Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/source/fitz/crypt-aes.c @ 2:b50eed0cc0ef upstream
ADD: MuPDF v1.26.7: the MuPDF source as downloaded by a default build of PyMuPDF 1.26.4.
The directory name has changed: no version number in the expanded directory now.
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:43:07 +0200 |
| parents | |
| children |
comparison
equal
deleted
inserted
replaced
| 1:1d09e1dec1d9 | 2:b50eed0cc0ef |
|---|---|
| 1 /* | |
| 2 * FIPS-197 compliant AES implementation | |
| 3 * | |
| 4 * Copyright (C) 2006-2007 Christophe Devine | |
| 5 * | |
| 6 * Redistribution and use in source and binary forms, with or without | |
| 7 * modification, are permitted provided that the following conditions | |
| 8 * are met: | |
| 9 * | |
| 10 * * Redistributions of source code _must_ retain the above copyright | |
| 11 * notice, this list of conditions and the following disclaimer. | |
| 12 * * Redistributions in binary form may or may not reproduce the above | |
| 13 * copyright notice, this list of conditions and the following | |
| 14 * disclaimer in the documentation and/or other materials provided | |
| 15 * with the distribution. | |
| 16 * * Neither the name of XySSL nor the names of its contributors may be | |
| 17 * used to endorse or promote products derived from this software | |
| 18 * without specific prior written permission. | |
| 19 * | |
| 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | |
| 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 24 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 25 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED | |
| 26 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | |
| 27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | |
| 28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
| 29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
| 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 31 */ | |
| 32 /* | |
| 33 * The AES block cipher was designed by Vincent Rijmen and Joan Daemen. | |
| 34 * | |
| 35 * http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf | |
| 36 * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf | |
| 37 */ | |
| 38 | |
| 39 #include "mupdf/fitz.h" | |
| 40 | |
| 41 #include <string.h> | |
| 42 | |
| 43 #define aes_context fz_aes | |
| 44 | |
| 45 /* AES block cipher implementation from XYSSL */ | |
| 46 | |
| 47 /* To prevent coverity being confused by sign extensions from shifts, we | |
| 48 * have replaced "unsigned long" by "uint32_t". To match styles, we have | |
| 49 * similarly replaced "unsigned char" by uint8_t. */ | |
| 50 | |
