Mercurial > hgrepos > Python2 > PyMuPDF
comparison mupdf-source/thirdparty/libjpeg/jquant1.c @ 3:2c135c81b16c
MERGE: upstream PyMuPDF 1.26.4 with MuPDF 1.26.7
| author | Franz Glasner <fzglas.hg@dom66.de> |
|---|---|
| date | Mon, 15 Sep 2025 11:44:09 +0200 |
| parents | b50eed0cc0ef |
| children |
comparison
equal
deleted
inserted
replaced
| 0:6015a75abc2d | 3:2c135c81b16c |
|---|---|
| 1 /* | |
| 2 * jquant1.c | |
| 3 * | |
| 4 * Copyright (C) 1991-1996, Thomas G. Lane. | |
| 5 * Modified 2011-2020 by Guido Vollbeding. | |
| 6 * This file is part of the Independent JPEG Group's software. | |
| 7 * For conditions of distribution and use, see the accompanying README file. | |
| 8 * | |
| 9 * This file contains 1-pass color quantization (color mapping) routines. | |
| 10 * These routines provide mapping to a fixed color map using equally spaced | |
| 11 * color values. Optional Floyd-Steinberg or ordered dithering is available. | |
| 12 */ | |
| 13 | |
| 14 #define JPEG_INTERNALS | |
| 15 #include "jinclude.h" | |
| 16 #include "jpeglib.h" | |
| 17 | |
| 18 #ifdef QUANT_1PASS_SUPPORTED | |
| 19 | |
| 20 | |
| 21 /* | |
| 22 * The main purpose of 1-pass quantization is to provide a fast, if not very | |
| 23 * high quality, colormapped output capability. A 2-pass quantizer usually | |
| 24 * gives better visual quality; however, for quantized grayscale output this | |
| 25 * quantizer is perfectly adequate. Dithering is highly recommended with this | |
| 26 * quantizer, though you can turn it off if you really want to. | |
| 27 * | |
| 28 * In 1-pass quantization the colormap must be chosen in advance of seeing the | |
| 29 * image. We use a map consisting of all combinations of Ncolors[i] color | |
| 30 * values for the i'th component. The Ncolors[] values are chosen so that | |
| 31 * their product, the total number of colors, is no more than that requested. | |
| 32 * (In most cases, the product will be somewhat less.) | |
| 33 * | |
| 34 * Since the colormap is orthogonal, the representative value for each color | |
| 35 * component can be determined without considering the other components; | |
| 36 * then these indexes can be combined into a colormap index by a standard | |
| 37 * N-dimensional-array-subscript calculation. Most of the arithmetic involved | |
| 38 * can be precalculated and stored in the lookup table colorindex[]. | |
| 39 * colorindex[i][j] maps pixel value j in component i to the nearest | |
| 40 * representative value (grid plane) for that component; this index is | |
| 41 * multiplied by the array stride for component i, so that the | |
| 42 * index of the colormap entry closest to a given pixel value is just | |
| 43 * sum( colorindex[component-number][pixel-component-value] ) | |
| 44 * Aside from being fast, this scheme allows for variable spacing between | |
| 45 * representative values with no additional lookup cost. | |
| 46 * | |
| 47 * If gamma correction has been applied in color conversion, it might be wise | |
| 48 * to adjust the color grid spacing so that the representative colors are | |
| 49 * equidistant in linear space. At this writing, gamma correction is not | |
| 50 * implemented by jdcolor, so nothing is done here. | |
| 51 */ | |
| 52 | |
| 53 | |
| 54 /* Declarations for ordered dithering. | |
| 55 * | |
| 56 * We use a standard 16x16 ordered dither array. The basic concept of ordered | |
| 57 * dithering is described in many references, for instance Dale Schumacher's | |
| 58 * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). | |
| 59 * In place of Schumacher's comparisons against a "threshold" value, we add a | |
| 60 * "dither" value to the input pixel and then round the result to the nearest | |
| 61 * output value. The dither value is equivalent to (0.5 - threshold) times | |
| 62 * the distance between output values. For ordered dithering, we assume that | |
| 63 * the output colors are equally spaced; if not, results will probably be | |
| 64 * worse, since the dither may be too much or too little at a given point. | |
| 65 * | |
| 66 * The normal calculation would be to form pixel value + dither, range-limit | |
| 67 * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. | |
| 68 * We can skip the separate range-limiting step by extending the colorindex | |
| 69 * table in both directions. | |
| 70 */ | |
| 71 | |
| 72 #define ODITHER_SIZE 16 /* dimension of dither matrix */ | |
| 73 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ | |
| 74 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ | |
| 75 #define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ | |
| 76 | |
