comparison mupdf-source/source/fitz/crypt-md5.c @ 2:b50eed0cc0ef upstream

ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4. The directory name has changed: no version number in the expanded directory now.
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:43:07 +0200
parents
children
comparison
equal deleted inserted replaced
1:1d09e1dec1d9 2:b50eed0cc0ef
1 /*
2 * This is an implementation of the RSA Data Security, Inc. * MD5
3 * Message-Digest Algorithm (RFC 1321).
4 *
5 * Homepage:
6 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
7 *
8 * Author:
9 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
10 *
11 * This software was written by Alexander Peslyak in 2001. No copyright is
12 * claimed, and the software is hereby placed in the public domain.
13 * In case this attempt to disclaim copyright and place the software in the
14 * public domain is deemed null and void, then the software is
15 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
16 * general public under the following terms:
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted.
20 *
21 * There's ABSOLUTELY NO WARRANTY, express or implied.
22 *
23 * (This is a heavily cut-down "BSD license".)
24 *
25 * This differs from Colin Plumb's older public domain implementation in that
26 * no exactly 32-bit integer data type is required (any 32-bit or wider
27 * unsigned integer data type will do), there's no compile-time endianness
28 * configuration, and the function prototypes match OpenSSL's. No code from
29 * Colin Plumb's implementation has been reused; this comment merely compares
30 * the properties of the two independent implementations.
31 *
32 * The primary goals of this implementation are portability and ease of use.
33 * It is meant to be fast, but not as fast as possible. Some known
34 * optimizations are not included to reduce source code size and avoid
35 * compile-time configuration.
36 */
37
38 #include "mupdf/fitz.h"
39
40 #include <string.h>
41
42 /*
43 * The basic MD5 functions.
44 *
45 * F and G are optimized compared to their RFC 1321 definitions for
46 * architectures that lack an AND-NOT instruction, just like in Colin Plumb's
47 * implementation.
48 */
49 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
50 #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
51 #define H(x, y, z) (((x) ^ (y)) ^ (z))
52 #define H2(x, y, z) ((x) ^ ((y) ^ (z)))
53 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
54
55 /*
56 * The MD5 transformation for all four rounds.
57 */
58 #define STEP(f, a, b, c, d, x, t, s) \
59 (a) += f((b), (c), (d)) + (x) + (t); \
60 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
61 (a) += (b)
62
63 /*
64 * SET reads 4 input bytes in little-endian byte order and stores them in a
65 * properly aligned word in host byte order.
66 */
67 #define SET(n) \
68 (block[(n)] = \
69 (uint32_t)ptr[(n) * 4] | \
70 ((uint32_t)ptr[(n) * 4 + 1] << 8) | \
71 ((uint32_t)ptr[(n) * 4 + 2] << 16) | \
72 ((uint32_t)ptr[(n) * 4 + 3] << 24))
73 #define GET(n) \
74 (block[(n)])
75
76 /*
77 * This processes one or more 64-byte data blocks, but does NOT update the bit
78 * counters. There are no alignment requirements.
79 */
80 static const unsigned char *body(fz_md5 *ctx, const unsigned char *ptr, uint32_t size)
81 {
82 uint32_t a, b, c, d;
83 uint32_t saved_a, saved_b, saved_c, saved_d;
84 uint32_t block[16];
85
86 a = ctx->a;
87 b = ctx->b;
88 c = ctx->c;
89 d = ctx->d;
90
91 do {
92 saved_a = a;
93 saved_b = b;
94 saved_c = c;
95 saved_d = d;
96
97 /* Round 1 */
98 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7);
99 STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12);
100 STEP(F, c, d, a, b, SET(2), 0x242070db, 17);
101 STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22);
102 STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7);
103 STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12);
104 STEP(F, c, d, a, b, SET(6), 0xa8304613, 17);
105 STEP(F, b, c, d, a, SET(7), 0xfd469501, 22);
106 STEP(F, a, b, c, d, SET(8), 0x698098d8, 7);
107 STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12);
108 STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17);
109 STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22);
110 STEP(F, a, b, c, d, SET(12), 0x6b901122, 7);
111 STEP(F, d, a, b, c, SET(13), 0xfd987193, 12);
112 STEP(F, c, d, a, b, SET(14), 0xa679438e, 17);
113 STEP(F, b, c, d, a, SET(15), 0x49b40821, 22);
114
115 /* Round 2 */
116 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5);
117 STEP(G, d, a, b, c, GET(6), 0xc040b340, 9);
118 STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14);
119 STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20);
120 STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5);
121 STEP(G, d, a, b, c, GET(10), 0x02441453, 9);
122 STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14);
