Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/tesseract/src/lstm/fullyconnected.h @ 3:2c135c81b16c
MERGE: upstream PyMuPDF 1.26.4 with MuPDF 1.26.7
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:44:09 +0200 |
| parents | b50eed0cc0ef |
| children |
comparison
equal
deleted
inserted
replaced
| 0:6015a75abc2d | 3:2c135c81b16c |
|---|---|
| 1 /////////////////////////////////////////////////////////////////////// | |
| 2 // File: fullyconnected.h | |
| 3 // Description: Simple feed-forward layer with various non-linearities. | |
| 4 // Author: Ray Smith | |
| 5 // | |
| 6 // (C) Copyright 2014, Google Inc. | |
| 7 // Licensed under the Apache License, Version 2.0 (the "License"); | |
| 8 // you may not use this file except in compliance with the License. | |
| 9 // You may obtain a copy of the License at | |
| 10 // http://www.apache.org/licenses/LICENSE-2.0 | |
| 11 // Unless required by applicable law or agreed to in writing, software | |
| 12 // distributed under the License is distributed on an "AS IS" BASIS, | |
| 13 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| 14 // See the License for the specific language governing permissions and | |
| 15 // limitations under the License. | |
| 16 /////////////////////////////////////////////////////////////////////// | |
| 17 | |
| 18 #ifndef TESSERACT_LSTM_FULLYCONNECTED_H_ | |
| 19 #define TESSERACT_LSTM_FULLYCONNECTED_H_ | |
| 20 | |
| 21 #include "network.h" | |
| 22 #include "networkscratch.h" | |
| 23 #include "tesstypes.h" | |
| 24 | |
| 25 namespace tesseract { | |
| 26 | |
| 27 // C++ Implementation of the Softmax (output) class from lstm.py. | |
| 28 class FullyConnected : public Network { | |
| 29 public: | |
| 30 TESS_API | |
| 31 FullyConnected(const std::string &name, int ni, int no, NetworkType type); | |
| 32 ~FullyConnected() override = default; | |
| 33 | |
| 34 // Returns the shape output from the network given an input shape (which may | |
| 35 // be partially unknown ie zero). | |
| 36 StaticShape OutputShape(const StaticShape &input_shape) const override; | |
| 37 | |
| 38 std::string spec() const override { | |
| 39 std::string spec; | |
| 40 if (type_ == NT_TANH) { | |
| 41 spec += "Ft" + std::to_string(no_); | |
| 42 } else if (type_ == NT_LOGISTIC) { | |
| 43 spec += "Fs" + std::to_string(no_); | |
| 44 } else if (type_ == NT_RELU) { | |
| 45 spec += "Fr" + std::to_string(no_); | |
| 46 } else if (type_ == NT_LINEAR) { | |
| 47 spec += "Fl" + std::to_string(no_); | |
| 48 } else if (type_ == NT_POSCLIP) { | |
| 49 spec += "Fp" + std::to_string(no_); | |
| 50 } else if (type_ == NT_SYMCLIP) { | |
| 51 spec += "Fn" + std::to_string(no_); | |
| 52 } else if (type_ == NT_SOFTMAX) { | |
| 53 spec += "Fc" + std::to_string(no_); | |
| 54 } else { | |
| 55 spec += "Fm" + std::to_string(no_); | |
| 56 } | |
| 57 return spec; | |
| 58 } | |
| 59 | |
| 60 // Changes the type to the given type. Used to commute a softmax to a | |
| 61 // non-output type for adding on other networks. | |
| 62 void ChangeType(NetworkType type) { | |
| 63 type_ = type; | |
| 64 } | |
| 65 | |
| 66 // Suspends/Enables training by setting the training_ flag. Serialize and | |
| 67 // DeSerialize only operate on the run-time data if state is false. | |
| 68 void SetEnableTraining(TrainingState state) override; | |
| 69 | |
| 70 // Sets up the network for training. Initializes weights using weights of | |
| 71 // scale `range` picked according to the random number generator `randomizer`. | |
| 72 int InitWeights(float range, TRand *randomizer) override; | |
| 73 // Recursively searches the network for softmaxes with old_no outputs, | |
| 74 // and remaps their outputs according to code_map. See network.h for details. | |
| 75 int RemapOutputs(int old_no, const std::vector<int> &code_map) override; | |
| 76 | |
| 77 // Converts a float network to an int network. | |
| 78 void ConvertToInt() override; | |
| 79 | |
| 80 // Provides debug output on the weights. | |
| 81 void DebugWeights() override; | |
| 82 | |
| 83 // Writes to the given file. Returns false in case of error. | |
| 84 bool Serialize(TFile *fp) const override; | |
| 85 // Reads from the given file. Returns false in case of error. | |
| 86 bool DeSerialize(TFile *fp) override; | |
| 87 | |
| 88 // Runs forward propagation of activations on the input line. | |
| 89 // See Network for a detailed discussion of the arguments. | |
| 90 void Forward(bool debug, const NetworkIO &input, const TransposedArray *input_transpose, | |
| 91 NetworkScratch *scratch, NetworkIO *output) override; | |
| 92 // Components of Forward so FullyConnected can be reused inside LSTM. | |
| 93 void SetupForward(const NetworkIO &input, const TransposedArray *input_transpose); | |
| 94 void ForwardTimeStep(int t, TFloat *output_line); | |
| 95 void ForwardTimeStep(const TFloat *d_input, int t, TFloat *output_line); | |
| 96 void ForwardTimeStep(const int8_t *i_input, int t, TFloat *output_line); | |
| 97 | |
| 98 // Runs backward propagation of errors on the deltas line. | |
| 99 // See Network for a detailed discussion of the arguments. | |
| 100 bool Backward(bool debug, const NetworkIO &fwd_deltas, NetworkScratch *scratch, | |
| 101 NetworkIO *back_deltas) override; | |
| 102 // Components of Backward so FullyConnected can be reused inside LSTM. | |
| 103 void BackwardTimeStep(const NetworkIO &fwd_deltas, int t, TFloat *curr_errors, | |
| 104 TransposedArray *errors_t, TFloat *backprop); | |
| 105 void FinishBackward(const TransposedArray &errors_t); | |
| 106 | |
| 107 // Updates the weights using the given learning rate, momentum and adam_beta. | |
| 108 // num_samples is used in the adam computation iff use_adam_ is true. | |
| 109 void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override; | |
| 110 // Sums the products of weight updates in *this and other, splitting into | |
| 111 // positive (same direction) in *same and negative (different direction) in | |
| 112 // *changed. | |
| 113 void CountAlternators(const Network &other, TFloat *same, TFloat *changed) const override; | |
| 114 | |
| 115 protected: | |
| 116 // Weight arrays of size [no, ni + 1]. | |
| 117 WeightMatrix weights_; | |
| 118 // Transposed copy of input used during training of size [ni, width]. | |
| 119 TransposedArray source_t_; | |
| 120 // Pointer to transposed input stored elsewhere. If not null, this is used | |
| 121 // in preference to calculating the transpose and storing it in source_t_. | |
| 122 const TransposedArray *external_source_; | |
| 123 // Activations from forward pass of size [width, no]. | |
| 124 NetworkIO acts_; | |
| 125 // Memory of the integer mode input to forward as softmax always outputs | |
| 126 // float, so the information is otherwise lost. | |
| 127 bool int_mode_; | |
| 128 }; | |
| 129 | |
| 130 } // namespace tesseract. | |
| 131 | |
| 132 #endif // TESSERACT_LSTM_FULLYCONNECTED_H_ |