| 77 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; | |
| 78 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; | |
| 79 | |
| 80 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { | |
| 81 /* Bayer's order-4 dither array. Generated by the code given in | |
| 82 * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | |
| 83 * The values in this array must range from 0 to ODITHER_CELLS-1. | |
| 84 */ | |
| 85 { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, | |
| 86 { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | |
| 87 { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | |
| 88 { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | |
| 89 { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, | |
| 90 { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | |
| 91 { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | |
| 92 { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | |
| 93 { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, | |
| 94 { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | |
| 95 { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | |
| 96 { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | |
| 97 { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, | |
| 98 { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | |
| 99 { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | |
| 100 { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | |
| 101 }; | |
| 102 | |
| 103 | |
| 104 /* Declarations for Floyd-Steinberg dithering. | |
| 105 * | |
| 106 * Errors are accumulated into the array fserrors[], at a resolution of | |
| 107 * 1/16th of a pixel count. The error at a given pixel is propagated | |
| 108 * to its not-yet-processed neighbors using the standard F-S fractions, | |
| 109 * ... (here) 7/16 | |
| 110 * 3/16 5/16 1/16 | |
| 111 * We work left-to-right on even rows, right-to-left on odd rows. | |
| 112 * | |
| 113 * We can get away with a single array (holding one row's worth of errors) | |
| 114 * by using it to store the current row's errors at pixel columns not yet | |
| 115 * processed, but the next row's errors at columns already processed. We | |
| 116 * need only a few extra variables to hold the errors immediately around the | |
| 117 * current column. (If we are lucky, those variables are in registers, but | |
| 118 * even if not, they're probably cheaper to access than array elements are.) | |
| 119 * | |
| 120 * The fserrors[] array is indexed [component#][position]. | |
| 121 * We provide (#columns + 2) entries per component; the extra entry at each | |
| 122 * end saves us from special-casing the first and last pixels. | |
| 123 * | |
| 124 * Note: on a wide image, we might not have enough room in a PC's near data | |
| 125 * segment to hold the error array; so it is allocated with alloc_large. | |
| 126 */ | |
| 127 | |
| 128 #if BITS_IN_JSAMPLE == 8 | |
| 129 typedef INT16 FSERROR; /* 16 bits should be enough */ | |
| 130 typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |
| 131 #else | |
| 132 typedef INT32 FSERROR; /* may need more than 16 bits */ | |
| 133 typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |
| 134 #endif | |
| 135 | |
| 136 typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ | |
| 137 | |
| 138 | |
| 139 /* Private subobject */ | |
| 140 | |
| 141 #define MAX_Q_COMPS 4 /* max components I can handle */ | |
| 142 | |
| 143 typedef struct { | |
| 144 struct jpeg_color_quantizer pub; /* public fields */ | |
| 145 | |
| 146 /* Initially allocated colormap is saved here */ | |
| 147 JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ | |
| 148 int sv_actual; /* number of entries in use */ | |
| 149 | |
| 150 JSAMPARRAY colorindex; /* Precomputed mapping for speed */ | |
| 151 /* colorindex[i][j] = index of color closest to pixel value j in component i, | |
| 152 * premultiplied as described above. Since colormap indexes must fit into | |
| 153 * JSAMPLEs, the entries of this array will too. | |
| 154 */ | |
| 155 boolean is_padded; /* is the colorindex padded for odither? */ | |
| 156 | |
| 157 int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ | |
| 158 | |
| 159 /* Variables for ordered dithering */ | |
| 160 int row_index; /* cur row's vertical index in dither matrix */ | |
| 161 ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ | |
| 162 | |
| 163 /* Variables for Floyd-Steinberg dithering */ | |
| 164 FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ | |
| 165 boolean on_odd_row; /* flag to remember which row we are on */ | |
| 166 } my_cquantizer; | |
| 167 | |
| 168 typedef my_cquantizer * my_cquantize_ptr; | |
| 169 | |
