasterizer. | |
| 390 Between 0 and 8. | |
| 391 */ | |
| 392 int fz_rasterizer_text_aa_level(fz_rasterizer *ras); | |
| 393 | |
| 394 /* | |
| 395 fz_set_rasterizer_text_aa_level: Set the number of bits of | |
| 396 antialiasing we should use for text in a given configuration. | |
| 397 | |
| 398 bits: The number of bits of antialiasing to use (values are clamped | |
| 399 to within the 0 to 8 range). | |
| 400 */ | |
| 401 void fz_set_rasterizer_text_aa_level(fz_context *ctx, fz_aa_context *aa, int bits); | |
| 402 | |
| 403 /* | |
| 404 fz_rasterizer_graphics_aa_level: Get the number of bits of | |
| 405 antialiasing we are using for graphics in a given rasterizer. | |
| 406 | |
| 407 Between 0 and 8. | |
| 408 */ | |
| 409 int fz_rasterizer_graphics_aa_level(fz_rasterizer *ras); | |
| 410 | |
| 411 /* | |
| 412 fz_set_rasterizer_graphics_aa_level: Set the number of bits of | |
| 413 antialiasing we should use for graphics in a given rasterizer. | |
| 414 | |
| 415 bits: The number of bits of antialiasing to use (values are clamped | |
| 416 to within the 0 to 8 range). | |
| 417 */ | |
| 418 void fz_set_rasterizer_graphics_aa_level(fz_context *ctx, fz_aa_context *aa, int bits); | |
| 419 | |
| 420 /* | |
| 421 fz_rasterizer_graphics_min_line_width: Get the minimum line | |
| 422 width to be used for stroked lines in a given rasterizer. | |
| 423 | |
| 424 min_line_width: The minimum line width to use (in pixels). | |
| 425 */ | |
| 426 float fz_rasterizer_graphics_min_line_width(fz_rasterizer *ras); | |
| 427 | |
| 428 /* | |
| 429 fz_set_rasterizer_graphics_min_line_width: Set the minimum line | |
| 430 width to be used for stroked lines in a given configuration. | |
| 431 | |
| 432 min_line_width: The minimum line width to use (in pixels). | |
| 433 */ | |
| 434 void fz_set_rasterizer_graphics_min_line_width(fz_context *ctx, fz_aa_context *aa, float min_line_width); | |
| 435 | |
| 436 fz_rasterizer *fz_new_gel(fz_context *ctx); | |
| 437 | |
| 438 typedef enum | |
| 439 { | |
| 440 FZ_EDGEBUFFER_ANY_PART_OF_PIXEL, | |
| 441 FZ_EDGEBUFFER_CENTER_OF_PIXEL | |
| 442 } fz_edgebuffer_rule; | |
| 443 | |
| 444 fz_rasterizer *fz_new_edgebuffer(fz_context *ctx, fz_edgebuffer_rule rule); | |
| 445 | |
| 446 int fz_flatten_fill_path(fz_context *ctx, fz_rasterizer *rast, const fz_path *path, fz_matrix ctm, float flatness, fz_irect scissor, fz_irect *bbox); | |
| 447 int fz_flatten_stroke_path(fz_context *ctx, fz_rasterizer *rast, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm, float flatness, float linewidth, fz_irect scissor, fz_irect *bbox); | |
| 448 | |
| 449 fz_irect *fz_bound_path_accurate(fz_context *ctx, fz_irect *bbox, fz_irect scissor, const fz_path *path, const fz_stroke_state *stroke, fz_matrix ctm, float flatness, float linewidth); | |
| 450 | |
| 451 typedef void (fz_solid_color_painter_t)(unsigned char * FZ_RESTRICT dp, int n, int w, const unsigned char * FZ_RESTRICT color, int da, const fz_overprint * FZ_RESTRICT eop); | |
