comparison mupdf-source/source/fitz/memory.c @ 3:2c135c81b16c

MERGE: upstream PyMuPDF 1.26.4 with MuPDF 1.26.7
author Franz Glasner <fzglas.hg@dom66.de>
date Mon, 15 Sep 2025 11:44:09 +0200
parents b50eed0cc0ef
children
comparison
equal deleted inserted replaced
0:6015a75abc2d 3:2c135c81b16c
1 // Copyright (C) 2004-2025 Artifex Software, Inc.
2 //
3 // This file is part of MuPDF.
4 //
5 // MuPDF is free software: you can redistribute it and/or modify it under the
6 // terms of the GNU Affero General Public License as published by the Free
7 // Software Foundation, either version 3 of the License, or (at your option)
8 // any later version.
9 //
10 // MuPDF is distributed in the hope that it will be useful, but WITHOUT ANY
11 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
12 // FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
13 // details.
14 //
15 // You should have received a copy of the GNU Affero General Public License
16 // along with MuPDF. If not, see <https://www.gnu.org/licenses/agpl-3.0.en.html>
17 //
18 // Alternative licensing terms are available from the licensor.
19 // For commercial licensing, see <https://www.artifex.com/> or contact
20 // Artifex Software, Inc., 39 Mesa Street, Suite 108A, San Francisco,
21 // CA 94129, USA, for further information.
22
23 #include "mupdf/fitz.h"
24
25 #include <limits.h>
26 #include <string.h>
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <errno.h>
30
31 /* Enable FITZ_DEBUG_LOCKING_TIMES below if you want to check the times
32 * for which locks are held too. */
33 #ifdef FITZ_DEBUG_LOCKING
34 #undef FITZ_DEBUG_LOCKING_TIMES
35 #endif
36
37 /*
38 * The malloc family of functions will always try scavenging when they run out of memory.
39 * They will only fail when scavenging cannot free up memory from caches in the fz_context.
40 * All the functions will throw an exception when no memory can be allocated,
41 * except the _no_throw family which instead silently returns NULL.
42 */
43
44 static void *
45 do_scavenging_malloc(fz_context *ctx, size_t size)
46 {
47 void *p;
48 int phase = 0;
49
50 fz_lock(ctx, FZ_LOCK_ALLOC);
51 do {
52 p = ctx->alloc.malloc(ctx->alloc.user, size);
53 if (p != NULL)
54 {
55 fz_unlock(ctx, FZ_LOCK_ALLOC);
56 return p;
57 }
58 } while (fz_store_scavenge(ctx, size, &phase));
59 fz_unlock(ctx, FZ_LOCK_ALLOC);
60
61 return NULL;
62 }
63
64 static void *
65 do_scavenging_realloc(fz_context *ctx, void *p, size_t size)
66 {
67 void *q;
68 int phase = 0;
69
70 fz_lock(ctx, FZ_LOCK_ALLOC);
71 do {
72 q = ctx->alloc.realloc(ctx->alloc.user, p, size);
73 if (q != NULL)
74 {
75 fz_unlock(ctx, FZ_LOCK_ALLOC);
76 return q;
77 }
78 } while (fz_store_scavenge(ctx, size, &phase));
79 fz_unlock(ctx, FZ_LOCK_ALLOC);
80
81 return NULL;
82 }
83
84 void *
85 fz_malloc(fz_context *ctx, size_t size)
86 {
87 void *p;
88 if (size == 0)
89 return NULL;
90 p = do_scavenging_malloc(ctx, size);
91 if (!p)
92 {
93 errno = ENOMEM;
94 fz_throw(ctx, FZ_ERROR_SYSTEM, "malloc (%zu bytes) failed", size);
95 }
96 return p;
97 }
98
99 void *
100 fz_malloc_no_throw(fz_context *ctx, size_t size)
101 {
102 if (size == 0)
103 return NULL;
104 return do_scavenging_malloc(ctx, size);
105 }
106
107 void *
108 fz_calloc(fz_context *ctx, size_t count, size_t size)
109 {
110 void *p;
111 if (count == 0 || size == 0)
112 return NULL;
113 if (count > SIZE_MAX / size)
114 fz_throw(ctx, FZ_ERROR_LIMIT, "calloc (%zu x %zu bytes) failed (size_t overflow)", count, size);
115 p = do_scavenging_malloc(ctx, count * size);
116 if (!p)
117 {
118 errno = ENOMEM;
119 fz_throw(ctx, FZ_ERROR_SYSTEM, "calloc (%zu x %zu bytes) failed", count, size);
120 }
121 memset(p, 0, count*size);
122 return p;
123 }
124
125 void *
126 fz_calloc_no_throw(fz_context *ctx, size_t count, size_t size)
127 {
128 void *p;
129 if (count == 0 || size == 0)