| 170 | |
| 171 /* | |
| 172 * Policy-making subroutines for create_colormap and create_colorindex. | |
| 173 * These routines determine the colormap to be used. The rest of the module | |
| 174 * only assumes that the colormap is orthogonal. | |
| 175 * | |
| 176 * * select_ncolors decides how to divvy up the available colors | |
| 177 * among the components. | |
| 178 * * output_value defines the set of representative values for a component. | |
| 179 * * largest_input_value defines the mapping from input values to | |
| 180 * representative values for a component. | |
| 181 * Note that the latter two routines may impose different policies for | |
| 182 * different components, though this is not currently done. | |
| 183 */ | |
| 184 | |
| 185 | |
| 186 LOCAL(int) | |
| 187 select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) | |
| 188 /* Determine allocation of desired colors to components, */ | |
| 189 /* and fill in Ncolors[] array to indicate choice. */ | |
| 190 /* Return value is total number of colors (product of Ncolors[] values). */ | |
| 191 { | |
| 192 int nc = cinfo->out_color_components; /* number of color components */ | |
| 193 int max_colors = cinfo->desired_number_of_colors; | |
| 194 int total_colors, iroot, i, j; | |
| 195 boolean changed; | |
| 196 long temp; | |
| 197 static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; | |
| 198 | |
| 199 /* We can allocate at least the nc'th root of max_colors per component. */ | |
| 200 /* Compute floor(nc'th root of max_colors). */ | |
| 201 iroot = 1; | |
| 202 do { | |
| 203 iroot++; | |
| 204 temp = iroot; /* set temp = iroot ** nc */ | |
| 205 for (i = 1; i < nc; i++) | |
| 206 temp *= iroot; | |
| 207 } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ | |
| 208 iroot--; /* now iroot = floor(root) */ | |
| 209 | |
| 210 /* Must have at least 2 color values per component */ | |
| 211 if (iroot < 2) | |
| 212 ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); | |
| 213 | |
| 214 /* Initialize to iroot color values for each component */ | |
| 215 total_colors = 1; | |
| 216 for (i = 0; i < nc; i++) { | |
| 217 Ncolors[i] = iroot; | |
| 218 total_colors *= iroot; | |
| 219 } | |
| 220 /* We may be able to increment the count for one or more components without | |
| 221 * exceeding max_colors, though we know not all can be incremented. | |
| 222 * Sometimes, the first component can be incremented more than once! | |
| 223 * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) | |
| 224 * In RGB colorspace, try to increment G first, then R, then B. | |
| 225 */ | |
| 226 do { | |
| 227 changed = FALSE; | |
| 228 for (i = 0; i < nc; i++) { | |
| 229 j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); | |
| 230 /* calculate new total_colors if Ncolors[j] is incremented */ | |
| 231 temp = total_colors / Ncolors[j]; | |
| 232 temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ | |
| 233 if (temp > (long) max_colors) | |
| 234 break; /* won't fit, done with this pass */ | |
| 235 Ncolors[j]++; /* OK, apply the increment */ | |
| 236 total_colors = (int) temp; | |
| 237 changed = TRUE; | |
| 238 } | |
| 239 } while (changed); | |
| 240 | |
| 241 return total_colors; | |
| 242 } | |
| 243 | |
| 244 | |
| 245 LOCAL(int) | |
| 246 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | |
| 247 /* Return j'th output value, where j will range from 0 to maxj */ | |
| 248 /* The output values must fall in 0..MAXJSAMPLE in increasing order */ | |
| 249 { | |
| 250 /* We always provide values 0 and MAXJSAMPLE for each component; | |
| 251 * any additional values are equally spaced between these limits. | |
| 252 * (Forcing the upper and lower values to the limits ensures that | |
| 253 * dithering can't produce a color outside the selected gamut.) | |
| 254 */ | |
| 255 return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); | |
| 256 } | |
| 257 | |
| 258 | |
| 259 LOCAL(int) | |
| 260 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | |
| 261 /* Return largest input value that should map to j'th output value */ | |
| 262 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ | |
| 263 { | |
| 264 /* Breakpoints are halfway between values returned by output_value */ | |
| 265 return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); | |
| 266 } | |
| 267 | |
| 268 | |
| 269 /* | |
| 270 * Create the colormap. | |
| 271 */ | |
| 272 | |
| 273 LOCAL(void) | |
| 274 create_colormap (j_decompress_ptr cinfo) | |
| 275 { | |
| 276 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 277 JSAMPARRAY colormap; /* Created colormap */ | |
| 278 int total_colors; /* Number of distinct output colors */ | |