| 51 | |
| 52 /* | |
| 53 * 32-bit integer manipulation macros (little endian) | |
| 54 */ | |
| 55 #ifndef GET_ULONG_LE | |
| 56 #define GET_ULONG_LE(n,b,i) \ | |
| 57 { \ | |
| 58 (n) = ( (uint32_t) (b)[(i)] ) \ | |
| 59 | ( (uint32_t) (b)[(i) + 1] << 8 ) \ | |
| 60 | ( (uint32_t) (b)[(i) + 2] << 16 ) \ | |
| 61 | ( (uint32_t) (b)[(i) + 3] << 24 ); \ | |
| 62 } | |
| 63 #endif | |
| 64 | |
| 65 #ifndef PUT_ULONG_LE | |
| 66 #define PUT_ULONG_LE(n,b,i) \ | |
| 67 { \ | |
| 68 (b)[(i) ] = (uint8_t) ( (n) ); \ | |
| 69 (b)[(i) + 1] = (uint8_t) ( (n) >> 8 ); \ | |
| 70 (b)[(i) + 2] = (uint8_t) ( (n) >> 16 ); \ | |
| 71 (b)[(i) + 3] = (uint8_t) ( (n) >> 24 ); \ | |
| 72 } | |
| 73 #endif | |
| 74 | |
| 75 /* | |
| 76 * Forward S-box & tables | |
| 77 */ | |
| 78 static uint8_t FSb[256]; | |
| 79 static uint32_t FT0[256]; | |
| 80 static uint32_t FT1[256]; | |
| 81 static uint32_t FT2[256]; | |
| 82 static uint32_t FT3[256]; | |
| 83 | |
| 84 /* | |
| 85 * Reverse S-box & tables | |
| 86 */ | |
| 87 static uint8_t RSb[256]; | |
| 88 static uint32_t RT0[256]; | |
| 89 static uint32_t RT1[256]; | |
| 90 static uint32_t RT2[256]; | |
| 91 static uint32_t RT3[256]; | |
| 92 | |
| 93 /* | |
| 94 * Round constants | |
| 95 */ | |
| 96 static uint32_t RCON[10]; | |
| 97 | |
| 98 /* | |
| 99 * Tables generation code | |
| 100 */ | |
| 101 #define ROTL8(x) ( ( x << 8 ) & 0xFFFFFFFF ) | ( x >> 24 ) | |
| 102 #define XTIME(x) ( ( x << 1 ) ^ ( ( x & 0x80 ) ? 0x1B : 0x00 ) ) | |
| 103 #define MUL(x,y) ( ( x && y ) ? pow[(log[x]+log[y]) % 255] : 0 ) | |
| 104 | |
| 105 static int aes_init_done = 0; | |
| 106 | |
| 107 static void aes_gen_tables( void ) | |
| 108 { | |
| 109 int i, x, y, z; | |
| 110 int pow[256]; | |
| 111 int log[256]; | |
| 112 | |
| 113 /* | |
| 114 * compute pow and log tables over GF(2^8) | |
| 115 */ | |
| 116 for( i = 0, x = 1; i < 256; i++ ) | |
| 117 { | |
| 118 pow[i] = x; | |
| 119 log[x] = i; | |
| 120 x = ( x ^ XTIME( x ) ) & 0xFF; | |
| 121 } | |
| 122 | |
| 123 /* | |
| 124 * calculate the round constants | |
| 125 */ | |
| 126 for( i = 0, x = 1; i < 10; i++ ) | |
| 127 { | |
| 128 RCON[i] = (uint32_t) x; | |
| 129 x = XTIME( x ) & 0xFF; | |
| 130 } | |
| 131 | |
| 132 /* | |
| 133 * generate the forward and reverse S-boxes | |
| 134 */ | |
| 135 FSb[0x00] = 0x63; | |
| 136 RSb[0x63] = 0x00; | |
| 137 | |
| 138 for( i = 1; i < 256; i++ ) | |
| 139 { | |
| 140 x = pow[255 - log[i]]; | |
| 141 | |
| 142 y = x; y = ( (y << 1) | (y >> 7) ) & 0xFF; | |
| 143 x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF; | |
| 144 x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF; | |