| 452 | |
| 453 typedef void (fz_span_painter_t)(unsigned char * FZ_RESTRICT dp, int da, const unsigned char * FZ_RESTRICT sp, int sa, int n, int w, int alpha, const fz_overprint * FZ_RESTRICT eop); | |
| 454 typedef void (fz_span_color_painter_t)(unsigned char * FZ_RESTRICT dp, const unsigned char * FZ_RESTRICT mp, int n, int w, const unsigned char * FZ_RESTRICT color, int da, const fz_overprint * FZ_RESTRICT eop); | |
| 455 | |
| 456 fz_solid_color_painter_t *fz_get_solid_color_painter(int n, const unsigned char * FZ_RESTRICT color, int da, const fz_overprint * FZ_RESTRICT eop); | |
| 457 fz_span_painter_t *fz_get_span_painter(int da, int sa, int n, int alpha, const fz_overprint * FZ_RESTRICT eop); | |
| 458 fz_span_color_painter_t *fz_get_span_color_painter(int n, int da, const unsigned char * FZ_RESTRICT color, const fz_overprint * FZ_RESTRICT eop); | |
| 459 | |
| 460 void fz_paint_image(fz_context *ctx, fz_pixmap * FZ_RESTRICT dst, const fz_irect * FZ_RESTRICT scissor, fz_pixmap * FZ_RESTRICT shape, fz_pixmap * FZ_RESTRICT group_alpha, fz_pixmap * FZ_RESTRICT img, fz_matrix ctm, int alpha, int lerp_allowed, const fz_overprint * FZ_RESTRICT eop); | |
| 461 void fz_paint_image_with_color(fz_context *ctx, fz_pixmap * FZ_RESTRICT dst, const fz_irect * FZ_RESTRICT scissor, fz_pixmap * FZ_RESTRICT shape, fz_pixmap * FZ_RESTRICT group_alpha, fz_pixmap * FZ_RESTRICT img, fz_matrix ctm, const unsigned char * FZ_RESTRICT colorbv, int lerp_allowed, const fz_overprint * FZ_RESTRICT eop); | |
| 462 | |
| 463 void fz_paint_pixmap(fz_pixmap * FZ_RESTRICT dst, const fz_pixmap * FZ_RESTRICT src, int alpha); | |
| 464 void fz_paint_pixmap_alpha(fz_pixmap * FZ_RESTRICT dst, const fz_pixmap * FZ_RESTRICT src, int alpha); | |
| 465 void fz_paint_pixmap_with_mask(fz_pixmap * FZ_RESTRICT dst, const fz_pixmap * FZ_RESTRICT src, const fz_pixmap * FZ_RESTRICT msk); | |
| 466 void fz_paint_over_pixmap_with_mask(fz_pixmap * FZ_RESTRICT dst, const fz_pixmap * FZ_RESTRICT src, const fz_pixmap * FZ_RESTRICT msk); | |
| 467 void fz_paint_pixmap_with_bbox(fz_pixmap * FZ_RESTRICT dst, const fz_pixmap * FZ_RESTRICT src, int alpha, fz_irect bbox); | |
| 468 void fz_paint_pixmap_with_overprint(fz_pixmap * FZ_RESTRICT dst, const fz_pixmap * FZ_RESTRICT src, const fz_overprint * FZ_RESTRICT eop); | |
| 469 | |
| 470 void fz_blend_pixmap(fz_context *ctx, fz_pixmap * FZ_RESTRICT dst, fz_pixmap * FZ_RESTRICT src, int alpha, int blendmode, int isolated, const fz_pixmap * FZ_RESTRICT shape); | |
| 471 void fz_blend_pixmap_knockout(fz_context *ctx, fz_pixmap * FZ_RESTRICT dst, fz_pixmap * FZ_RESTRICT src, const fz_pixmap * FZ_RESTRICT shape); | |
| 472 | |
| 473 void fz_paint_glyph(const unsigned char * FZ_RESTRICT colorbv, fz_pixmap * FZ_RESTRICT dst, unsigned char * FZ_RESTRICT dp, const fz_glyph * FZ_RESTRICT glyph, int w, int h, int skip_x, int skip_y, const fz_overprint * FZ_RESTRICT eop); | |
| 474 | |
| 475 #endif |