| 279 int i,j,k, nci, blksize, blkdist, ptr, val; | |
| 280 | |
| 281 /* Select number of colors for each component */ | |
| 282 total_colors = select_ncolors(cinfo, cquantize->Ncolors); | |
| 283 | |
| 284 /* Report selected color counts */ | |
| 285 if (cinfo->out_color_components == 3) | |
| 286 TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, | |
| 287 total_colors, cquantize->Ncolors[0], | |
| 288 cquantize->Ncolors[1], cquantize->Ncolors[2]); | |
| 289 else | |
| 290 TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); | |
| 291 | |
| 292 /* Allocate and fill in the colormap. */ | |
| 293 /* The colors are ordered in the map in standard row-major order, */ | |
| 294 /* i.e. rightmost (highest-indexed) color changes most rapidly. */ | |
| 295 | |
| 296 colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 297 (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); | |
| 298 | |
| 299 /* blksize is number of adjacent repeated entries for a component */ | |
| 300 /* blkdist is distance between groups of identical entries for a component */ | |
| 301 blkdist = total_colors; | |
| 302 | |
| 303 for (i = 0; i < cinfo->out_color_components; i++) { | |
| 304 /* fill in colormap entries for i'th color component */ | |
| 305 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |
| 306 blksize = blkdist / nci; | |
| 307 for (j = 0; j < nci; j++) { | |
| 308 /* Compute j'th output value (out of nci) for component */ | |
| 309 val = output_value(cinfo, i, j, nci-1); | |
| 310 /* Fill in all colormap entries that have this value of this component */ | |
| 311 for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { | |
| 312 /* fill in blksize entries beginning at ptr */ | |
| 313 for (k = 0; k < blksize; k++) | |
| 314 colormap[i][ptr+k] = (JSAMPLE) val; | |
| 315 } | |
| 316 } | |
| 317 blkdist = blksize; /* blksize of this color is blkdist of next */ | |
| 318 } | |
| 319 | |
| 320 /* Save the colormap in private storage, | |
| 321 * where it will survive color quantization mode changes. | |
| 322 */ | |
| 323 cquantize->sv_colormap = colormap; | |
| 324 cquantize->sv_actual = total_colors; | |
| 325 } | |
| 326 | |
| 327 | |
| 328 /* | |
| 329 * Create the color index table. | |
| 330 */ | |
| 331 | |
| 332 LOCAL(void) | |
| 333 create_colorindex (j_decompress_ptr cinfo) | |
| 334 { | |
| 335 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 336 JSAMPROW indexptr; | |
| 337 int i,j,k, nci, blksize, val, pad; | |
| 338 | |
| 339 /* For ordered dither, we pad the color index tables by MAXJSAMPLE in | |
| 340 * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). | |
| 341 * This is not necessary in the other dithering modes. However, we | |
| 342 * flag whether it was done in case user changes dithering mode. | |
| 343 */ | |
| 344 if (cinfo->dither_mode == JDITHER_ORDERED) { | |
| 345 pad = MAXJSAMPLE*2; | |
| 346 cquantize->is_padded = TRUE; | |
| 347 } else { | |
| 348 pad = 0; | |
| 349 cquantize->is_padded = FALSE; | |
| 350 } | |
| 351 | |
| 352 cquantize->colorindex = (*cinfo->mem->alloc_sarray) | |
| 353 ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
| 354 (JDIMENSION) (MAXJSAMPLE+1 + pad), | |
| 355 (JDIMENSION) cinfo->out_color_components); | |
| 356 | |
| 357 /* blksize is number of adjacent repeated entries for a component */ | |
| 358 blksize = cquantize->sv_actual; | |
| 359 | |
| 360 for (i = 0; i < cinfo->out_color_components; i++) { | |
| 361 /* fill in colorindex entries for i'th color component */ | |
| 362 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |
| 363 blksize = blksize / nci; | |
| 364 | |
| 365 /* adjust colorindex pointers to provide padding at negative indexes. */ | |
| 366 if (pad) | |
| 367 cquantize->colorindex[i] += MAXJSAMPLE; | |
| 368 | |
| 369 /* in loop, val = index of current output value, */ | |
| 370 /* and k = largest j that maps to current val */ | |
| 371 indexptr = cquantize->colorindex[i]; | |
| 372 val = 0; | |
| 373 k = largest_input_value(cinfo, i, 0, nci-1); | |
| 374 for (j = 0; j <= MAXJSAMPLE; j++) { | |
| 375 while (j > k) /* advance val if past boundary */ | |
| 376 k = largest_input_value(cinfo, i, ++val, nci-1); | |
| 377 /* premultiply so that no multiplication needed in main processing */ | |
| 378 indexptr[j] = (JSAMPLE) (val * blksize); | |
| 379 } | |
| 380 /* Pad at both ends if necessary */ | |
| 381 if (pad) | |
| 382 for (j = 1; j <= MAXJSAMPLE; j++) { | |
| 383 indexptr[-j] = indexptr[0]; | |
| 384 indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; | |
| 385 } | |
| 386 } | |
| 387 } | |
| 388 | |
| 389 | |
| 390 /* | |