| 145 x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF; | |
| 146 x ^= y ^ 0x63; | |
| 147 | |
| 148 FSb[i] = (uint8_t) x; | |
| 149 RSb[x] = (uint8_t) i; | |
| 150 } | |
| 151 | |
| 152 /* | |
| 153 * generate the forward and reverse tables | |
| 154 */ | |
| 155 for( i = 0; i < 256; i++ ) | |
| 156 { | |
| 157 x = FSb[i]; | |
| 158 y = XTIME( x ) & 0xFF; | |
| 159 z = ( y ^ x ) & 0xFF; | |
| 160 | |
| 161 FT0[i] = ( (uint32_t) y ) ^ | |
| 162 ( (uint32_t) x << 8 ) ^ | |
| 163 ( (uint32_t) x << 16 ) ^ | |
| 164 ( (uint32_t) z << 24 ); | |
| 165 | |
| 166 FT1[i] = ROTL8( FT0[i] ); | |
| 167 FT2[i] = ROTL8( FT1[i] ); | |
| 168 FT3[i] = ROTL8( FT2[i] ); | |
| 169 | |
| 170 x = RSb[i]; | |
| 171 | |
| 172 RT0[i] = ( (uint32_t) MUL( 0x0E, x ) ) ^ | |
| 173 ( (uint32_t) MUL( 0x09, x ) << 8 ) ^ | |
| 174 ( (uint32_t) MUL( 0x0D, x ) << 16 ) ^ | |
| 175 ( (uint32_t) MUL( 0x0B, x ) << 24 ); | |
| 176 | |
| 177 RT1[i] = ROTL8( RT0[i] ); | |
| 178 RT2[i] = ROTL8( RT1[i] ); | |
| 179 RT3[i] = ROTL8( RT2[i] ); | |
| 180 } | |
| 181 } | |
| 182 | |
| 183 /* | |
| 184 * AES key schedule (encryption) | |
| 185 */ | |
| 186 int fz_aes_setkey_enc( aes_context *ctx, const uint8_t *key, int keysize ) | |
| 187 { | |
| 188 int i; | |
| 189 uint32_t *RK; | |
| 190 | |
| 191 #if !defined(XYSSL_AES_ROM_TABLES) | |
| 192 if( aes_init_done == 0 ) | |
| 193 { | |
| 194 aes_gen_tables(); | |
| 195 aes_init_done = 1; | |
| 196 } | |
| 197 #endif | |
| 198 | |
| 199 switch( keysize ) | |
| 200 { | |
| 201 case 128: ctx->nr = 10; break; | |
| 202 case 192: ctx->nr = 12; break; | |
| 203 case 256: ctx->nr = 14; break; | |
| 204 default : return 1; | |
| 205 } | |
| 206 | |
| 207 #if defined(PADLOCK_ALIGN16) | |
| 208 ctx->rk = RK = PADLOCK_ALIGN16( ctx->buf ); | |
| 209 #else | |
| 210 ctx->rk = RK = ctx->buf; | |
| 211 #endif | |
| 212 | |
| 213 for( i = 0; i < (keysize >> 5); i++ ) | |
| 214 { | |
| 215 GET_ULONG_LE( RK[i], key, i << 2 ); | |
| 216 } | |
| 217 | |
| 218 switch( ctx->nr ) | |
| 219 { | |
| 220 case 10: | |
| 221 | |
| 222 for( i = 0; i < 10; i++, RK += 4 ) | |
| 223 { | |
| 224 RK[4] = RK[0] ^ RCON[i] ^ | |
| 225 ( FSb[ ( RK[3] >> 8 ) & 0xFF ] ) ^ | |
| 226 ( FSb[ ( RK[3] >> 16 ) & 0xFF ] << 8 ) ^ | |
| 227 ( FSb[ ( RK[3] >> 24 ) & 0xFF ] << 16 ) ^ | |
| 228 ( FSb[ ( RK[3] ) & 0xFF ] << 24 ); | |
| 229 | |
| 230 RK[5] = RK[1] ^ RK[4]; | |
| 231 RK[6] = RK[2] ^ RK[5]; | |
| 232 RK[7] = RK[3] ^ RK[6]; | |
| 233 } | |
| 234 break; | |
| 235 | |
| 236 case 12: | |
| 237 | |
| 238 for( i = 0; i < 8; i++, RK += 6 ) | |
| 239 { | |
| 240 RK[6] = RK[0] ^ RCON[i] ^ | |