123 STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20);
124 STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5);
125 STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9);
126 STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14);
127 STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20);
128 STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5);
129 STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9);
130 STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14);
131 STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20);
132
133 /* Round 3 */
134 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4);
135 STEP(H2, d, a, b, c, GET(8), 0x8771f681, 11);
136 STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16);
137 STEP(H2, b, c, d, a, GET(14), 0xfde5380c, 23);
138 STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4);
139 STEP(H2, d, a, b, c, GET(4), 0x4bdecfa9, 11);
140 STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16);
141 STEP(H2, b, c, d, a, GET(10), 0xbebfbc70, 23);
142 STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4);
143 STEP(H2, d, a, b, c, GET(0), 0xeaa127fa, 11);
144 STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16);
145 STEP(H2, b, c, d, a, GET(6), 0x04881d05, 23);
146 STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4);
147 STEP(H2, d, a, b, c, GET(12), 0xe6db99e5, 11);
148 STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16);
149 STEP(H2, b, c, d, a, GET(2), 0xc4ac5665, 23);
150
151 /* Round 4 */
152 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6);
153 STEP(I, d, a, b, c, GET(7), 0x432aff97, 10);
154 STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15);
155 STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21);
156 STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6);
157 STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10);
158 STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15);
159 STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21);
160 STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6);
161 STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10);
162 STEP(I, c, d, a, b, GET(6), 0xa3014314, 15);
163 STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21);
164 STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6);
165 STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10);
166 STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15);
167 STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21);
168
169 a += saved_a;
170 b += saved_b;
171 c += saved_c;
172 d += saved_d;
173
174 ptr += 64;
175 } while (size -= 64);
176
177 ctx->a = a;
178 ctx->b = b;
179 ctx->c = c;
180 ctx->d = d;
181
182 return ptr;
183 }
184
185 void fz_md5_init(fz_md5 *ctx)
186 {
187 ctx->a = 0x67452301;
188 ctx->b = 0xefcdab89;
189 ctx->c = 0x98badcfe;
190 ctx->d = 0x10325476;
191
192 ctx->lo = 0;
193 ctx->hi = 0;
194 }
195
196 void fz_md5_update(fz_md5 *ctx, const unsigned char *data, size_t size)
197 {
198 uint32_t saved_lo;
199 uint32_t used, available;
200
201 saved_lo = ctx->lo;
202 if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)
203 ctx->hi++;
204 ctx->hi += (uint32_t)(size >> 29);
205
206 used = saved_lo & 0x3f;
207
208 if (used) {
209 available = 64 - used;
210
211 if (size < available) {
212 memcpy(&ctx->buffer[used], data, size);
213 return;
214 }
215
216 memcpy(&ctx->buffer[used], data, available);
217 data = data + available;
218 size -= available;
219 body(ctx, ctx->buffer, 64);
220 }
221
222 if (size >= 64) {
223 data = body(ctx, data, size & ~(uint32_t)0x3f);
224 size &= 0x3f;
225 }
226
227 memcpy(ctx->buffer, data, size);
228 }
229
230 #define OUT(dst, src) \
231 (dst)[0] = (src); \
232 (dst)[1] = (src >> 8); \
233 (dst)[2] = (src >> 16); \
234 (dst)[3] = (src >> 24)
235
236 void fz_md5_final(fz_md5 *ctx, unsigned char result[16])
237 {
238 uint32_t used, available;
239
240 used = ctx->lo & 0x3f;
241
242 ctx->buffer[used++] = 0x80;
243
244 available = 64 - used;
245
246 if (available < 8) {
247 memset(&ctx->buffer[used], 0, available);
248 body(ctx, ctx->buffer, 64);
249 used = 0;
250 available = 64;
251 }
252
253 memset(&ctx->buffer[used], 0, available - 8);
254
255 ctx->lo <<= 3;
256 OUT(&ctx->buffer[56], ctx->lo);
257 OUT(&ctx->buffer[60], ctx->hi);
258
259 body(ctx, ctx->buffer, 64);
260
261 OUT(&result[0], ctx->a);
262 OUT(&result[4], ctx->b);
263 OUT(&result[8], ctx->c);
264 OUT(&result[12], ctx->d);
265
266 memset(ctx, 0, sizeof(*ctx));
267 }
268
269 void fz_md5_update_int64(fz_md5 *context, int64_t i)
270 {
271 unsigned char c[8];
272
273 c[0] = (unsigned char)(i);
274 c[1] = (unsigned char)(i>>8);
275 c[2] = (unsigned char)(i>>16);
276 c[3] = (unsigned char)(i>>24);
277 c[4] = (unsigned char)(i>>32);
278 c[5] = (unsigned char)(i>>40);
279 c[6] = (unsigned char)(i>>48);
280 c[7] = (unsigned char)(i>>56);
281
282 fz_md5_update(context, &c[0], sizeof(c));
283 }