| 391 * Create an ordered-dither array for a component having ncolors | |
| 392 * distinct output values. | |
| 393 */ | |
| 394 | |
| 395 LOCAL(ODITHER_MATRIX_PTR) | |
| 396 make_odither_array (j_decompress_ptr cinfo, int ncolors) | |
| 397 { | |
| 398 ODITHER_MATRIX_PTR odither; | |
| 399 int j,k; | |
| 400 INT32 num,den; | |
| 401 | |
| 402 odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small) | |
| 403 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(ODITHER_MATRIX)); | |
| 404 /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). | |
| 405 * Hence the dither value for the matrix cell with fill order f | |
| 406 * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). | |
| 407 * On 16-bit-int machine, be careful to avoid overflow. | |
| 408 */ | |
| 409 den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); | |
| 410 for (j = 0; j < ODITHER_SIZE; j++) { | |
| 411 for (k = 0; k < ODITHER_SIZE; k++) { | |
| 412 num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) | |
| 413 * MAXJSAMPLE; | |
| 414 /* Ensure round towards zero despite C's lack of consistency | |
| 415 * about rounding negative values in integer division... | |
| 416 */ | |
| 417 odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); | |
| 418 } | |
| 419 } | |
| 420 return odither; | |
| 421 } | |
| 422 | |
| 423 | |
| 424 /* | |
| 425 * Create the ordered-dither tables. | |
| 426 * Components having the same number of representative colors may | |
| 427 * share a dither table. | |
| 428 */ | |
| 429 | |
| 430 LOCAL(void) | |
| 431 create_odither_tables (j_decompress_ptr cinfo) | |
| 432 { | |
| 433 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 434 ODITHER_MATRIX_PTR odither; | |
| 435 int i, j, nci; | |
| 436 | |
| 437 for (i = 0; i < cinfo->out_color_components; i++) { | |
| 438 nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |
| 439 odither = NULL; /* search for matching prior component */ | |
| 440 for (j = 0; j < i; j++) { | |
| 441 if (nci == cquantize->Ncolors[j]) { | |
| 442 odither = cquantize->odither[j]; | |
| 443 break; | |
| 444 } | |
| 445 } | |
| 446 if (odither == NULL) /* need a new table? */ | |
| 447 odither = make_odither_array(cinfo, nci); | |
| 448 cquantize->odither[i] = odither; | |
| 449 } | |
| 450 } | |
| 451 | |
| 452 | |
| 453 /* | |
| 454 * Map some rows of pixels to the output colormapped representation. | |
| 455 */ | |
| 456 | |
| 457 METHODDEF(void) | |
| 458 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
| 459 JSAMPARRAY output_buf, int num_rows) | |
| 460 /* General case, no dithering */ | |
| 461 { | |
| 462 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 463 JSAMPARRAY colorindex = cquantize->colorindex; | |
| 464 register int pixcode, ci; | |
| 465 register JSAMPROW ptrin, ptrout; | |
| 466 int row; | |
| 467 JDIMENSION col; | |
| 468 JDIMENSION width = cinfo->output_width; | |
| 469 register int nc = cinfo->out_color_components; | |
| 470 | |
| 471 for (row = 0; row < num_rows; row++) { | |
| 472 ptrin = input_buf[row]; | |
| 473 ptrout = output_buf[row]; | |
| 474 for (col = width; col > 0; col--) { | |
| 475 pixcode = 0; | |
| 476 for (ci = 0; ci < nc; ci++) { | |
| 477 pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); | |
| 478 } | |
| 479 *ptrout++ = (JSAMPLE) pixcode; | |
| 480 } | |
| 481 } | |
| 482 } | |
| 483 | |
| 484 | |
| 485 METHODDEF(void) | |
| 486 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
| 487 JSAMPARRAY output_buf, int num_rows) | |
| 488 /* Fast path for out_color_components==3, no dithering */ | |
| 489 { | |
| 490 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 491 register int pixcode; | |
| 492 register JSAMPROW ptrin, ptrout; | |
| 493 JSAMPROW colorindex0 = cquantize->colorindex[0]; | |
| 494 JSAMPROW colorindex1 = cquantize->colorindex[1]; | |
| 495 JSAMPROW colorindex2 = cquantize->colorindex[2]; | |
| 496 int row; | |
| 497 JDIMENSION col; | |
| 498 JDIMENSION width = cinfo->output_width; | |
| 499 | |
| 500 for (row = 0; row < num_rows; row++) { | |
| 501 ptrin = input_buf[row]; | |
| 502 ptrout = output_buf[row]; | |
| 503 for (col = width; col > 0; col--) { | |
| 504 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); | |
| 505 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); | |
| 506 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); | |
| 507 *ptrout++ = (JSAMPLE) pixcode; | |
| 508 } | |
| 509 } | |
| 510 } | |
| 511 | |
| 512 | |
| 513 METHODDEF(void) | |
| 514 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
| 515 JSAMPARRAY output_buf, int num_rows) | |
| 516 /* General case, with ordered dithering */ | |
| 517 { | |