| 241 ( FSb[ ( RK[5] >> 8 ) & 0xFF ] ) ^ | |
| 242 ( FSb[ ( RK[5] >> 16 ) & 0xFF ] << 8 ) ^ | |
| 243 ( FSb[ ( RK[5] >> 24 ) & 0xFF ] << 16 ) ^ | |
| 244 ( FSb[ ( RK[5] ) & 0xFF ] << 24 ); | |
| 245 | |
| 246 RK[7] = RK[1] ^ RK[6]; | |
| 247 RK[8] = RK[2] ^ RK[7]; | |
| 248 RK[9] = RK[3] ^ RK[8]; | |
| 249 RK[10] = RK[4] ^ RK[9]; | |
| 250 RK[11] = RK[5] ^ RK[10]; | |
| 251 } | |
| 252 break; | |
| 253 | |
| 254 case 14: | |
| 255 | |
| 256 for( i = 0; i < 7; i++, RK += 8 ) | |
| 257 { | |
| 258 RK[8] = RK[0] ^ RCON[i] ^ | |
| 259 ( FSb[ ( RK[7] >> 8 ) & 0xFF ] ) ^ | |
| 260 ( FSb[ ( RK[7] >> 16 ) & 0xFF ] << 8 ) ^ | |
| 261 ( FSb[ ( RK[7] >> 24 ) & 0xFF ] << 16 ) ^ | |
| 262 ( FSb[ ( RK[7] ) & 0xFF ] << 24 ); | |
| 263 | |
| 264 RK[9] = RK[1] ^ RK[8]; | |
| 265 RK[10] = RK[2] ^ RK[9]; | |
| 266 RK[11] = RK[3] ^ RK[10]; | |
| 267 | |
| 268 RK[12] = RK[4] ^ | |
| 269 ( FSb[ ( RK[11] ) & 0xFF ] ) ^ | |
| 270 ( FSb[ ( RK[11] >> 8 ) & 0xFF ] << 8 ) ^ | |
| 271 ( FSb[ ( RK[11] >> 16 ) & 0xFF ] << 16 ) ^ | |
| 272 ( FSb[ ( RK[11] >> 24 ) & 0xFF ] << 24 ); | |
| 273 | |
| 274 RK[13] = RK[5] ^ RK[12]; | |
| 275 RK[14] = RK[6] ^ RK[13]; | |
| 276 RK[15] = RK[7] ^ RK[14]; | |
| 277 } | |
| 278 break; | |
| 279 | |
| 280 default: | |
| 281 | |
| 282 break; | |
| 283 } | |
| 284 return 0; | |
| 285 } | |
| 286 | |
| 287 /* | |
| 288 * AES key schedule (decryption) | |
| 289 */ | |
| 290 int fz_aes_setkey_dec(aes_context *ctx, const uint8_t *key, int keysize) | |
| 291 { | |
| 292 int i, j; | |
| 293 aes_context cty; | |
| 294 uint32_t *RK; | |
| 295 uint32_t *SK; | |
| 296 | |
| 297 switch( keysize ) | |
| 298 { | |
| 299 case 128: ctx->nr = 10; break; | |
| 300 case 192: ctx->nr = 12; break; | |
| 301 case 256: ctx->nr = 14; break; | |
| 302 default: return 1; | |
| 303 } | |
| 304 | |
| 305 #if defined(PADLOCK_ALIGN16) | |
| 306 ctx->rk = RK = PADLOCK_ALIGN16( ctx->buf ); | |
| 307 #else | |
| 308 ctx->rk = RK = ctx->buf; | |
| 309 #endif | |
| 310 | |
| 311 i = fz_aes_setkey_enc( &cty, key, keysize ); | |
| 312 if (i) | |
| 313 return i; | |
| 314 SK = cty.rk + cty.nr * 4; | |
| 315 | |
| 316 *RK++ = *SK++; | |
| 317 *RK++ = *SK++; | |
| 318 *RK++ = *SK++; | |
| 319 *RK++ = *SK++; | |
| 320 | |
| 321 for( i = ctx->nr - 1, SK -= 8; i > 0; i--, SK -= 8 ) | |
| 322 { | |
| 323 for( j = 0; j < 4; j++, SK++ ) | |
| 324 { | |
| 325 *RK++ = RT0[ FSb[ ( *SK ) & 0xFF ] ] ^ | |
| 326 RT1[ FSb[ ( *SK >> 8 ) & 0xFF ] ] ^ | |
| 327 RT2[ FSb[ ( *SK >> 16 ) & 0xFF ] ] ^ | |
| 328 RT3[ FSb[ ( *SK >> 24 ) & 0xFF ] ]; | |
| 329 } | |
| 330 } | |
| 331 | |
| 332 *RK++ = *SK++; | |
| 333 *RK++ = *SK++; | |