130 return NULL;
131 if (count > SIZE_MAX / size)
132 return NULL;
133 p = do_scavenging_malloc(ctx, count * size);
134 if (p)
135 memset(p, 0, count * size);
136 return p;
137 }
138
139 void *
140 fz_realloc(fz_context *ctx, void *p, size_t size)
141 {
142 if (size == 0)
143 {
144 fz_free(ctx, p);
145 return NULL;
146 }
147 p = do_scavenging_realloc(ctx, p, size);
148 if (!p)
149 {
150 errno = ENOMEM;
151 fz_throw(ctx, FZ_ERROR_SYSTEM, "realloc (%zu bytes) failed", size);
152 }
153 return p;
154 }
155
156 void *
157 fz_realloc_no_throw(fz_context *ctx, void *p, size_t size)
158 {
159 if (size == 0)
160 {
161 fz_free(ctx, p);
162 return NULL;
163 }
164 return do_scavenging_realloc(ctx, p, size);
165 }
166
167 void
168 fz_free(fz_context *ctx, void *p)
169 {
170 if (p)
171 {
172 fz_lock(ctx, FZ_LOCK_ALLOC);
173 ctx->alloc.free(ctx->alloc.user, p);
174 fz_unlock(ctx, FZ_LOCK_ALLOC);
175 }
176 }
177
178 /* align is assumed to be a power of 2. */
179 void *fz_malloc_aligned(fz_context *ctx, size_t size, int align)
180 {
181 uint8_t *block;
182 uint8_t *aligned;
183
184 if (size == 0)
185 return NULL;
186
187 if (align >= 256)
188 fz_throw(ctx, FZ_ERROR_ARGUMENT, "Alignment too large");
189 if ((align & (align-1)) != 0)
190 fz_throw(ctx, FZ_ERROR_ARGUMENT, "Alignment must be a power of 2");
191
192 block = fz_malloc(ctx, size + align);
193
194 aligned = (void *)((intptr_t)(block + align-1) & ~(align-1));
195 if (aligned == block)
196 aligned = block + align;
197 memset(block, aligned-block, aligned-block);
198
199 return aligned;
200 }
201
202 void fz_free_aligned(fz_context *ctx, void *ptr)
203 {
204 uint8_t *block = ptr;
205
206 if (ptr == NULL)
207 return;
208
209 block -= block[-1];
210
211 fz_free(ctx, block);
212 }
213
214 char *
215 fz_strdup(fz_context *ctx, const char *s)
216 {
217 size_t len = strlen(s) + 1;
218 char *ns = fz_malloc(ctx, len);
219 memcpy(ns, s, len);
220 return ns;
221 }
222
223 fz_string *
224 fz_new_string(fz_context *ctx, const char *s)
225 {
226 fz_string *str = fz_malloc_flexible(ctx, fz_string, str, strlen(s) + 1);
227 str->refs = 1;
228 strcpy(str->str, s);
229 return str;
230 }
231
232 fz_string *fz_keep_string(fz_context *ctx, fz_string *str)
233 {
234 return fz_keep_imp(ctx, str, &str->refs);
235 }
236
237 void fz_drop_string(fz_context *ctx, fz_string *str)
238 {
239 if (fz_drop_imp(ctx, str, &str->refs))
240 fz_free(ctx, str);
241 }
242
243
244 static void *
245 fz_malloc_default(void *opaque, size_t size)
246 {
247 return malloc(size);
248 }
249
250 static void *
251 fz_realloc_default(void *opaque, void *old, size_t size)
252 {
253 return realloc(old, size);
254 }
255
256 static void
257 fz_free_default(void *opaque, void *ptr)
258 {
259 free(ptr);
260 }
261
262 fz_alloc_context fz_alloc_default =
263 {
264 NULL,
265 fz_malloc_default,
266 fz_realloc_default,
267 fz_free_default
268 };
269
270 static void
271 fz_lock_default(void *user, int lock)
272 {
273 }
274
275 static void
276 fz_unlock_default(void *user, int lock)
277 {
278 }
279
280 fz_locks_context fz_locks_default =
281 {
282 NULL,
283 fz_lock_default,
284 fz_unlock_default
285 };
286
287 #ifdef FITZ_DEBUG_LOCKING
288
289 enum
290 {
291 FZ_LOCK_DEBUG_CONTEXT_MAX = 100
292 };
293
294 fz_context *fz_lock_debug_contexts[FZ_LOCK_DEBUG_CONTEXT_MAX];
295 int fz_locks_debug[FZ_LOCK_DEBUG_CONTEXT_MAX][FZ_LOCK_MAX];
296
297 #ifdef FITZ_DEBUG_LOCKING_TIMES
298
299 int fz_debug_locking_inited = 0;
300 int fz_lock_program_start;
301 int fz_lock_time[FZ_LOCK_DEBUG_CONTEXT_MAX][FZ_LOCK_MAX] = { { 0 } };
302 int fz_lock_taken[FZ_LOCK_DEBUG_CONTEXT_MAX][FZ_LOCK_MAX] = { { 0 } };
303
304 /* We implement our own millisecond clock, as clock() cannot be trusted
305 * when threads are involved. */
306 static int ms_clock(void)
307 {
308 #ifdef _WIN32
309 return (int)GetTickCount();