| 518 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 519 register JSAMPROW input_ptr; | |
| 520 register JSAMPROW output_ptr; | |
| 521 JSAMPROW colorindex_ci; | |
| 522 int * dither; /* points to active row of dither matrix */ | |
| 523 int row_index, col_index; /* current indexes into dither matrix */ | |
| 524 int nc = cinfo->out_color_components; | |
| 525 int ci; | |
| 526 int row; | |
| 527 JDIMENSION col; | |
| 528 JDIMENSION width = cinfo->output_width; | |
| 529 | |
| 530 for (row = 0; row < num_rows; row++) { | |
| 531 /* Initialize output values to 0 so can process components separately */ | |
| 532 FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE)); | |
| 533 row_index = cquantize->row_index; | |
| 534 for (ci = 0; ci < nc; ci++) { | |
| 535 input_ptr = input_buf[row] + ci; | |
| 536 output_ptr = output_buf[row]; | |
| 537 colorindex_ci = cquantize->colorindex[ci]; | |
| 538 dither = cquantize->odither[ci][row_index]; | |
| 539 col_index = 0; | |
| 540 | |
| 541 for (col = width; col > 0; col--) { | |
| 542 /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, | |
| 543 * select output value, accumulate into output code for this pixel. | |
| 544 * Range-limiting need not be done explicitly, as we have extended | |
| 545 * the colorindex table to produce the right answers for out-of-range | |
| 546 * inputs. The maximum dither is +- MAXJSAMPLE; this sets the | |
| 547 * required amount of padding. | |
| 548 */ | |
| 549 *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; | |
| 550 input_ptr += nc; | |
| 551 output_ptr++; | |
| 552 col_index = (col_index + 1) & ODITHER_MASK; | |
| 553 } | |
| 554 } | |
| 555 /* Advance row index for next row */ | |
| 556 row_index = (row_index + 1) & ODITHER_MASK; | |
| 557 cquantize->row_index = row_index; | |
| 558 } | |
| 559 } | |
| 560 | |
| 561 | |
| 562 METHODDEF(void) | |
| 563 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
| 564 JSAMPARRAY output_buf, int num_rows) | |
| 565 /* Fast path for out_color_components==3, with ordered dithering */ | |
| 566 { | |
| 567 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 568 register int pixcode; | |
| 569 register JSAMPROW input_ptr; | |
| 570 register JSAMPROW output_ptr; | |
| 571 JSAMPROW colorindex0 = cquantize->colorindex[0]; | |
| 572 JSAMPROW colorindex1 = cquantize->colorindex[1]; | |
| 573 JSAMPROW colorindex2 = cquantize->colorindex[2]; | |
| 574 int * dither0; /* points to active row of dither matrix */ | |
| 575 int * dither1; | |
| 576 int * dither2; | |
| 577 int row_index, col_index; /* current indexes into dither matrix */ | |
| 578 int row; | |
| 579 JDIMENSION col; | |
| 580 JDIMENSION width = cinfo->output_width; | |
| 581 | |
| 582 for (row = 0; row < num_rows; row++) { | |
| 583 row_index = cquantize->row_index; | |
| 584 input_ptr = input_buf[row]; | |
| 585 output_ptr = output_buf[row]; | |
| 586 dither0 = cquantize->odither[0][row_index]; | |
| 587 dither1 = cquantize->odither[1][row_index]; | |
| 588 dither2 = cquantize->odither[2][row_index]; | |
| 589 col_index = 0; | |
| 590 | |
| 591 for (col = width; col > 0; col--) { | |
| 592 pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + | |
| 593 dither0[col_index]]); | |
| 594 pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + | |
| 595 dither1[col_index]]); | |
| 596 pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + | |
| 597 dither2[col_index]]); | |
| 598 *output_ptr++ = (JSAMPLE) pixcode; | |
| 599 col_index = (col_index + 1) & ODITHER_MASK; | |
| 600 } | |
| 601 row_index = (row_index + 1) & ODITHER_MASK; | |
| 602 cquantize->row_index = row_index; | |
| 603 } | |
| 604 } | |
| 605 | |
| 606 | |
| 607 METHODDEF(void) | |
| 608 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
| 609 JSAMPARRAY output_buf, int num_rows) | |
| 610 /* General case, with Floyd-Steinberg dithering */ | |
| 611 { | |
| 612 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 613 register LOCFSERROR cur; /* current error or pixel value */ | |
| 614 LOCFSERROR belowerr; /* error for pixel below cur */ | |
| 615 LOCFSERROR bpreverr; /* error for below/prev col */ | |
| 616 LOCFSERROR bnexterr; /* error for below/next col */ | |
| 617 LOCFSERROR delta; | |
| 618 register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |
| 619 register JSAMPROW input_ptr; | |
| 620 register JSAMPROW output_ptr; | |
| 621 JSAMPROW colorindex_ci; | |
| 622 JSAMPROW colormap_ci; | |
| 623 int pixcode; | |
| 624 int nc = cinfo->out_color_components; | |
| 625 int dir; /* 1 for left-to-right, -1 for right-to-left */ | |
| 626 int dirnc; /* dir * nc */ | |
| 627 int ci; | |
| 628 int row; | |