| 334 *RK++ = *SK++; | |
| 335 *RK = *SK; | |
| 336 | |
| 337 memset( &cty, 0, sizeof( aes_context ) ); | |
| 338 return 0; | |
| 339 } | |
| 340 | |
| 341 #define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \ | |
| 342 { \ | |
| 343 X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^ \ | |
| 344 FT1[ ( Y1 >> 8 ) & 0xFF ] ^ \ | |
| 345 FT2[ ( Y2 >> 16 ) & 0xFF ] ^ \ | |
| 346 FT3[ ( Y3 >> 24 ) & 0xFF ]; \ | |
| 347 \ | |
| 348 X1 = *RK++ ^ FT0[ ( Y1 ) & 0xFF ] ^ \ | |
| 349 FT1[ ( Y2 >> 8 ) & 0xFF ] ^ \ | |
| 350 FT2[ ( Y3 >> 16 ) & 0xFF ] ^ \ | |
| 351 FT3[ ( Y0 >> 24 ) & 0xFF ]; \ | |
| 352 \ | |
| 353 X2 = *RK++ ^ FT0[ ( Y2 ) & 0xFF ] ^ \ | |
| 354 FT1[ ( Y3 >> 8 ) & 0xFF ] ^ \ | |
| 355 FT2[ ( Y0 >> 16 ) & 0xFF ] ^ \ | |
| 356 FT3[ ( Y1 >> 24 ) & 0xFF ]; \ | |
| 357 \ | |
| 358 X3 = *RK++ ^ FT0[ ( Y3 ) & 0xFF ] ^ \ | |
| 359 FT1[ ( Y0 >> 8 ) & 0xFF ] ^ \ | |
| 360 FT2[ ( Y1 >> 16 ) & 0xFF ] ^ \ | |
| 361 FT3[ ( Y2 >> 24 ) & 0xFF ]; \ | |
| 362 } | |
| 363 | |
| 364 #define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3) \ | |
| 365 { \ | |
| 366 X0 = *RK++ ^ RT0[ ( Y0 ) & 0xFF ] ^ \ | |
| 367 RT1[ ( Y3 >> 8 ) & 0xFF ] ^ \ | |
| 368 RT2[ ( Y2 >> 16 ) & 0xFF ] ^ \ | |
| 369 RT3[ ( Y1 >> 24 ) & 0xFF ]; \ | |
| 370 \ | |
| 371 X1 = *RK++ ^ RT0[ ( Y1 ) & 0xFF ] ^ \ | |
| 372 RT1[ ( Y0 >> 8 ) & 0xFF ] ^ \ | |
| 373 RT2[ ( Y3 >> 16 ) & 0xFF ] ^ \ | |
| 374 RT3[ ( Y2 >> 24 ) & 0xFF ]; \ | |
| 375 \ | |
| 376 X2 = *RK++ ^ RT0[ ( Y2 ) & 0xFF ] ^ \ | |
| 377 RT1[ ( Y1 >> 8 ) & 0xFF ] ^ \ | |
| 378 RT2[ ( Y0 >> 16 ) & 0xFF ] ^ \ | |
| 379 RT3[ ( Y3 >> 24 ) & 0xFF ]; \ | |
| 380 \ | |
| 381 X3 = *RK++ ^ RT0[ ( Y3 ) & 0xFF ] ^ \ | |
| 382 RT1[ ( Y2 >> 8 ) & 0xFF ] ^ \ | |
| 383 RT2[ ( Y1 >> 16 ) & 0xFF ] ^ \ | |
| 384 RT3[ ( Y0 >> 24 ) & 0xFF ]; \ | |
| 385 } | |
| 386 | |
| 387 /* | |
| 388 * AES-ECB block encryption/decryption | |
| 389 */ | |
| 390 void fz_aes_crypt_ecb( aes_context *ctx, | |
| 391 int mode, | |
| 392 const uint8_t input[16], | |
| 393 uint8_t output[16] ) | |
| 394 { | |
| 395 int i; | |
| 396 uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3; | |
| 397 | |
| 398 #if defined(XYSSL_PADLOCK_C) && defined(XYSSL_HAVE_X86) | |
| 399 if( padlock_supports( PADLOCK_ACE ) ) | |
| 400 { | |
| 401 if( padlock_xcryptecb( ctx, mode, input, output ) == 0 ) | |
| 402 return; | |
| 403 } | |
| 404 #endif | |
| 405 | |
| 406 RK = ctx->rk; | |
| 407 | |
| 408 GET_ULONG_LE( X0, input, 0 ); X0 ^= *RK++; | |
| 409 GET_ULONG_LE( X1, input, 4 ); X1 ^= *RK++; | |
| 410 GET_ULONG_LE( X2, input, 8 ); X2 ^= *RK++; | |
| 411 GET_ULONG_LE( X3, input, 12 ); X3 ^= *RK++; | |