310 #else
311 struct timeval tp;
312 gettimeofday(&tp, NULL);
313 return (tp.tv_sec*1000) + (tp.tv_usec/1000);
314 #endif
315 }
316
317 static void dump_lock_times(void)
318 {
319 int i, j;
320 int prog_time = ms_clock() - fz_lock_program_start;
321
322 for (j = 0; j < FZ_LOCK_MAX; j++)
323 {
324 int total = 0;
325 for (i = 0; i < FZ_LOCK_DEBUG_CONTEXT_MAX; i++)
326 {
327 total += fz_lock_time[i][j];
328 }
329 printf("Lock %d held for %g seconds (%g%%)\n", j, total / 1000.0f, 100.0f*total/prog_time);
330 }
331 printf("Total program time %g seconds\n", prog_time / 1000.0f);
332 }
333
334 #endif
335
336 static int find_context(fz_context *ctx)
337 {
338 int i;
339
340 for (i = 0; i < FZ_LOCK_DEBUG_CONTEXT_MAX; i++)
341 {
342 if (fz_lock_debug_contexts[i] == ctx)
343 return i;
344 if (fz_lock_debug_contexts[i] == NULL)
345 {
346 int gottit = 0;
347 /* We've not locked on this context before, so use
348 * this one for this new context. We might have other
349 * threads trying here too though so, so claim it
350 * atomically. No one has locked on this context
351 * before, so we are safe to take the ALLOC lock. */
352 ctx->locks.lock(ctx->locks.user, FZ_LOCK_ALLOC);
353 /* If it's still free, then claim it as ours,
354 * otherwise we'll keep hunting. */
355 if (fz_lock_debug_contexts[i] == NULL)
356 {
357 gottit = 1;
358 fz_lock_debug_contexts[i] = ctx;
359 #ifdef FITZ_DEBUG_LOCKING_TIMES
360 if (fz_debug_locking_inited == 0)
361 {
362 fz_debug_locking_inited = 1;
363 fz_lock_program_start = ms_clock();
364 atexit(dump_lock_times);
365 }
366 #endif
367 }
368 ctx->locks.unlock(ctx->locks.user, FZ_LOCK_ALLOC);
369 if (gottit)
370 return i;
371 }
372 }
373 return -1;
374 }
375
376 void
377 fz_assert_lock_held(fz_context *ctx, int lock)
378 {
379 int idx;
380
381 if (ctx->locks.lock != fz_lock_default)
382 return;
383
384 idx = find_context(ctx);
385 if (idx < 0)
386 return;
387
388 if (fz_locks_debug[idx][lock] == 0)
389 fprintf(stderr, "Lock %d not held when expected\n", lock);
390 }
391
392 void
393 fz_assert_lock_not_held(fz_context *ctx, int lock)
394 {
395 int idx;
396
397 if (ctx->locks.lock != fz_lock_default)
398 return;
399
400 idx = find_context(ctx);
401 if (idx < 0)
402 return;
403
404 if (fz_locks_debug[idx][lock] != 0)
405 fprintf(stderr, "Lock %d held when not expected\n", lock);
406 }
407
408 void fz_lock_debug_lock(fz_context *ctx, int lock)
409 {
410 int i, idx;
411
412 if (ctx->locks.lock != fz_lock_default)
413 return;
414
415 idx = find_context(ctx);
416 if (idx < 0)
417 return;
418
419 if (fz_locks_debug[idx][lock] != 0)
420 {
421 fprintf(stderr, "Attempt to take lock %d when held already!\n", lock);
422 }
423 for (i = lock-1; i >= 0; i--)
424 {
425 if (fz_locks_debug[idx][i] != 0)
426 {
427 fprintf(stderr, "Lock ordering violation: Attempt to take lock %d when %d held already!\n", lock, i);
428 }
429 }
430 fz_locks_debug[idx][lock] = 1;
431 #ifdef FITZ_DEBUG_LOCKING_TIMES
432 fz_lock_taken[idx][lock] = ms_clock();
433 #endif
434 }
435
436 void fz_lock_debug_unlock(fz_context *ctx, int lock)
437 {
438 int idx;
439
440 if (ctx->locks.lock != fz_lock_default)
441 return;
442
443 idx = find_context(ctx);
444 if (idx < 0)
445 return;
446
447 if (fz_locks_debug[idx][lock] == 0)
448 {
449 fprintf(stderr, "Attempt to release lock %d when not held!\n", lock);
450 }
451 fz_locks_debug[idx][lock] = 0;
452 #ifdef FITZ_DEBUG_LOCKING_TIMES
453 fz_lock_time[idx][lock] += ms_clock() - fz_lock_taken[idx][lock];
454 #endif
455 }
456
457 #else
458
459 void
460 (fz_assert_lock_held)(fz_context *ctx, int lock)
461 {
462 }
463
464 void
465 (fz_assert_lock_not_held)(fz_context *ctx, int lock)
466 {
467 }
468
469 void (fz_lock_debug_lock)(fz_context *ctx, int lock)
470 {
471 }
472
473 void (fz_lock_debug_unlock)(fz_context *ctx, int lock)
474 {
475 }
476
477 #endif