| 629 JDIMENSION col; | |
| 630 JDIMENSION width = cinfo->output_width; | |
| 631 JSAMPLE *range_limit = cinfo->sample_range_limit; | |
| 632 SHIFT_TEMPS | |
| 633 | |
| 634 for (row = 0; row < num_rows; row++) { | |
| 635 /* Initialize output values to 0 so can process components separately */ | |
| 636 FMEMZERO((void FAR *) output_buf[row], (size_t) width * SIZEOF(JSAMPLE)); | |
| 637 for (ci = 0; ci < nc; ci++) { | |
| 638 input_ptr = input_buf[row] + ci; | |
| 639 output_ptr = output_buf[row]; | |
| 640 if (cquantize->on_odd_row) { | |
| 641 /* work right to left in this row */ | |
| 642 input_ptr += (width-1) * nc; /* so point to rightmost pixel */ | |
| 643 output_ptr += width-1; | |
| 644 dir = -1; | |
| 645 dirnc = -nc; | |
| 646 errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ | |
| 647 } else { | |
| 648 /* work left to right in this row */ | |
| 649 dir = 1; | |
| 650 dirnc = nc; | |
| 651 errorptr = cquantize->fserrors[ci]; /* => entry before first column */ | |
| 652 } | |
| 653 colorindex_ci = cquantize->colorindex[ci]; | |
| 654 colormap_ci = cquantize->sv_colormap[ci]; | |
| 655 /* Preset error values: no error propagated to first pixel from left */ | |
| 656 cur = 0; | |
| 657 /* and no error propagated to row below yet */ | |
| 658 belowerr = bpreverr = 0; | |
| 659 | |
| 660 for (col = width; col > 0; col--) { | |
| 661 /* cur holds the error propagated from the previous pixel on the | |
| 662 * current line. Add the error propagated from the previous line | |
| 663 * to form the complete error correction term for this pixel, and | |
| 664 * round the error term (which is expressed * 16) to an integer. | |
| 665 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |
| 666 * for either sign of the error value. | |
| 667 * Note: errorptr points to *previous* column's array entry. | |
| 668 */ | |
| 669 cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); | |
| 670 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |
| 671 * The maximum error is +- MAXJSAMPLE; this sets the required size | |
| 672 * of the range_limit array. | |
| 673 */ | |
| 674 cur += GETJSAMPLE(*input_ptr); | |
| 675 cur = GETJSAMPLE(range_limit[cur]); | |
| 676 /* Select output value, accumulate into output code for this pixel */ | |
| 677 pixcode = GETJSAMPLE(colorindex_ci[cur]); | |
| 678 *output_ptr += (JSAMPLE) pixcode; | |
| 679 /* Compute actual representation error at this pixel */ | |
| 680 /* Note: we can do this even though we don't have the final */ | |
| 681 /* pixel code, because the colormap is orthogonal. */ | |
| 682 cur -= GETJSAMPLE(colormap_ci[pixcode]); | |
| 683 /* Compute error fractions to be propagated to adjacent pixels. | |
| 684 * Add these into the running sums, and simultaneously shift the | |
| 685 * next-line error sums left by 1 column. | |
| 686 */ | |
| 687 bnexterr = cur; | |
| 688 delta = cur * 2; | |
| 689 cur += delta; /* form error * 3 */ | |
| 690 errorptr[0] = (FSERROR) (bpreverr + cur); | |
| 691 cur += delta; /* form error * 5 */ | |
| 692 bpreverr = belowerr + cur; | |
| 693 belowerr = bnexterr; | |
| 694 cur += delta; /* form error * 7 */ | |
| 695 /* At this point cur contains the 7/16 error value to be propagated | |
| 696 * to the next pixel on the current line, and all the errors for the | |
| 697 * next line have been shifted over. We are therefore ready to move on. | |
| 698 */ | |
| 699 input_ptr += dirnc; /* advance input ptr to next column */ | |
| 700 output_ptr += dir; /* advance output ptr to next column */ | |
| 701 errorptr += dir; /* advance errorptr to current column */ | |
| 702 } | |
| 703 /* Post-loop cleanup: we must unload the final error value into the | |
| 704 * final fserrors[] entry. Note we need not unload belowerr because | |
| 705 * it is for the dummy column before or after the actual array. | |
| 706 */ | |
| 707 errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ | |
| 708 } | |
| 709 cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); | |
| 710 } | |
| 711 } | |
| 712 | |
| 713 | |
| 714 /* | |
| 715 * Allocate workspace for Floyd-Steinberg errors. | |
| 716 */ | |
| 717 | |
| 718 LOCAL(void) | |
| 719 alloc_fs_workspace (j_decompress_ptr cinfo) | |
| 720 { | |
| 721 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 722 size_t arraysize; | |
| 723 int i; | |
| 724 | |
| 725 arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR); | |
| 726 for (i = 0; i < cinfo->out_color_components; i++) { | |
| 727 cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large) | |
| 728 ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | |
| 729 } | |
| 730 } | |
| 731 | |