| 412 | |
| 413 if( mode == FZ_AES_DECRYPT ) | |
| 414 { | |
| 415 for( i = (ctx->nr >> 1) - 1; i > 0; i-- ) | |
| 416 { | |
| 417 AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); | |
| 418 AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); | |
| 419 } | |
| 420 | |
| 421 AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); | |
| 422 | |
| 423 X0 = *RK++ ^ ( RSb[ ( Y0 ) & 0xFF ] ) ^ | |
| 424 ( RSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^ | |
| 425 ( RSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^ | |
| 426 ( RSb[ ( Y1 >> 24 ) & 0xFF ] << 24 ); | |
| 427 | |
| 428 X1 = *RK++ ^ ( RSb[ ( Y1 ) & 0xFF ] ) ^ | |
| 429 ( RSb[ ( Y0 >>8 ) & 0xFF ] << 8 ) ^ | |
| 430 ( RSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^ | |
| 431 ( RSb[ ( Y2 >> 24 ) & 0xFF ] << 24 ); | |
| 432 | |
| 433 X2 = *RK++ ^ ( RSb[ ( Y2 ) & 0xFF ] ) ^ | |
| 434 ( RSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^ | |
| 435 ( RSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^ | |
| 436 ( RSb[ ( Y3 >> 24 ) & 0xFF ] << 24 ); | |
| 437 | |
| 438 X3 = *RK ^ ( RSb[ ( Y3 ) & 0xFF ] ) ^ | |
| 439 ( RSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^ | |
| 440 ( RSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^ | |
| 441 ( RSb[ ( Y0 >> 24 ) & 0xFF ] << 24 ); | |
| 442 } | |
| 443 else /* FZ_AES_ENCRYPT */ | |
| 444 { | |
| 445 for( i = (ctx->nr >> 1) - 1; i > 0; i-- ) | |
| 446 { | |
| 447 AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); | |
| 448 AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 ); | |
| 449 } | |
| 450 | |
| 451 AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 ); | |
| 452 | |
| 453 X0 = *RK++ ^ ( FSb[ ( Y0 ) & 0xFF ] ) ^ | |
| 454 ( FSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^ | |
| 455 ( FSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^ | |
| 456 ( FSb[ ( Y3 >> 24 ) & 0xFF ] << 24 ); | |
| 457 | |
| 458 X1 = *RK++ ^ ( FSb[ ( Y1 ) & 0xFF ] ) ^ | |
| 459 ( FSb[ ( Y2 >> 8 ) & 0xFF ] << 8 ) ^ | |
| 460 ( FSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^ | |
| 461 ( FSb[ ( Y0 >> 24 ) & 0xFF ] << 24 ); | |
| 462 | |
| 463 X2 = *RK++ ^ ( FSb[ ( Y2 ) & 0xFF ] ) ^ | |
| 464 ( FSb[ ( Y3 >> 8 ) & 0xFF ] << 8 ) ^ | |
| 465 ( FSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^ | |
| 466 ( FSb[ ( Y1 >> 24 ) & 0xFF ] << 24 ); | |
| 467 | |
| 468 X3 = *RK ^ ( FSb[ ( Y3 ) & 0xFF ] ) ^ | |
| 469 ( FSb[ ( Y0 >> 8 ) & 0xFF ] << 8 ) ^ | |
| 470 ( FSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^ | |
| 471 ( FSb[ ( Y2 >> 24 ) & 0xFF ] << 24 ); | |
| 472 } | |
| 473 | |