| 732 | |
| 733 /* | |
| 734 * Initialize for one-pass color quantization. | |
| 735 */ | |
| 736 | |
| 737 METHODDEF(void) | |
| 738 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | |
| 739 { | |
| 740 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
| 741 size_t arraysize; | |
| 742 int i; | |
| 743 | |
| 744 /* Install my colormap. */ | |
| 745 cinfo->colormap = cquantize->sv_colormap; | |
| 746 cinfo->actual_number_of_colors = cquantize->sv_actual; | |
| 747 | |
| 748 /* Initialize for desired dithering mode. */ | |
| 749 switch (cinfo->dither_mode) { | |
| 750 case JDITHER_NONE: | |
| 751 if (cinfo->out_color_components == 3) | |
| 752 cquantize->pub.color_quantize = color_quantize3; | |
| 753 else | |
| 754 cquantize->pub.color_quantize = color_quantize; | |
| 755 break; | |
| 756 case JDITHER_ORDERED: | |
| 757 if (cinfo->out_color_components == 3) | |
| 758 cquantize->pub.color_quantize = quantize3_ord_dither; | |
| 759 else | |
| 760 cquantize->pub.color_quantize = quantize_ord_dither; | |
| 761 cquantize->row_index = 0; /* initialize state for ordered dither */ | |
| 762 /* If user changed to ordered dither from another mode, | |
| 763 * we must recreate the color index table with padding. | |
| 764 * This will cost extra space, but probably isn't very likely. | |
| 765 */ | |
| 766 if (! cquantize->is_padded) | |
| 767 create_colorindex(cinfo); | |
| 768 /* Create ordered-dither tables if we didn't already. */ | |
| 769 if (cquantize->odither[0] == NULL) | |
| 770 create_odither_tables(cinfo); | |
| 771 break; | |
| 772 case JDITHER_FS: | |
| 773 cquantize->pub.color_quantize = quantize_fs_dither; | |
| 774 cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ | |
| 775 /* Allocate Floyd-Steinberg workspace if didn't already. */ | |
| 776 if (cquantize->fserrors[0] == NULL) | |
| 777 alloc_fs_workspace(cinfo); | |
| 778 /* Initialize the propagated errors to zero. */ | |
| 779 arraysize = ((size_t) cinfo->output_width + (size_t) 2) * SIZEOF(FSERROR); | |
| 780 for (i = 0; i < cinfo->out_color_components; i++) | |
| 781 FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize); | |
| 782 break; | |
| 783 default: | |
| 784 ERREXIT(cinfo, JERR_NOT_COMPILED); | |
| 785 } | |
| 786 } | |
| 787 | |
| 788 | |
| 789 /* | |
| 790 * Finish up at the end of the pass. | |
| 791 */ | |
| 792 | |
| 793 METHODDEF(void) | |
| 794 finish_pass_1_quant (j_decompress_ptr cinfo) | |
| 795 { | |
| 796 /* no work in 1-pass case */ | |
| 797 } | |
| 798 | |
| 799 | |
| 800 /* | |
| 801 * Switch to a new external colormap between output passes. | |
| 802 * Shouldn't get to this module! | |
| 803 */ | |
| 804 | |
| 805 METHODDEF(void) | |
| 806 new_color_map_1_quant (j_decompress_ptr cinfo) | |
| 807 { | |
| 808 ERREXIT(cinfo, JERR_MODE_CHANGE); | |
| 809 } | |
| 810 | |
| 811 | |
| 812 /* | |
| 813 * Module initialization routine for 1-pass color quantization. | |
| 814 */ | |
| 815 | |
| 816 GLOBAL(void) | |
| 817 jinit_1pass_quantizer (j_decompress_ptr cinfo) | |
| 818 { | |
| 819 my_cquantize_ptr cquantize; | |
| 820 | |
| 821 cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) | |
| 822 ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_cquantizer)); | |
| 823 cinfo->cquantize = &cquantize->pub; | |
| 824 cquantize->pub.start_pass = start_pass_1_quant; | |
| 825 cquantize->pub.finish_pass = finish_pass_1_quant; | |
| 826 cquantize->pub.new_color_map = new_color_map_1_quant; | |
| 827 cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ | |
| 828 cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ | |
| 829 | |
| 830 /* Make sure my internal arrays won't overflow */ | |
| 831 if (cinfo->out_color_components > MAX_Q_COMPS) | |
| 832 ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); | |
| 833 /* Make sure colormap indexes can be represented by JSAMPLEs */ | |
| 834 if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) | |
| 835 ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); | |
| 836 | |
| 837 /* Create the colormap and color index table. */ | |
| 838 create_colormap(cinfo); | |
| 839 create_colorindex(cinfo); | |
| 840 | |
| 841 /* Allocate Floyd-Steinberg workspace now if requested. | |
| 842 * We do this now since it is FAR storage and may affect the memory | |
| 843 * manager's space calculations. If the user changes to FS dither | |
| 844 * mode in a later pass, we will allocate the space then, and will | |
| 845 * possibly overrun the max_memory_to_use setting. | |
| 846 */ | |
| 847 if (cinfo->dither_mode == JDITHER_FS) | |
| 848 alloc_fs_workspace(cinfo); | |
| 849 } | |
| 850 | |
| 851 #endif /* QUANT_1PASS_SUPPORTED */ |