| 474 PUT_ULONG_LE( X0, output, 0 ); | |
| 475 PUT_ULONG_LE( X1, output, 4 ); | |
| 476 PUT_ULONG_LE( X2, output, 8 ); | |
| 477 PUT_ULONG_LE( X3, output, 12 ); | |
| 478 } | |
| 479 | |
| 480 /* | |
| 481 * AES-CBC buffer encryption/decryption | |
| 482 */ | |
| 483 void fz_aes_crypt_cbc( aes_context *ctx, | |
| 484 int mode, | |
| 485 size_t length, | |
| 486 uint8_t iv[16], | |
| 487 const uint8_t *input, | |
| 488 uint8_t *output ) | |
| 489 { | |
| 490 int i; | |
| 491 uint8_t temp[16]; | |
| 492 | |
| 493 #if defined(XYSSL_PADLOCK_C) && defined(XYSSL_HAVE_X86) | |
| 494 if( padlock_supports( PADLOCK_ACE ) ) | |
| 495 { | |
| 496 if( padlock_xcryptcbc( ctx, mode, length, iv, input, output ) == 0 ) | |
| 497 return; | |
| 498 } | |
| 499 #endif | |
| 500 | |
| 501 if( mode == FZ_AES_DECRYPT ) | |
| 502 { | |
| 503 while( length > 0 ) | |
| 504 { | |
| 505 memcpy( temp, input, 16 ); | |
| 506 fz_aes_crypt_ecb( ctx, mode, input, output ); | |
| 507 | |
| 508 for( i = 0; i < 16; i++ ) | |
| 509 output[i] = (uint8_t)( output[i] ^ iv[i] ); | |
| 510 | |
| 511 memcpy( iv, temp, 16 ); | |
| 512 | |
| 513 input += 16; | |
| 514 output += 16; | |
| 515 length -= 16; | |
| 516 } | |
| 517 } | |
| 518 else | |
| 519 { | |
| 520 while( length > 0 ) | |
| 521 { | |
| 522 for( i = 0; i < 16; i++ ) | |
| 523 output[i] = (uint8_t)( input[i] ^ iv[i] ); | |
| 524 | |
| 525 fz_aes_crypt_ecb( ctx, mode, output, output ); | |
| 526 memcpy( iv, output, 16 ); | |
| 527 | |
| 528 input += 16; | |
| 529 output += 16; | |
| 530 length -= 16; | |
| 531 } | |
| 532 } | |
| 533 } | |
| 534 | |
| 535 #ifdef UNUSED | |
| 536 /* | |
| 537 * AES-CFB buffer encryption/decryption | |
| 538 */ | |
| 539 void fz_aes_crypt_cfb( aes_context *ctx, | |
| 540 int mode, | |
| 541 int length, | |
| 542 int *iv_off, | |
| 543 uint8_t iv[16], | |
| 544 const uint8_t *input, | |
| 545 uint8_t *output ) | |
| 546 { | |
| 547 int c, n = *iv_off; | |
| 548 | |
| 549 if( mode == FZ_AES_DECRYPT ) | |
| 550 { | |
| 551 while( length-- ) | |
| 552 { | |
| 553 if( n == 0 ) | |
| 554 fz_aes_crypt_ecb( ctx, FZ_AES_ENCRYPT, iv, iv ); | |
| 555 | |
| 556 c = *input++; | |
| 557 *output++ = (uint8_t)( c ^ iv[n] ); | |
| 558 iv[n] = (uint8_t) c; | |
| 559 | |
| 560 n = (n + 1) & 0x0F; | |
| 561 } | |
| 562 } | |
| 563 else | |
| 564 { | |
| 565 while( length-- ) | |
| 566 { | |
| 567 if( n == 0 ) | |
| 568 fz_aes_crypt_ecb( ctx, FZ_AES_ENCRYPT, iv, iv ); | |
| 569 | |
| 570 iv[n] = *output++ = (uint8_t)( iv[n] ^ *input++ ); | |
| 571 | |
| 572 n = (n + 1) & 0x0F; | |
| 573 } | |
| 574 } | |
| 575 | |
| 576 *iv_off = n; | |
| 577 } | |
| 578 #endif |
